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~um~rical ex~rimenls perf?rmed for a model of two strongly coupled oscillators indicate that the 
adiabatIc ~paratlOn method ~Jelds accurate results even where the condition of adiabalicity is violated 
t? a very hIgh degree, except In those cases where two levels are degenerate in the adiabatic approxima
tIOn. An accurate solution for those cases can be obtained by diagonaJizing the 2 x 2 Hamiltonian 
submatrix built on the two. degenerate adia~atic ~tates. It is conjectured that the adiabatic separation 
method can be expected qUite generally to YIeld hIghly accurate results, at least for states belonging to 
the discrete spectrum. 

I. INTRODUCTION 

It has been useful in many cases to employ adiaba
ticity arguments in the treatment of a system with 
strongly interacting degrees of freedom. In the 
resulting adiabatic approximation, the degrees of 
freedom are dynamically decoupled and a separation 
of the equations describing the system is achieved by 
neglecting certain kinetic energy terms. Other kinetic 
energy terms, which are of the same order of magni
tude, are kept. Usually, this makes good sense because 
of physical arguments. Sometimes, however, the 
adiabatic separation method has been applied in such 
situations where the physical arguments would cast 
doubt on the accuracy of the method. Nevertheless, 
the obtained results turned out to be quite reliable. 

In the present paper, we set out to make numerical 
tests concerning the accuracy of the adiabatic approxi
mation by comparing the presumably very accurate 
solutions obtained by diagonalizing very large mat
rices with the solutions obtained from integrating the 
differential equations resulting from making an adia
batic approximation. In these tests we used a model 
consisting of two coupled harmonic oscillators. It 
turned out that, at least in this case, the method works 
even when the conditions of adiabaticity are not only 
broken, but even negated. 

We were motivated to undertake this investigation 
and were guided in the choice of the model by the 
collective model of nuclear physics. I In it, several 
modes of motion are strongly coupled, viz., the surface 
rotations, the surface vibrations, and the giant 
resonance oscillation.2 In addition, in odd A nuclei, 
the motion of the "last" nucleon must be taken into 
aC90unt. It interacts with the surface modes via the 
potential well which depends on the shape of the 
nucleus. This system can be described by coupled 

1 For a discussion from the point of view of atomic collisions see 
e.g., J. Heinrichs, Phys. Rev. 176. 141 (1968). ' 

I See, e.g., M. Danos and E. G. Fuller, Ann. Rev. Nuel. Sci. 15 
51 (1965). ' 

anharmonic many-dimensional oscillators. The char
acteristic frequencies of the different modes of the 
system have approximately the ratios 0.1: 1 : 15: 10. 
Since these ratios are 0.1 or smaller, except for the 
last pair, which is uncomfortably close to 1, it has been 
assumed that the adiabatic separation method should 
be quite accurate. As already mentioned, this assump
tion turned out to be quite well founded. 

We found, in short, that the adiabatic approxima
tion is quite accurate for an astonishingly large range 
of the relevant parameters. In terms of the parameter A 
specifying the adiabaticity, i.e., A = Wa/WI' which is 
the ratio of the harmonic oscillator frequencies, the 
adiabatic approximation is supposed to be valid in the 
limit A « 1. One should expect a complete breakdown 
of the adiabatic approximation for A ~ 1. This did not 
turn out to be the case even for very strong coupling 
between the oscillators. Except for level degeneracies 
which happen at some particular values of A, the 
adiabatic solutions remained quite accurate even 
for A > 1. Thus, the only substantial discrepancies are 
connected with those solutions which are almost 
degenerate in the adiabatic method. We have not yet 
been able to pinpoint any reason for this surprising 
result. Finally, we investigated the level crossings. We 
found that the discrepancies in these regions can be 
eliminated to a large extent by mixing the two de
generate states, i.e., by constructing a 2 x 2 Hamil
tonian matrix. The solutions of the system thus seem 
to be quite well represented by a single solution or, 
in the case of level crossings, by the two closest 
solutions of the adiabatic approximation. 

II. THE MODEL 

We take two I-dimensional harmonic oscillators 
coupled by a term symmetric in both variables as a 
model. The simplest nontrivial system of this kindS is 

8 For a system which can be solved exactly see, e.g., P. M. Morse 
and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 
New York, 1953), Vol. II, p. 1718. 
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described by the Hamiltonian 

B = ~hW{ (- :;2 + ;2) 
+ A(- :;2 + '}2) + 4K;2'}2] == thWIH. (1) 

Here, 

(2) 

To obtain the adiabatic approximation, one puts 

(3) 
which leads to 

( 
02 ) 0

2 

Ho/ = cp - ~ + e1p + ).1p(_ ~+ '}2cp) 
Oe or/ 

- A 2 - - + cp - + 4Ker/cp1p = E'l". ( 
Ocp 01p 021p) 
O'YJ O'YJ 0'YJ2 

(4) 

This equation separates into two uncoupled equa
tions if one drops the term containing the "wrong" 
derivatives, i.e., 

(5) 

on the basis of the adiabaticity condition A « 1. Note 
that the magnitude of the term (5) is of order A only 
with respect to the first parenthesis of (4). It is of the 
same order as the second parenthesis of (4), viz., 
linear in A. To emphasize, in the adiabatic method one 
thus drops selectively only a part of the terms pro
portional to A. Therefore, A is not actually a parameter 
equivalent to the small parameter of a systematic 
perturbation procedure. Uncertainties of the order A, 
in other words, of the order of the level spacing of the 
low-energy system, i.e., of order hW2, therefore 
cannot be excluded. As we will see below, they do, in 
fact, show up. 

At any rate, the two separated eigenvalue equations 
are' 

(j21p 2 2 
Hl1pn = - oe + (1 + 4K'YJ ); 1pn = En('YJ)1pn, (6) 

(7) 
and 

2CPnm = A - - 'YJ --- + 4K""-) m H ,( (}2 + 2 + 2n + 1 (1 • !) 
O'YJ2 ). ./ "rnm 

= Enm'Pnm. (8) 

The eigenvalues and eigenfunctions of (8) were 
found numerically for a series of values of the param
eters A and K. 

4 L. I. Schiff. Quantum Mechanics (McGraw-Hill. New York. 
1968). 3rd ed .• p. 66. 

To determine the accuracy of these solutions we 
solve the SchrMinger equation with the Hamiltonian 
(1) by constructing the Hamiltonian matrix in the 
basis of the free-harmonic-oscillator solutions corre
sponding to K = 0 in (1). In other words, for 0/ we 
write the expansion 

(9) 

where u and v are the I-dimensional harmonic
oscillator wavefunctions.' Then the elements of the 
Hamiltonian matrix are 

(k'I'1 H Ikl) = Dk'kDd(2k + 1) + ),(21 + 1)] 

+ K{ Dk'.k_2[k(k - 1)]t + Dk,i2k + 1) 

+ Dk '.k+2[(k + 1)(k + 2)]1} 

X {Dz'.z-2[1(1 - 1)]1 + Dn(21 + 1) 

+ Dz'.z+2[(1 + 1)(1 + 2)]!}. (10) 

Thus, the matrix splits into four disconnected matrices 
for the states of the four possible different symmetries. 
We consider only those states for which both k and I 
are even. 

The matrix was truncated at suitable values of k 
and l. The following simple truncation procedure was 
employed. To begin with, for each value of k a certain 
'max was chosen. After the diagonalization it was 
checked whether the amplitudes ak7) of (9) at the 
different 'max had become sufficiently small. In those 
k-blocks where this seemed necessary, [max was 
changed by 1, 2, or 3. Also, it was checked whether 
adding another value of k with lmax = 1 was required. 
This procedure was continued until a satisfactory 
convergence of the amplitudes was achieved. It was 
found that going to excited states, i.e., with increasing 
n, the convergence very rapidly diminishes. In other 
words, the number of harmonic-oscillator states 
which participate in a given state of the system in
creases very rapidly with increasing eigenvalue. In 
order to achieve reasonable convergence, therefore, 
matrices of sizes up to 130 X 130 had to be employed 
for the case K = 0.75. Then the amplitude printout for 
the ground state (n = 0) contained mostly zeros, 
while for n = 6 convergence was just tolerable. 

III. RESULTS 

For a given K > 0, the adiabatic approximation is 
supposed to approach the exact solution as A -+ O. 
This should be true independently of the magnitude 
of K. On the other hand, as K decreases the oscillators 
decouple and the solution becomes trivial. After some 
tryouts most of the numerical calculations were done 
for K = 0.75, which in the terminology of the nuclear 
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FIG. 1. Comparison of adiabatic approximation and matrix diagonalization solutions for a coupling parameter K = 0.75. 
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collective model corresponds to strong coupling. The 
strength of the coupling is best judged from the 
magnitude of the contributions of the several terms of 
the Hamiltonian to the matrix elements (10). The 
coupling term, the product of the two braces contain
ing the factor K, contributes even to the lowest 
diagonal element an amount comparable in magnitude 
with that of the unperturbed oscillators. Also, even 
the lowest off-diagonal element is comparable in 
magnitude with the adjacent diagonal elements. Thus, 
a very thor'ough mixing of the harmonic oscillator 
states is to be expected here. This indeed turned out 
to be the case and, as already mentioned, for the 
considered part of the eigenvalue spectrum, i.e., the 
lowest six or seven states, a 130 x 130 matrix has to 
be employed. 

The results were plotted in terms of the reduced 
eigenvalue variable 

. Enm = (Enm - E~l)/Etl (11) 

in order to be able to represent the results on a graph 
in such a way that the trivial dependences have been 
eliminated. In (11), the ground-state energy of the 
matrix solution is denoted by Etl and the energy of 
the first excited state of the matrix solution is denoted 
by E~l. The form (11) was chosen for the reduced 

1.2 

I. 

• 2 

FIG. 2. Comparison of matrix, adiabatic, and corrected adiabatic 
solutions using Eq. (12) for a crossing near). = 0.4. 

.7 

FIG. 3. Comparison of matrix, adiabatic, and corrected adiabatic 
solutions using Eq. (12) for a crossing near). = 1.0. 

energy in preference to other possibilities, e.g., (Enm -
E~)/(Ef - Egt), in order to minimize the distortions 
from the straightforward plot of Enm. 

The following observations can be made (see Fig. 1): 
(i) The overall accuracy of the adiabatic solutions 

is uncannily good. Considering first the ground state; 
one sees that the error of the adiabatic solution builds 
up very slowly as ).. increases and is still quite small 
even at ).. = 4, where the condition )..« 1 clearly is 
totally violated. It is not evident why this is true; 
there seems to be no a priori reason for the term (5) to 
be small unless ).. is small. 

(ii) Considering the region)..« 1, e.g., ).. = 0.05, 
one notices an even-odd effect: The matrix and the 
adiabatic eigenvalues differ more for the second, 
fourth, and sixth than for the first, third, and fifth 
states. Since the adiabatic approximation for such 
small ).. should be exceedingly accurate, one has to 
conclude that this discrepancy results from in
accuracies of the matrix eigenvalues . 

(iii) The adiabatic approximation allows a classifica
tion of the states according to the quantum numbers 
of the solutions of (6) and (8). In contrast to that, the 
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FIG. 4. Comparison of eigenfunctions 
from matrix and adiabatic approximation 
calculations. In (a) no special correction is 
applied to the adiabatic solution; in (b) and 
(c) the eigenfunction is constructed from 
the two adiabatic solutions closest to the 
crossing. 
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matrix eigenvalues just fall as they happen and, 
furthermore, as long as the coupling is strong, it is 
impossible to tell anything from the eigenvectors. 

(iv) The only larger discrepancies appear to be 
associated with rather small regions around eigen
value degeneracies. Since the equations (6) and (8) 
of the adiabatic approximation are dynamically 
decoupled, there is no reason for the eigenvalues 
associated with different quantum numbers to repel, 
while, naturally, no degeneracies occur in the solutions 
of the matrix. 5 The behavior of the eigenvalues in the 
crossing region suggests that the adiabatic solutions 
could be corrected by mixing the degenerate solutions 
via the term (5), i.e., by solving a 2 x 2 matrix. 

( v) In the proper scale, i.e., in the scale of liW2' the 
residual discrepancies are independent of A. In other 
words, the level repulsion at the different crossings is 
essentially a constant fraction of the level spacing. 

In order to verify the conjecture of (iv) above, a 
check was performed for two crossing regions, viz., 
the lowest crossings around A = 1 and A = 0.4. 
Clearly, in neither of these cases is the condition 
,1.« 1 fulfilled. We constructed the 2 x 2 Hamiltonian 
matrix by computing the matrix elements 

"J (a
21pp agJp a1pp) haP = -Ii. gJa"l'« gJp ar/ + 2 a'fj a;; a~~ (12) 

of the neglected term (5) of the Hamiltonian (1), 
using the two crossing states. After diagonalization 
of this matrix, the only qualitative difference between 
the adiabatic and exact solution, viz., the degeneracy 
of the solutions, is eliminated. The resulting eigen
values are shown in Figs. 2 and 3. The remaining 
differences indicate that some admixture from the more 
distant adiabatic solutions is contained in the exact 
solution. However, the amplitude of this admixture is 

• Note that the "crossing region" in the terminology of atomic 
collisions concerns crossings of different "potential energy" curves, 
i.e., of the quantities analogous to Eq. (7). (See, e.g., Ref. 1.) In the 
present model no such crossings occur. 

very small. This is illustrated in Fig. 4 where both the 
exact and the two-state adiabatic eigenfunctions are 
plotted. The differences are of the order of percent, 
and any errors resulting from using the adiabatic 
eigenfunctions in the evaluation of matrix elements 
will be exceedingly small. 

Some of the results obtained have a simple explana
tion, but we wO\lld like to re-emphasize that we have 
no explanation for the main result, i.e., for the large 
range of A over which the adiabatic method works. 
In other words, it is not clear to us why the off
diagonal matrix elements hap of (12), both for ~ = p 
and ~ =F p, are so small: They are small only because 
of cancellations in the integration. The integrand itself 
is of reasonable magnitude. Perhaps even more 
significant is the fact that the quantity hap/A turns out 
to be practically independent of A. This shows that, 
indeed, a small A is of help, but the quantity hap/A it
self happens to be small as compared with the diagonal 
energies, while it should have been expected to be of 
the same order of magnitude. 

We do not think that the symmetry of the present 
model with respect to the exchange ~ ~ 'fj, A ~ 1/,1. is 
at the root of the puzzle. Namely, when making that 
exchange one is, in fact, solving a different problem, 
in which the adiabaticity condition may be satisfied. 
However, such an exchange is possible for every form 
of the interaction term: after the exchange one is led 
to a different equation which may then obey the 
adiabaticity condition. 

In conclusion, it seems to us that one should 
seriously consider the use of the adiabatic separation 
method, even when, offhand, one would think it to be 
inapplicable. Although the results of this paper were 
obtained for a specific model, it is possible that they 
are quite generally valid, at least for systems with a 
discrete spectrum or for the discrete spectrum of more 
general systems. The adiabatic method could very well 
be substantially more economical than other possible 
solution methods. 
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As ~n example of a pertur.?a~ion technique for large coupling constantsg2, we investigate the solutions 
and ~Igenval.ues of ~he Schro~mger equation for a Gauss potential. In particular, we obtain the regular 
~olutlOn, .vahd for r < 1/1gl, I~ .terms of confluen~ hypergeometric functions by expanding the potential 
m th~ n~lghborhood ?f th~ ongm. The Jost solution is obtained in an analogous manner in terms of a 
c~rtam mtegra~ an~ IS vah~ for r2 > 1/14gl .. Bot~ solutions are eigensolutions belonging to the same 
elgenenergy E. - k . Thes~ eigenvalues are denved m the form of large-g asymptotic expansions which are 
useful and ~ahd over a w~de r~nge of g. A noteworthy aspect of the investigation is the close analogy of 
the underlymg mathematics with that of well-known periodic equations. 

1. INTRODUCTION 

Considerable insight into various aspects of scatter
ing theory has recently been gained from an extensive 
study of potential theory. In particular, the interest in 
high-energy scattering for Yukawa potentials was 
revived with the hope of finding some hints on the 
behavior of the fully relativistic (field-theoretical) 
scattering amplitude. However, it has become clear 
also that Yukawa-like interactions, although they 
repro.duce the Born approximation of a scattering 
amplItude remarkably well in most cases-even in 
elem~ntary particle physics-do not generally suffice 
for higher-order approximations. Considerable doubt 
~as been expressed on expecting the Regge trajectories 
m elementary particle physics to resemble those for 
Yukawa potentials. The need, therefore, arises for a 
better understanding of Regge trajectories (for in
stance) and of the scattering amplitude in general for 
other interactions besides the Yukawa potential. 

In phenomenological theories, one of the most 
widely used interactions is the Gauss potential. This 
potential probably found its first application in the 
investigation of the ground state of the deuteron by 
Bethe (for a review see Bethe and Bacherl). However 
despite its repeated application in many branches of 
theoretical physics and despite a large number of 
app~oximation and ?erturbation methods developed 
speCifically for solvmg more complicated scattering 
problems, not a single attempt seems to have been 
made to ~~a~ne the a~alytic properties of its ordinary, 
nonrelatIvlstIc scattermg amplitude. Scattering and 
bound-state problems for the Gauss potential have 
therefore been studied exclusively by numerical 
methods. 

We believe that analytic investigations as well as 

• Present address: Sektion Physik der Universitat Munchen 
Lerrstuhl Prof. Bopp, Munchen, Germany. ' 

H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 82 (1936). 
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more effective mathematical techniques would help 
both the pure phenomenologist as well as the theore
tician interested in a deeper understanding of the under
lying scattering problem. Therefore, in the present 
paper, we examine as an example the solution of the 
Schrodinger equation for a Gauss potential VCr) = 
_g2e-a2r2 w~en the coupling constant g2 is large. A 
field-theoretical model for large coupling constants 
has been considered, e.g., by Schiff.2 In Sec. 2 we 
derive a complete large-g asymptotic solution of the 
S-wave radial wave equation in terms of parabolic 
cylinder fun~tions: The solution, obtained by choosing 
the harm?mc OSCIllator as the corresponding unper
turbed eIgenvalue problem, is valid near r = o· 
therefore it is the regular solution. We also obtain ~ 
corresponding large-g asymptotic expansion for the 
eigenenergies. In Sec. 3 we obtain the corresponding 
results for all angular momenta, the solution in terms 
of confluent hypergeometric functions being valid for 
r2 < II/gal. (In view of the different nature of the 
solutions in the two cases, it is best to consider both 
separately.) In Sec. 4 we derive the large-g asymptotic 
expans~on of the Jost solution valid for r2 > I/14gl in 
the r~~lOn of boun?-state energies. From a subsidiary 
condItIOn we obtam again the same large-g asymp
totic expansion for the eigenvalues as before. In Sec. 
5 we examine the analytic continuation of these 
solutions and show that they are proportional to each 
other in their common range of validity. 

Perhaps the most useful result is the expansion 
(3.30) for the eigenenergies-k2 in terms of an odd
integer quantum number q = 4n + 3 (n = 0, 1, 
2, .. ')'. We did not succeed in deriving a corresponding 
expanSIOn for the phase shift (for the general method 
as applied to other potentials; see Ref. 3). We have 

2 L. I. Schiff, Phys. Rev. 92, 766 (1953). 
3. H. ~; yv. Muller, "Perturbation Approach for Regular Inter

actIOns, m Beirut Lectures in Theoretical High-Energy Physics 
H. H. Aly, Ed. (Interscience Publishers, Inc., New York, 1968). ' 
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reason to believe that such an expansion may not 
exist: In the case of the Gauss potential, a stronger 
attraction of the particles is equivalent to an increase 
in the coupling constant g2. One would therefore 
expect the behavior of the phase-shift for large g2 to be 
similar to that for large k 2 (since k2,..." - g2). However, 
an asymptotic expansion of the amplitude (and hence 
of the phase shift) in powers of IJk2 does not exist' 
for a potential with vanishing odd-order derivatives 
at r = 0 [i.e., for a potential VCr) which can be ex
panded in even powers of r around the origin]. This 
result is closely related to the observation of Bethe 
and Kinoshita,':; that for such a potential a Regge pole 
and thus a bound-state wavefunction cannot be defined 
in the limit Ik21 ---+- 00 in the ordinary way [since 
oc(k) ---+- 00 for Ik21---+- 00]. The behavior of Regge 
trajectories for the Gauss potential has been investi
gated by Aly, Miiller, and Schilcher.6 The present 
investigation, as also our previous paper,? reveals, 
however, an interesting mathematical feature of the 
Schrodinger equation for even-power potentials. This 
may be summarized by saying: For even-power 
potentials, the over-all analytic characteristics of the 
solutions are completely analogous to those of well
known periodic differential equations such as the 
Mathieu equation. Further investigations into the 
analytic behavior of the scattering amplitude for 
even-power potentials8 may therefore be motivated 
also by solutions and properties of the Mathieu 
equation which have been studied in great detail.9·1o 

Moreover, in both cases the mathematics is of the 
same degree of complexity (or simplicity); so that 
claims that the SchrOdinger equation for a Gauss 
potential (for instance) be tractable only by numerical 
methods are disproved already by the vast literature 
on periodic differential equations. We discuss this 
analogy in slightly more detail in the conclusion. 

2. S-WAVE SOLUTIONS NEAR THE ORIGIN 

A. Approximate Behavior of the Eigenvalues in the 
Limit of Large Coupling Constants 

We consider an S-wave radial Schrodinger equation 
(Ii = c = 1, m = t) for the Gauss potential 

(2.1) 

4 S. Rosendorff and S. Tani, Phys. Rev. 131, 396 (1963). 
5 H. A. Bethe and T. Kinoshita, Phys. Rev. 128, 1418 (1962). 
8 H. H. Aly, H. J. W. Milller, and K. Schilcher, Nucl. Phys. 

83, 401 (1967). 
7 H. J. W. Milller, Ann. Physik (Leipzig) 21, (1968) . 
• For a preliminary investigation see H. J. W. Milller, Z. Physik 

205, 149 (1967). 
'J. Meixner and F. W. Schafke, Mathieusche Funktionen und 

Sphiiroid!unktionen (Springer-Verlag, Berlin, 1954). 
10 F. M. Arscott, Periodic Differential Equations (Pergamon Press 

Ltd., London, 1964). 

g2 and a2 being both real and positive. Our first aim is 
to determine the approximate behavior of the eigen
energy k 2 under normal bound-state boundary con
ditions-however, in the limit of large positive values 
of the coupling constant g2. 

Since exponential x is an entire function of x, we 
may expand the potential (2.1) in ascending powers of 
r2 and obtain 

( 
d2 2 2 2 2 2) 2 ~ (_a 2)i 2i - + k + g - gar tp = - g ~ -. - r tp. 
dr2 

i=2 I! 
(2.2) 

In this equation, we change the independent variable 
to 

Z = (2ga)lr, (2.3) 

- + - iz tp = - - ~ - -- tp. ( 
d2 k2 + g2 2) 1 00 (a)i-1 (_iz2)i 

dz 2 2ga 2i=2 g j! 
(2.4) 

In the limit Igl ---+- 00, this equation becomes the 
parabolic cylinder equation 

(::2 + iq - iZ2) tpq = 0, (2.5) 

where 
tpa(z) = D!ca-u(z) (2.6) 

is the parabolic cylinder function, and 

q = (k2 + g2)Jga. (2.7) 

If, moreover, the boundary conditions-as those for 
bound states-require that tp vanish at infinity, we have 

q = 2n + 1, n = 1,2,3, .. " k 2 < O. (2.8) 

The problem then reduces effectively to that of the 
harmonic oscillator. We have, therefore, 

(k2 + g2)/ga = q - (2a/g)ll, (2.9) 

where Il is an expansion of order zero in l/g. For 
k 2 > 0, of course, q is not given by (2.8); instead it is 
a function q(k). 

B. Solution of the S-Wave Schriidinger Equation 

We now substitute (2.9) into (2.4) and multiply the 
equation by -2; then 

( 

00. (2Z2)i+2) 
i>qtp = h 81l - i~ h' 4(i + 2)! tp, (2.10) 

where 

(2.11) 
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and 

h == -a/4g. 

Then, adding successive contributions and rearranging 
(2.12) these in powers of h, we obtain 

As a first approximation to "P, we have "P c:= "P(I) = 
"Pq and and 

(2.13) 

It is now convenient to set 

"Piz) = Dl(q-l)(z)/[i(q - 1)]! 2t(q-l). (2.14) 

The factors introduced in this choice ensure that the 
expansion coefficients obtained below are particularly 
simple and symmetric. 

Clearly the first approximation "P(I) leaves uncom
pensated terms on the right-hand side of (2.10) 
amounting to 

R(l) = h(8~ - i hi (2z
2r 2 

) "Piz). (2.15) 
;=0 4(i + 2)! 

The recurrence relation for the functions "Pq follows 
immediately from that for parabolic cylinder functions. 
Thus 

2Z2"Pq = (q + 3)"Pq+4 + 2q"Pq + (q - 3)"Pq-4 

or, more generally, 
m 

(2z2)m"Pq(z) = 2 Sm(q, q + 4i)"Pq+4i(Z), (2.16) 
i=-m 

where SI(q, q + 4) = (q + 3), etc. 
Substituting now the relation (2.16) into (2.15), we 

have 
<Xl H2 

R(I) - ~ hi+! ~ [ + 4'] - ~ ~ q, q :J i+!"Pq+41' (2.17) 
i=O 1=-(;+2) 

where 

[q, q]1 = 8~ - (1/4' 2!)S2(q, q) (2.18) 

and-for i and j not simultaneously zero-

[q, q + 4j]i+l = -[1/4(i + 2)!]SH2(q, q + 4j), 

(2.19) 
with Ijl ::;; i + 1. 

Next we observe that 

(2.20) 

Thus a term fl"Pq+4; on the right-hand side of (2.11) or 
in (2.17) may be canceled out by adding to the previous 
approximation the contribution {fl/4j)"PH41 except, of 
course, when j = O. Hence the next contribution to 
"P(I) becomes 

<Xl H2 [ + 4'] 
"P(2) = 2 hi+! 2 q, q .:J HI "Pq+41' (2.21) 

i=O ;=-(i+2) 4) 
j,00 

This contribution leaves uncompensated a sum of 
terms R(2), and these again lead to another contribu
tion "P(3). This process may be repeated indefinitely. 

00 -2i 

"P(z) = "Piz) + 2 hi 2 Plq, 4j)"Pq+4;(z). (2.22) 
i=1 ;=2i 

1*0 

The coefficients Pi in this expansion are found to be 

P ( ±8) = [q, q ± 8h P (q ±4) = [q, q ± 4h 
1 q, ±8' 1, ±4' 

etc. (2.23) 

For (2.22) to be a solution of (2.10), the sum of all 
terms in "Pq-Ieft uncompensated so far (e.g., in R(1)_ 

must vanish. Thus 

0= h[q, q]l + h2{ [q, q]2 + [q, q 4+ 4]1 [q + 4, q]1 

+ [q, q - 4]1 [ _ 4 ] 
-4 q ,q 1 

+ [q, q + 8]1 [ + 8 ] 
8 q ,q 1 

+ [q, q - 8]1 [q _ 8, q]l} + .... 
-8 

(2.24) 

This is the equation from which ~ and hence the 
eigenenergy k 2 is determined. Evaluation of the terms 
up to O(h3) in (2.24) yields the expansion 

k2 + 2 = a _ 3a
2
(q2 + 1) + q(llq2 + 1)a

2 
h 

g qg 24 26 '3 

_ (85q4 + 2yq2 - 423)a
2 

h2 + O(h 3). 

2 ·3 
(2.25) 

For small values of Ihl or large values of g, (2.25) is a 
proper asymptotic expansion with rapidly decreasing 
terms in magnitude. 

3. GENERAL SOLUTIONS NEAR THE ORIGIN 

A. Approximate Behavior of the Eigenvalues in the 
Limit of Large Coupling Constants 

We consider the radial SchrOdinger equation 

[~ + k2 _ 1(1 + 1) _ V(r)]"P = 0 (3.1) 
dr2 r2 

(Ii = c = 1, m = t) for the Gauss potential (2.1), g2 
and a2 being again both real and positive. Our first aim 
is to determine the approximate behavior of the 
eigenenergy k 2 under normal bound-state boundary 
conditions-however, in the limit of large positive 
values of the coupling constant g2. 
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Proceeding as before, we may rewrite (3.1) in the 
form 

In this equation we change the independent variable to 

(3.3) 
Then 

(3.4) 

In the limit Igl- 00, this equation may be approxi
mated by 

d
2

1po + (k2 + g2 _ 1(1 + 1) _ t Z2) 1po = O. (3.5) 
dz 2 2ga Z2 

B. Solution of the Radial SchrOdinger Equation 

We now substitute (3.12) into (3.4) and multiply the 
equation by one-half; then 

~q1p = (-tL\h + !4~ h~~l (!Z2)i)1p, 
.-2 I. 

(3.13) 

where 

~ ==! (~ +' 1 + lq _ /(1 + 1) _ 1. 2) 
q 2 dz 2 "2 Z2 4

Z (3.14) 

and 
h = -a/g. (3.15) 

As a first approximation to 1p we have 

Clearly, the first approximation leaves uncompensated 
terms on the right-hand side of (3.13) amounting to 

R(l) = (-!L\h + !! h~-l (!Z2)i)1pq(Z). (3.17) 
4i=2 J! 

For convenience, we now write 

1piZ) == 1p(a, b; z) == 1p(a). (3.18) 

Setting 

1po(Z) = zl+le-iz2X o(z) and S = !Z2, 

one finds that Xo(z) satisfies the equation 

The recurrence relation for the functions 1p(a) follows 
(3.6) from that for confluent hypergeometric functions: 

S d2Xo + (b _ S) dXo - aX = 0 
dS2 dS 0, 

(3.7) 

where 

a = HI + !) - (k2 + g2)/4ga and b = I + !. 
(3.8) 

Equation (3.7) has the solution 

Xo(z) = <P(a, b; z), (3.9) 

where <P is a confluent hypergeometric function. The 
solution 

(3.10) 

is a normalizable function if 

a = -n for n = 0, 1, 2, .... (3.11) 

Setting q = 4n + 3 implies k 2 + g2 = ga(21 + q). 
Therefore, in the general case we may set 

k2 + g2 = ga(2/ + q) - 2a2L\, (3.12) 

where L\ is of order zero in IJg. [Note: Only for 
k 2 < 0 is q = 4n + 3; for k 2 > 0, we consider q as a 
function of k: q = q(k).] 

tz21p(a) = (a, a + 1)1p(a + 1) + (a, a)1p(a) 

+ (a, a - 1)1p(a - 1), (3.19) 
where 

(a, a + 1) = a = -i(q - 3), 

(a, a) = b - 2a = 1+ !q, (3.20) 

(a, a-I) = a - b = -i(q + 3) - I. 

In general, 
m 

(tz2)m1p(a) = 1 Sm(a, a + j)1p(a + m). (3.21) 
i=-m 

The coefficients Sm(a, a + r) satisfy the following 
recurrence relation: 

Sm(a, a + r) = Sm-l(a, a + r - 1)(a + r - 1, a + r) 
+ Sm_l(a, a + r)(a + r, a + r) 
+ Sm_l(a, a + r + 1)(a + r + 1, a + r) 

(3.22) 
with the boundary conditions 

So(a, a) = 1; So(a, a + i) = 0 for i =F 0; 

Sm(a, a + r) = 0 for Irl > m. 

The expression R(1) may then be rewritten as 

00 i+2 

R(l) = 1 hi+! 1 [a, a + j]i+l1p(a + j), (3.23) 
i=O ;=-(i+2) 
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where 

1 
[a, a]l = -tA + -- S2(a, a) 

4· 2! 

and, for i and j not zero simultaneously, 

[a, a + j]i+l = 1 Si-1-2(a, a + j). (3.24) 
4(i+2)! . 

Next we observe that 

j}Q1p(a + j) = j1p(a + j). (3.25) 

Thus a term f-l1p(a + j) on the right-hand side of (3.13) 
or in (3.23) may be canceled out by adding to the 
previous approximation the contribution (f-l/j)1p(a + j) 
except, of course, when j = O. Hence the next con
tribution to 1p(l) becomes 

This contribution leaves uncompensated a sum of 
terms R(2), and these again lead to another contri
bution 1p(3). This process may be repeated indefinitely. 
Then, adding successive contributions and rearranging 
these in powers of h, we obtain 

1p = 1p(l) + 1p(2) + 1p(3) + ... 
and 

00 2i 

1p(z) = 1p(a, b; z) + ! hi ! Pia,j)1p(a + j, b; z). 
i=l j=-2i 

1*0 
(3.27) 

expansion [calculated independently of (2.25)!] 

k2 + g2 

= ga(21 + q) 
2 

- ~ [3(q2 + 1) + 4(3q - 1)1 + 812
] 

24 
a3 

- --8 [q(l1q2 + 1) + 2(33q2 - 6q + 1)1 
3· 2 g 

+ 24(5q - lW + 64[3] 
4 

a 15 2 [4(85q4 + 2q2 - 423) 
3·2 g 

+ 1(2720q3 - 71q2 + 32q + 2976) 

+ 32/2(252q2 - 12q + 64) 

+ 25613(41q - 9) + 409614
] + O(1/g3). 

(3.30) 

For small values of Ihl or large values of Igl, (3.30) is a 
proper asymptotic expansion with rapidly decreasing 
terms. 

To ensure that the solution (3.29) is properly defined, 
we obviously require Ihl < I and Itz21 < 1, the latter 
expressing the convergence of the Kummer expansion 
of the confluent hypergeometric function inside the 
unit circle of its argument. Our solution (3.27) is 
therefore valid for 

la/gl < 1 and Ir21 < II/gal. (3.31) 

4. SOLUTIONS FOR r NEAR INFINITY 

A. Method of Solution 

In order to obtain the solutions for large r, we next 
derive the Jost solutions which behave like e±ikr for 
r ~ 00. So we define a solution 1p(+) of the radial wave 

The coefficients Pi in this expansion are found to be equation by the asymptotic condition 

Plea, ±2) = [a, a ± 2]1, Plea, ±1) = [a, a ± n, k2 > 0: 1p(+)(I, k; r) ~ eikr 
for Irl ~ 00. (4.1) 

±2 ± 1 Again we start from the equation [considering q, A as 
(3.28) functions of k defined by (3.12)] 

etc. Others follow similarly. 
For (3.27) to be a solution of (3.13), the sum of all 

terms in 1p(a)-left uncompensated so far (e.g., in 
R(1)-must vanish. Thus 

2{ [a, a + 2]1 
0= h[a, a]l + h [a, a]2 + 2 [a + 2, a]l 

+ [a, a +1 ]1 [a + 1, all + [a, a - n [a - 1, ah 
1 -1 

+ [a - 2, all + .... [a, a - 2h } 
-2 

(3.29) 

This is the equation from which A and hence the 
eigenenergy k 2 is determined. Evaluation yields the 

1p" + {- [l(l + 1)/r2] + ga(2l + q) - 2a2A 

(4.2) 

In the limit of large coupling constants g2 ~ 00, this 
equation is approximated by 

1p" + {_g2 + g2e-a' r '}1p = O. (4.3) 

An approximate solution of this equation is 

1p ""' exp ( ± f(g2 - g2e-a
2
r')! dr). 

The terms in g2 in (4.2) may therefore be removed by 
setting (no matter how q behaves!) 

1p = A(r) exp ( ±gf(1 - e-a~r')l dr). (4.4) 
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The resulting equation for A may be written 

dA 2 a2r2 ) 
±2(1 _ e-a2r2)! _ + (a(21 + q) ± a re- A 

dr (1 - e-a2r2l 
= !(-AII + 1(1 + 1) A + 2a2~A). (4.5) 

g r2 

It is now convenient to define functions N(r) and M(r) 
by 

• Jar dx 
N(r) == In M(r) = 2 ! . 

(1 _e-x ) 
(4.6) 

Further, defining Air) as the solution of the first
order differential equation 

±2(1 _ e-a2r? dAq 
dr 

( 
a2re-a2r2 ) 

+ a(21 + q) ± 2 2! Aq = 0 
(1 - e-a r) 

(4.7) 

and integrating, we find 

Air) = (1 - e-a2r2)-i-[M(r»)'f(l+ia). (4.8) 

Since the right-hand side of (4.5) is of order Ilg, the 
function Aq represents the first approximation of A 
for large g in an as yet unlimited region of r provided 
r :;6 O. 

Replacing A on the right of (4.5) by Aq , we obtain 

R(1) = [Air)/4g(1 _ e-a' r')2] 

X {_a2(a2r2 + 2)e-2a2r• + 2a2(1 _ 2a2r2)e-a2r2 

- a2(21 + q)2(1 - e-a2r') =F 4a3(21 + q)r 

X e-a2r2(1 _ e-a2r2)! + 4(1 _ e-a2r2)2 

X [2a~ + /(l + 1)/r2]). 

Our aim is to rewrite this expression in the form 

R(1) = 1 ! di Aq+4;(r), 
g t 

(4.9) 

(4.10) 

where the coefficients d; are independent of g and r, 
and depend only on 1, ~, and q. 

Taking the above solution with the approximation 
Aq for A (for large g), we see that it has the following 
asymptotic behavior: 

But from expansion (3.30), we know that in the same 
limit [for k 2 > 0, q is the solution of(3.30); for k 2 < 0, 
it is 4n + 3] 

k2 ~ -g2[1 - a(21 + q)/g] 

or 
=Fik ~ ±g[l - a(21 + Q)/2g]. (4.12) 

The solution (4.11) therefore has the behavior 

1p""" e'fik., r --->- 00. (4.13) 

The solution corresponding to the lower sign is 
thus the required Jost solution 1p(+) [provided, of 
course, the square root of k2 is chosen as in (4.12)]. 
Here we considered k2 > 0 only to fix the choice 
of signs in (4.4). 

B. Some Properties of the Functions M(r) and Ak) 

To proceed further with the solution of the radial 
wave equation, we next examine some properties of 
the functions M(r) and Aq(r). 

We have found no simple closed expression for the 
integral (4.6). It is therefore necessary to expand the 
integrand (in some region of r) and to integrate term 
by term. An expansion valid for r near infinity is not of 
immediate interest. Knowing the asymptotic behavior 
(4.13) of our solutions, our next step is to continue 
analytically the Jost solution to the region r ~ O. This 
means that we have to find the analytic continuation 
of the solution of this section to that in Sec. 3. The 
region of common validity of both types of solutions 
is, therefore, near r small but nonzero. 

We observe first some important properties of the 
function All' By (4.8) we have 

AIlHm = [M(r)]'f2m = (Aq+4)m (4.14) 
Aq Aq 

and 

AqHm = ~ Aq+4m AqHn = AqHmHn (4.15) 
Aq Aq- 4m ' Aq All Aq 

Next we integrate (4.6) in the region of small r. We 
have 

J
ar dx Ia.r 1 00 

N(r) = • i = dx - !El-X2)i, (4.16) 
(1 - e-x ) X i=O 

where 

Hence 

Eo = I, E1 = -t, E2 = -970' 

E3 = -rto. E4 = 32
7
40. etc. 

AqH = [M(r)]'f2 = eHN(r) 
AQ 

( 

00 (a2r2)i) 
= (ar)H exp =f i~lEi - j . 

We rewrite this expression as 

(4.17) 

(4.18) 

(4.19) 
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where 

Fa = 4
6
0
9
3\' Ft = l09312, etc. (4.20) 

We now restrict ourselves to the lower signs. Then, 
reversing (4.19) and using (4.14) and (4.15), we have 

(4.21) 

where 

e4 = Fa + 5F~ - 5F1F2 , etc. (4.22) 

The inverse of (4.21) is readily found to be 

that the series can even be summed. Here, of course, 
it is precisely the expansion (4.26) in which we are 
interested, so in the following we assume its validity 
outside a small region around r = O. 

C. Solutions 

We return to Eq. (4.5), which we want to solve by a 
large-g perturbation method. We observe first that the 
first of these equations may be obtained from the 
second (and vice versa) by changing the sign of r. For 
convenience-and in view of the asymptotic condition 
(4.13)-we therefore consider only the equation with 
lower signs. Dividing this equation by -a, we have 

~qA = -(I/ag){ _A" + [/(l + l)ir2]A + 2a2~A}, 
(4.27) 

(4.23) where 

where 
~ = ~ (1 _ e-a2r2)! !!.. _ (q + 21 _ are-

a2r2 

). 

q a dr (1 _ e-a2r2)! 

(4.28) 
1_1=1, lo=-e2, 11=e;-e3 , 

12 = 2e2e3 - e~ - e4 , etc. (4.24) Then, by (4.7), 

Next we expand R(l) around r = 0 in ascending 
powers of r. Then, by (4.21) and (4.23), 

2 

R(l) = ~ {1=[81 + 4q ± 3 ± (21 + q)2 
4g 

1= 4/(1 + 1)]Aq_4 + [(21 + q)(1 ± 1) 

+ (-! ± l)(q + 2/)2 ± ! 1= l(l + 1) + 8~]Aq 
+ [-M21 + q)2 + 1\ ± t(21 + q) 

1= 11(8/ + 4q ± 3 ± (21 + q)2 

1= 4/(1 + 1»]AqH + ... }. 
We rewrite this expression in the form 

2 co 

R(l)(q) = 4
a ! (q, q + 4j)Aq+4;' 
g ;=-1 

(4.25) 

(4.26) 

where the coefficients (q, q + 4j) follow by comparison 
with (4.25). 

Perhaps the reader will wonder if these expansions 
and re-expansions, together with their manipulations, 
have any region of validity. However, for small r 
(unequal to zero), each individual expansion is valid, 
as is readily checked. So the real problem arises with 
Eq. (4.26): Does this expansion converge? There are 
indications-derived mainly from experience with 
other applications of this perturbation approachll-

11 H. J. W. Miiller, J. Reine Angew. Math. 212, 26 (1963); Math. 
Nachr. 31, 89 (1966); 32, 49, 157 (1966). 

~qAq(r) = 0, ~qAqH;(r) = 4jAqH;(r). (4.29) 

Thus a term pAq+4i on the right of (4.5) may be re
moved by adding to Aq a term pAq+4i/4j except, of 
course, for j = O. 

We have seen that the first approximation to A 
(for large g and outside a small region around r = 0) 
is 

(4.30) 

and that this approximation leaves uncompensated on 
the right-hand side of (4.5) the terms of expression 
(4.9) and so of (4.26). Here the terms in Aq+4i for 
j :;!: 0 may be removed by adding to A (1) the new 
contribution 

A(2) = a
2 f (q, q -: 4j) A

qHI
• (4.31) 

4g ;=-1 4J 
1*0 

In its turn, this contribution leaves uncompensated 
on the right of (4.5) an expression obtained by re
placing Aq+4i in (4.31) by 

2 co 

R(1)(q + 4j) = :g i'~-l(q + 4j, q + 4j + 4j')AqH1H i" 

(4.32) 

Proceeding as before, we obtain a new contribution 

( 
2)2 co 

A(3) = 4
a ! Pa(q, q + 4j)Aq+4i' 
g 1=-2 

#0 

(4.33) 
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where 

P (q q _ 8) = (q, q - 4) (q - 4, q - 8) 
3 , -4 -8' 

P ( _ 4) = (q, q - 4) (q - 4, q - 4) 
3 q, q -4 -4' 

P ( + 4) = (q, q - 4) (q - 4, q + 4) 
3 q, q -4 4 

+ (q, q + 4)(q + 4, q + 4) 
4 4 

+ (q, q + 8) (q + 8, q + 4) 
8 4' 

P ( + 8) = (q, q - 4) (q - 4, q + 8) 
3 q, q -4 8 

+ (q, q + 4) (q + 4, q + 8) 

4 8 

+ (q, q + 8)(q + 8, q + 8) 

8 8 

+ (q, q 1; 12)(q + 1~ q + 8) , 

(4.34) 
and so on. 

It is obvious that higher approximations follow in 
exactly the same manner. Then successive contribu
tions A(l), A(2), A(a),'" to A form a rapidly de
creasing sequence provided that 

for j = -1, 1, 2, .... Thus, in the region of moder
ately small r, 

so that for j > 0, 

(ar)2; « 4g/a2, (4.37) 

and forj = -1, 

(ar)2» a2/4g. (4.38) 

The inequality (4.37) allows unrestricted values of 
r; (4.38), however, excludes a definite region around 
the origin. The solution therefore requires r2 > l/14gl. 

So far we have ignored completely the term Aq in 
expansion (4.26), as also in corresponding expressions 
R(2), etc., left uncompensated by contributions A (2) , 

etc. Hence, for 

A = A(l) + A(2) + A(a) + . . . (4.39) 

to satisfy (4.5), the sum of these terms must vanish. 

Thus 

0= a2 
(q, q) + (a2

)2 
4g 4g 

x (q, q - 4) ( - 4 ) 
-4 q ,q 

+ (q, q4+ 4) (q + 4, q») + .. '. (4.40) 

This is the equation from which ~ and thereby the 
eigenvalue is determined. The complexity of the coeffi
cients (q + 4j, q + 4k) [cf. (4.25)] seems to indicate 
that the expansion for ~ is best obtained by the method 
of Sec. 3. However, it is important to note that the 
eigenvalue (for k 2 < 0) obtained from (4.40) is 
identical with that obtained previously. This is easily 
verified to first order. Setting (q, q) = 0, we have 
[cf. (4.25)] 

32~ = 3(q2 + 1) + 4(3q - 1)1 + 812, 

and this expression substituted into (3.l2) leads again 
to the expansion (3.30). 

We have now two types of large-g solutions of the 
radial wave equation belonging to one and the same 
eigenvalue: one type in terms of parabolic cylinder or 
confluent hypergeometric functions, the other in terms 
of the integral N(r)-the former being valid in the 
region of small r, the latter in regions of moderate and 
large r. Thus the behavior of the solutions over all 
regions of the independent variable can be investi
gated. 

5. ANALYTIC CONTINUATION 

In the derivation of the S matrix, we require the 
value of the (analytically continued) Jost solution at 
the origin. This is the question we examine in this 
section. 

We recall our large-g asymptotic expansion of the 
Jost solution: 

1p(+)(l, k; r) = A(r) exp ( - g f(1 -e-a2r2)! dr), 

(5.1) 

+ (a2)2! .! (q, q :- 4j) 
4g 1=-1 1 =-1 4J 

1<#0 1"<#-1 

x (q + 4j, q + 4j + 4j") A • + . .. (5.2) 
4j + 4j" qHIHI 

for r2 > 1J14gl. 
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In the neighborhood of the origin, we found the 

solution 

lpo(z) = lpq(z) + i~ ( - ~Jj~/;(a,j)lpQ+4;(Z)' (5.3) 
1*0 

where Z2 = 2gar2, this expansion being valid for 

r2 < 1/lgal. 
We now want to show that these two solutions are 

proportional to each other in their common region of 
validity. 

We start with the Jost solution. Expanding the 
square root in the integrand of the exponential in the 
region of small r, we obtain 

exp [ - g f(1 -e-a2
,2)! dr J 

= exp (_lgar2) exp -- - -- + ... 
(

ga3r4 5ga5r6 ) 
2 16 576 

( 
ga3r4 5ga5r6 ) = exp (-tgar2) 1 + 16 - ---s76 + .... (5.4) 

Further, by (4.16), 
00 (_a2r2)j 

N(r)=lnar+2,Ej . , 
j=1 2) 

(5.5) 

with the E j given in (4.17). Hence 

M(r) = ar exp 2,Ej . 
( 

00 (_a2r2)j) 

j=1 2J 

= ar(l + ta2r2 - 5 ~ ~ oa4r4 + ... ). (5.6) 

By (4.8) we then have 

Air) = (aryt!(q-1){ 1 + q + ~~ + 2 a2r2 

a
4
r

4 
} + 512 [(q + 21)2 - H(q + 21) - t] + .... 

(5.7) 

This expression may now be substituted in the solution 
(5.2). The coefficient of the dominant factor 

exp (-tagr2)(ar)Hi(q-1) 

in the solution 11'(+) is seen to be 

S = 1 + a2 
(q, q - 4) (q + 21 - 2) + 0 ((!!:...)2) 

4g -4 16 4g 

= 1 + (q - 3)(q + 41 - l)(q + 21 - 2) a
2 + .... 

64 4g 
(5.8) 

We now consider the solution (5.3). The function 
lpq was earlier [cf. (3.16)] defined as 

lpiz) == lp(a, b; z) = zH1e-!z21>(a, b; tz2), (5.9) 

where Z2 = 2gar2. The confluent hypergeometric 
function on the right is related to the generalized 

Laguerre function L by 

cl>( -v, ~ + 1; x) = rev + l)L~a)(x), (5.10) 

so that 

1>(a, b; ti) = r(!(q + 1»L!~!_3)(tz2). (5.11) 

For the Laguerre function we have the following 
asymptotic expansion: 

Hi 1 2 
L1<q--3,(2Z ) 

= (-tz2)!(q-3)[1 _ (q - 3)(q + 41 - 1) _1_ 

I'(!(q + 1» I! 23z2 

(q - 3)(q - 7)(q + 41 - l)(q + 41 - 5) 

+ 2! 

X 2;Z4 - ... J. (5.12) 

Substituting this expansion in the solution (5.3), the 
coefficient of the dominant factor exp (-iagr2) X 

(ar)I+!(q-1) in the result is found to be 

t = (-l)!(q-3)2!o-! 1)(g/a)!I+t(q-1) 

X {I - (a/g)[P1(a, 2)(1/2! 28)(q - 3)(q - 7) 

x (q + 41 - l)(q + 41 - 5) 

+ Pia, 1)(1/1! 24)(q - 3)(q + 41 - 1)] + ... } 
= ( _1)i<q-3)2!0+1)(g/ a )!Ht(q-l) 

x {I - (1/217)(a/g)[(q - 3)2(q - 7)2 

X (q + 41 - l)(q + 41 - 5) 

- 28(q - 3)2(q + 41 - 1)(q + 21 - 2)] + ... }. 
(5.13) 

It follows that in their common rang_e of validity 

11'(+) = Ylpo, (5.14) 
with 

S (a/g)!Ht(q-1) 

Y = ~ = (_l)t<q-3)2i (H1) 

X {I + --%- [(q - 3)2(q - 7)2 
2 g 

X (q + 41 - l)(q + 41 - 5) 

- 28(q - 3)2(q + 41 - l)(q + 21 - 2) 

+ 29a(q - 3)(q + 41 - l)(q + 21 - 2)] + .. J 
(5.15) 

6. CONCLUSION 

In the foregoing, we have investigated the radial 
Schrodinger equation for a Gauss potential with large 
or moderately large values of the coupling constant 
g2. In particular, we obtained the binding energies for 
all angular momenta in the form of an asymptotic 
expansion in g. This expansion is also useful for smaller 
g when treated by the method of Pade approximants. 
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The scattering problem, however, requires further 
investigation. 

(for 11 an integer) is similar to the corresponding ex
pansion for k 2 in the case of a Gauss potentiaF: 

The analogy of the present problem with that of the 
Mathieu equation k2 = _ g2 + g2a 2 + tl(l + 1) _ (11 + !)2 

y" + fA - 2h2 cos 2x}y = 0 (6.1) 

may be seen by comparing (3.30) with the large-h 
asymptotic expansion12 of the eigenvalue A in (6.1): 

_ 1(1 + 1) - 15g
2
a

2 
(4v2 + 11 _ 2/- 3) + .... 

30(211 - 1)(211 + 3) 
(6.4) 

A + 2h2 = 2hq - tcq2 + 1) + O(l/h), (6.2) 

where q again corresponds to an odd integer. Also, the 
small-h expansion3 •9 

The corresponding behavior persists in the solutions. 
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1. INTRODUCTION 
Let A and B be boson destruction and creation 

operators in a Hilbert space :re, adjoint of each other 
and satisfying 

where I is the identity operator and 'Fo is a unit vector 
(the "vacuum state" of quantum-field theory). It has 
been noticed1.2 that the vacuum expectations 

AB - BA = (12/, and A'Fo = 0, (Ll) 
---
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are equal to the corresponding moments of a Gaussian 
random variable m(w) with zero mean value and 
variance a2• This follows from the formula 

e(A+B> = eBeAe~(AB-BA), (1.2) 

valid whenever the commutator AB - BA is a scalar. 
This identity, applied to the calculation of the vacuum 
expectation of eiz(A+B> , yields 

('Yo, eiz(A+B)'Y
o

) = e-la2z2, (1.3) 

which is precisely the characteristic function of mew). 
The purpose of the first part of this paper (Sec. 2) 

is to extend this result to the time-dependent general
ized commutation relations introduced by Bourret 3.4: 

A(t)B(t') - AB(t')A(t) = r(t, t')!, (1.4) 

where r(t, t') is a real covariance and A a scalar 
(A ;;::: -1). Preliminary results on this subject have 
already been reported.3- 5 The present treatment will 
be self-contained. 

Other generalizations of the standard quantum
mechanical commutation relations have been pro
posed, leading to parastatistics.6 These are chosen so 
as to preserve the Heisenberg equations of motion for a 
free field; the present generalization forfeits this 
property. However, our purpose is not to give an 
extension of quantum mechanics, but rather to investi
gate the probabilistic content of (1.4). 

The parastochastic function M(t) = A(t) + B(t), 
which is a one-parameter family of self-adjoint 
operators in a Hilbert space, will be shown to behave 
in certain respects like a random function. Moments 
of M(t), i.e., vacuum expectations of products, are 
given by a formula that appears as a generalization of a 
well-known formula for Gaussian random functions. 
Except for A = + 1, moments of M(t) do not coincide 
with moments of a scalar-valued random function. It 
will for example be shown that for A = 0, the para
stochastic function is related to a time-dependent 
generalization of the infinite symmetric random 
matrices with independent entries introduced by 
Wigner. 7 

The second part of this paper (Sec. 3) is concerned 
with the calculation of mean Green's functions for 
linear stochastic equations, such as arise in the study 
of turbulent convection, wave propagation in random 
media, impurity scattering, stochastic acceleration, 

3 R. Bourret, Phys. Letters 12, 323 (\964). 
4 R. Bourret, Can. J. Phys. 44, 2519 (1966). 
• U. Frisch, in Probabilistic Methods in Applied Mathematics, 

A. T. Bharucha-Reid, Ed. (Academic Press, Inc., New York, 1968). 
• M. Dresden, Brandesis Lectures in Theoretical Physics (W. A. 

Benjamin, Inc., New York, 1963), Vol. 2, p. 377. 
7 E. P. Wigner, Ann. Math. 62, 548 (1955). 

random networks, etc. It is known that this calcula
tion involves a difficult closure problem (see Ref. 8 and 
Sec. 3A). The problem was usually tackled by means 
of all-order perturbation expansions, together with 
diagrammatic representations of moments and formal 
resummations of infinite classes of diagrams selected 
by dimensional arguments.5 •9- n Although such 
mdhods were inherited from quantum-field theory, 
the analogies were rather superficial (see, however, 
Refs. 1 and 12). Our approach is basically different: 
What might be called a second quantization of 
stochastic equations is performed from the beginning 
by changing stochastic (random) quantities into 
parastochastic ones. From the resulting parastochastic 
equations, closed master equations for the mean Green's 
functions may be derived in a purely algebraic way, 
without recourse to perturbation theory. 

In a celebrated paper on linear and nonlinear 
stochastic equations, Kraichnan13 has shown that, 
given a linear stochastic equation, a closed nonlinear 

. master equation may be obtained for the mean Green's 
function of a judiciously modified version of the 
original problem, called the random-coupling modeL 
This equation has proved to give reasonable pre
dictions for the original problem and to be well
suited for numerical integration (Such questions are 
discussed in Secs. 3C, D). Unfortunately, Kraichnan's 
derivation, at least part of it, was based on the above
mentioned perturbation expansions and diagrams. 
This has somewhat obscured the fact that his method 
does not involve any approximation. It will be shown 
here that Kraichnan's random-coupling model corre
sponds to replacing the random coefficients of the 
original equation by Wigner matrices or, assuming 
that the original coefficients were Gaussian, to 
changing A from + 1 to ° in the para stochastic 
formulation of the problem. As a consequence, it will 
be possible both to give a rigorous derivation of the 
nonlinear Kraichnan equation and to prove for it a 
few general nontrivial results, such as existence in the 
large. 

Notations: Ordinary stochastic (random) quantities 
are denoted by lower case letters, parastochastic 
quantities are denoted by capitals, and Wigner 
matrices by script capitals. A boldface letter indicates 
that the corresponding quantity is, at the same time, 
an integral operator in an accessory function space. 

8 R. H. Kraichnan, Proc. Symp. Appl. Math. 13, 199 (1962). 
8 R. Bourret, Nuovo Cimento 26,1 (1962). 

10 K. Furutsu, J. Res. Natl. Bur. Std. 670, 303 (1963). 
11 V. I. Tatarski, Zh. Eksp. Teor. Fiz. 46,1399 (1964)[Sov. Phys.

JETP, 19,946 (1964)]. 
12 K. Furutsu, J. Radio Res. Lab. (Tokyo) 14, 99 (1967). 
13 R. H. Kraichnan, J. Math. Phys. 2, 124 (1961). 
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2. GENERALIZED COMMUTATION 
RELATIONS 

A. Formulation 

Let '¥ 0 be a unit vector in a complex Hilbert space 
H; let A be a real number (A 2 -1); let r(t, t') be a 
real symmetric kernel of positive type (see definition 
below), defined on TxT, where T is a nonempty set 
whose generic element t is called the time; T will 
usually be a real finite-dimensional vector space; let 
A(t) and B(t) be time-dependent linear operators in H, 
bounded or unbounded, which for any t, t' in T 
satisfy the following conditions: 

A(t)B(t') - AB(t')A(t) = r(t, t')/, 

A(t) = B*(t), 

A(t)'Fo = 0, 

(2.1) 

(2.2) 

(2.3) 

where / denotes the identity operator in H, and B* the 
adjoint of B. Equation (21) will be called a "general
ized commutation relation" for the "destruction" and 
"creation" operators A(t) and B(t). Notice that for 
r(t, t') = ot,t' and A = +1 (A = -1, respectively) 
Eq. (2.1) reduces to the standard commutation 
relation for bosons (fermions, respectively).14 

We recall that the real symmetric function r(t, t') is 
said to be of "positive type" (or sometimes positive
definite) iffor any choice of t1 , ••• , Tn in Tand of any 
real numbers 0(1' ••• , O(n' 

n 

L O(iO(jr(ti, tj) 2 O. 
i,j=l 

(2.4) 

An equivalent condition is the existence of a real 
random function [stochastic process] mew; t) such 
that15,16 

r(t, t') = E{m(w; t)m(w; t')}, (2.5) 

where w is an element in a probability space n, and 
E{ } denotes the probabilistic expectation value. If 
T = Rand r(t, t') is a function only of the difference 
of its arguments, 

r(t, t') = r(t - t'), (2.6) 

then r is said to be "stationary." 
In this paper, we make use of the following: 

Bochner's Theoreml5 : A function is a real stationary 
covariance if and only if it is the Fourier trl!-nsform of a 
positive finite even measure. 

U D. Kastler, Introduction tll'electrodynamique quantique (Dunod 
Cie., Paris, 1961). 

15 J. L. Doob, Stochastic Processes (John Wiley & Sons, Inc., 
New York, 1953). 

16 P. Levy, Processus stochastiques et mouvement brownien 
(Gauthier-Villars, Paris, 1965), 2nd ed. 

Notations and definitions: The one-parameter family 
of self-adjoint operators 

M(t) = A(t) + B(t) (2.7) 

is called a "parastochastic function"; r(t, t') is called 
the "covariance" of M(t). The inner product in His 
denoted by (', '). According to the quantum-field 
theoretic terminology, the unit vector '¥ 0 is called the 
"vacuum statt." For,any linear operator Land H, 

(2.8) 

is called the "vacuum expectation" of L. Vacuum 
expectations such as 

E{M(t)} , E{M(t1)M(t2)} , E{M(tl)M(t2)M(ta)},'" 

are called "moments" of the parastochastic function 
M(t). 

A few problems that arise in connection with the 
generalized commutation relations are now stated. 

Realization problem: Is it possible to find a Hilbert 
space H, a vacuum state '¥o, and operators A(t) and 
B(t) satisfying Eqs. (2.1)-(2.3)? See Sec. 20. 

Uniqueness problem: If it is assumed that the 
generalized commutation relations are realizable, are 
the moments of M(t) uniquely defined in terms of A 
and r? See Sec. 2C. 

Random representation problem: From the Intro
duction it is known that, for fixed t and A = + 1, 
{E{Mn(t)}}n>o is the sequence of moments of a 
Gaussian random variable with zero mean value and 
variance r(t, t). More generally, it may be asked: Is 
there a real random function mew, t) having the same 
moments as the para stochastic function M(t), i.e., 

E{M(tl)' .. M(tn)} = E{m(w; t1)· •• mew; tn)}? 

(2.9) 

The rhs of (2.9) is a symmetric function of its argu
ments; the lhs, however, is usually not, for the M(t)'s 
need not commute. Hence, it may be necessary to 
look for more general (nonscalar-valued) random 
representations. See Sec. 2E. 

B. The Time-Independent Case 

If the set T has a single element, Eqs. (2.1)-(2.3) 
read 

AB - ABA = (J2I, 

A = B*, 

A'¥o = O. 

(2.10) 

(2.11) 

(2.12) 
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It may as well be assumed that a2 = 1. (If not, 
change A and B into a-IA and a-lB.) An explicit 
realization will be found in the Hilbert space 12 of real 
sequences x = {xn}n;o.O such that 

I 2 '" 2 Ixil ="",xn<+ro. 
n2:0 

Let 
'Yo = (1,0,0," .), (2.13) 

and let us look for a realization of the following form: 

A: (xo, Xl'" .)-+ (fOXl ,flX2," .), 

B: (XO, Xl'" .)-+ (O,foxo, flx l ," .), (2.14) 

where the sequence fn is to be determined. Equations 
(2.11) and (2.12) are satisfied; inserting the proposed 
operators into (2.10), we obtain 

!~ = 1 and !~ - ).!;-l = 1, n ~ 1. (2.15) 

The unique solution of this difference equation is 

f~ = 1 + A + ... + An = (1 - An+1)J(l - A), 

A:;e+l, 
= n + 1, A = +1. (2.16) 

For A = 0, the operators A and B are simply left- and 
right-shift operators. Notice also that A, B, and there
fore the parastochastic operator M = A + Bare 
bounded for -1 ~ A ~ + 1 and unbounded for 
A ~ 1. 

Anticipating uniqueness of moments, which will be 
proved in the more general time-dependent frame of 
the next section, we obtain a random representation 
of M as follows: M, being self-adjoint, has a spectral 
decomposition,17 

M = {+oooom dEem), (2.17) 

such that 

r+ oo 
M

n = J-oo mn dEem), (2.18) 

where dEem) is a projector-valued measure on the 
real line. Taking the vacuum expectation of both 
members of (2.18), we obtain 

E{Mn} = {+oooo mn('Yo, dE(m)'¥o} = i:<Yl mn dP(m), 

(2.19) 

where dP(m) is now an ordinary probability measure 
on the real line. Any random variable mew) with the 
distribution dP(m) is therefore a random repre
sentation of M. Moreover, the distribution dP(m) 
will be obtained explicitly for -1 ~ A ~ + 1 in terms 
of a continued fraction which can be evaluated 

17 F. Riesz and B. Sz.-Nagy, Lel;ons d'analyse fonctionnelle 
(Akademiai Kiado, Budapest, 1953). 

0.6 

0.5 

dP(ml' 
d'il\ 

0.3 h= 0 

0.2 

m 3 

FIG. 1. Probability density dP),(m)fdm for the time-independent 
generalized commutation relation (2.10) for various values of } •. 

numerically (see Appendix). The results are as follows: 
The probability distribution dP(m) is symmetric, has 
compact support in [-2(1 - A)-~, +2(1 - A)-t] for 
-I ~ A < I, and extends to infinity for A ~ I (this 
could have been anticipated from the corresponding 
boundedness and unboundedness of M). For ). = 
-1,0, and +1, the distribution dP(m) is known: 

For A = -I, dP(m) = to(m - I) + to(m + I) 
(2.20) 

is a two-valued Bernouilli distribution. For A = 0, 

dP(m) = (1/7T)[1 - Hm)2]! dm if m2 ~ 4, 

= 0 otherwise, (2.21) 

is the so-called "semicircle distribution" introduced by 
Wigner.7 For A = +1, 

(2.22) 

is the standard Gaussian distribution, already obtained 
in the Introduction. Graphs of the probability density 
dP(m)Jdm are shown on Fig. 1 for various values of A. 
The probability density bein~ even, only positive 
values of m have been plotted. 

C. Calculation of Moments 

Henceforward we shall be concerned only with the 
general time-dependent case, which requires that T 
has more than one element. 
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In this section, anticipating the existence of realiza
tions of the generalized commutation relations 
(2.1)-(2.3), we calculate in terms of A and r the 
various moments of the parastochastic function, 

£{MIM2' .. Mn} = ('Yo, (AI + BI)(A2 + B2)' .. 

x (An + Bn)'Yo). (2.23) 

Here M I , M2, ... , Mn stand for M(tl), M(t2), ... , 
M(tn); similarly, rij will stand for r(t;, t;). 

Expanding the rhs of (2.23), we obtain a poly
nomial in A's and B's, which is the sum of all possible 
products of n factors A or B. Let us first calculate the 
vacuum expectation of such products. 

Lemma 1: The vacuum expectation of a product of 
A's and B's vanishes if this product ends with an A or 
begins with a B. 

Proof: It follows from Eqs. (2.2) and (2.3) that 
('Yo, ... ,A'Yo) = ° and ('Yo, B· .. ) = (B*'Yo,' .. ) = 
(A'Yo, ... ) = 0, which proves the lemma. 

Definition 1: A polynomialin A's and B's is said to 
be in "normal form" if,in each monomial, all the A's 
are to the right of the B's. 

Using the generalized commutation relation (2.1) 
in the form 

(2.24) 

we can write any product of A's and B's as a poly
nomial in i10rmal form. We have, for example, 

A1A2BaB4 = AI(r2al + ABaA2)B4 

= r 2a(r141 + AB4AI) 

+ A(rlal + ABaAI)(r241 + AB4A2) 

= r 2ar 141 + Arlar 241 + Ar2aB4A I 

+ A2rlaB4A2 + A2r24BaAI + A3rl3BaA2 

+ A4B3B4AIA2' (2.25) 

which is in normal form. By Lemma 1, the vacuum 
expectation of a product in normal form is zero, 
except if it is a scalar involving no A's and B's at all 
[such are the two first terms in the last member of 
(2.25)], in which case it is already equal to its vacuum 
expectation (recall that 'Yo is a unit vector). In the 
process of reduction of a product to normal form, re
peated use is made of (2.24), which produces every time 
two new products; in the first one, Ai and Bi are said to 
be "contracted," while in the second one they are said to 
be "commuted." In order for a (nonnormal) product 
to yield, after reduction to normal form, one or several 
scalar terms, it must be possible to contract every A 
with a B. Hence, a product with nonvanishing 

vacuum expectation must have an equal number of 
A's and B's; this implies an even total number of A's 
or B's, and it may be concluded that odd-order 
moments of M(t) vanish. 

Now, we consider exclusively products with an 
equal number of A's and B's, and for such products 
we define an "operator pairing" as a partition of the 
set of A's and B's into pairs of one A and one B, the 
B being always to the right of the A (this ensures that 
they can be contracted). A convenient graphical 
representation is obtained by denoting pairs with 
overbars. For example, for the product AIA2B3B4' 
the two possible pairings are 

AIA2B3B4 and AIA2BaB4' 

In a given pairing of A's and B's, two pairs A, Band 
A', B' can have either of the three following topolog
ical configurations: 

(i) If 

ABA'B' or A'B'AB, 

the pairs are "disjoint." 
(ii) If 

AA'B'B or A'ABB', 

the pairs are "nested." 
(iii) If 

AA'BB' or A'AB'B, 

the pairs are "crossing." 
A product that cannot be paired (e.g., ABBAAB) 

has a vanishing vacuum expectation, because it is 
impossible to contract all the operators. For products 
that can be paired there is the following lemma. 

Lemma 2: To every pairing of a product of n factors 
A and n factors B corresponds a single scalar term in 
normal form, which is equal to Asr,.). r,.) .... r .. , 

1 1 2 2 In't n 

where (il,jl)' (i2,h),'" ,(in,jn) are the arguments 
of the various pairs, and s is the number of couples of 
crossing pairs. 

Proof: In order to be contracted, Ai and Bi must be 
brought into direct contact by successive commuta
tions; two disjoint or nested pairs can be contracted 
without any commutation among the two pairs, where
as two crossing pairs require one such commutation. 
The contraction of the pair (Ai' Bi ) gives a factor 
r i ;, and each commutation gives a factor A. Q.E.D. 

We finally turn back to the evaluation of the 
moments (2.23), and define an "index pairing" as a 
partition of the set {I, 2, ... , n} into pairs. If we 
expand MIM2 ... Mn in terms of products of A's and 
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B's, and if we write all possible operator pairings of 
these products, we obtain, once and only once, every 
possible index pairing. From this and lemma 2, we 
infer the following theorem. 

Theorem 1 (Generalized Wick's Theorem): The 
moments of the parastochastic function M(t) are 
uniquely defined in terms of A and r. Odd-order 
moments vanish, and even-order moments are given 
by 

Taking the adjoint of (2.29), we find that the same 
equation is still satisfied if we interchange prime and 
unprimed operators. Two uncorrelated versions of a 
parastochastic function can, for example, be con
structed as follows: Let t -- i(t) be a one-to-one 
mapping of T onto a set T1 ; define a parastochastic 
function M(s) on the set T U Tl with covariance 

res, s') = r(s, s'), if sET and s' E T, 

= rOles), [1(s'», if s E Tl and s' E T1 , 

E{M1M 2 '" M 2n } = I A."ri,i,ri•i •· .. rinin' (2.26) = 0, otherwise; (2.30) 

where the sum extends over all possible partitions of finally put 
the set {I, 2,'" ,2n} into pairs (il,jl)"" ,(in,jn)' 
and s is the number of couples of crossing pairs. 

A graphical representation of the various terms of 
(2.26) may be obtained as follows: Put 2n successive 
dots on a horizontal line and write the indices I, 2, 
... ,2n below; every' partition is then represented by 
connecting the dots in pairs with straight lines running 
above the main line, and s is the number of inter
sections of such lines. We illustrate this on a fourth
order moment, 

E{MIM2M3M4} = 12 34 + I 2 3 4 + I 234 

= r 12r 34 + Ar13r 24 + r 14r 23 · 
(2.27) 

In Sec. 2D it is shown that the straight lines have an 
interpretation in terms of particles, called "fictons." 
However, little use is made of this graphical repre
sentation, and it is mainly given for comparison with 
other works on stochastic equations, based on formal 
diagram expansions.5.D-ILI3 

Remark 1: For A = 0 only noncrossing diagrams 
survive; this may be considered as the basic reason of 
the simplifications occurring in perturbation-theoret
ical approaches to the Kraichnan theory of stochastic 
equations.5•13 

We conclude this section with two theorems which 
are fundamental for the applications to stochastic 
equations. We need the following definition. 

Definition 2: Two parastochastic functions M(t) 
and M'(t), defined on the same set T and operating 
in the same space H, are said to be "uncorrelated 
versions" of the same function if 

M(t) = A(t) + B(t), M'(t) = A'(t) + B'(t), (2.28) 

where {A(t), B(t)} and {A'(t), B'(t)} satisfy Eqs. 
(2.1-2.3) separately, and 

A(t)B'(t') - AB'(t')A(t) = O. (2.29) 

M(t) = M(t), 

M'(t) = M(i(t». 

(2.31) 

(2.32) 

The existence of uncorrelated versions will thus 
follow from the general realizability result of Sec. ID. 
We now are in position to formulate the following 
theorem: 

Theorem 2 (Pairing Theorem): Let M(t) and M'(t) 
be two uncorrelated versions of the same paras to
chastic function. If p(M) is a polynomial depending on 
a finite number of M(t)'s, then 

E{M(t)p(M)} = :€ E{M'(t)p(M + €M')}.=o. (2.33) 

Proof' Equation (2.33), being linear in p(M), it is 
enough to prove it for monomials. We write 

M(t) = MI and p(M) = M2M3 ... M 2n . (2.34) 

By Theorem 1, we have 

E{ M(t)p(M)} = I Asr Uri.i •... rinin; (2.35) 

in each partition of {I, 2, ... , 2n} into pairs, k is the 
index which is paired to I. The vacuum expectation 
(2.35) can also be written 

2n 
E{M(t)p(M)} = Ir1k I' A8ri • i ••.. rinin; (2.36) 

k=2 

I' extends over all partitions of {2, 3, ... , k, ... , 2n} 
into pairs (the carat means that k has to be omitted). 
We assert that 

l'lk "", Asr . .... r· i £. '232 "In n 

= E{M~M2M3' .. MkM~Mk+l ... M 2r,}. (2.37) 

Indeed, if we apply Theoreld I to the rhs of (2.37) and 
use the covariance r defined by (2.30), we find that 
the only possible pairing of M~ which gives a non
vanishing factor is with M~. Inserting (2.37) into 
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(2.36), we have 

E{ M(t)p(M)} 
271 

= I,E{M{M2 ... MkM;,Mk+l ... M21'} 
,.=2 

= :E E{M{(M2 + EM~)' .. (M271 + EM~',)}f=O' 
(2.38) 

which concludes the proof. 

Remark 2: In this proof we have not used the full 
strength of Theorem 1 (the explicit value of s was not 
needed). 

Remark 3: If the M(t)'s are bounded operators and 
if there is a measure on the set T, then Theorem 2 can 
be extended from polynomials to analytic functionals 
of M(t). 

Theorem 3 (Sharpness Theorem): Let M(t) and 
M'(t) be two uncorrelated versions of the same 
parastochastic function, and let A = O. If p(M) and 
q(M) are polynomials depending on a finite number of 
M(t)'s, then 

E{M'(tl)P(M)M'(t2)q(M)} 

= E{M'(tl)M'(t2)}E{p(M)}E{q(M)}. (2.39) 

For the proof we shall need the following lemma: 

Lemma 3: Let x be a vector in H such that, for any 
tin H, A(t)x = 0; then 

(x,p(M)'Yo) = E{p(M)}(x, 'Yo). (2.40) 

Proof: Call the lhs of (2.40) the (x, 'Yo) expectation 
of p(M). If p(M) is reduced to normal form, only the 
scalar terms (the ones involving no A's and B's) have a 
nonvanishing vacuum or (x, 'Yo) expectation. Such 
terms are already equal to their vacuum expectation, 
and Eq. (2.40) follows. 

Proof of Theorem 3: Expanding the lhs of (2.39) 
and using Lemma 1, we have 

E{M'(tl)P(M)M'(t~)q(M)} 

= E{A'(tl)P(M)A'(t2)q(M)} 

+ E{A'(tl)P(M)B'(t2)q(M)}. (2.41) 

The first term is equal to 

('Yo, A' (tl)p(M)A' (t2)q(M)'Y 0) 

= (B'(t2)p* (M)B'(tl)'YO ,q(M)'Yo), (2.42) 

where p*(M) is the adjoint of p(M). It follows from 
(2.29) and A = 0 that, for any t3 in T, 

A(ta)B'(t2)p*(M)B'(t1)'YO = O. (2.43) 

Therefore we can apply Lemma 3 to get 

(B'(t2)p*(M)B'(tl)'Y0 ' q(M)'Yo) 

= E{q(M)}(B'(t2)P* (M)B'(tl)'YO , 'Yo) 

= E{q(M)}(%, A'(tl)P(M)A'(t2)'Y0) 

= O. (2.44) 

The first term on the rhs of (2.41) thus is zero; to 
calculate the second term, we notice that p(M), if put 
in normal form, can be written as a sum of three kinds 
of terms: 

(i) its vacuum expectation E{p(M)}; 
(ii) terms ending with some A(s), which we write 

( .. ')A(s); 

(iii) terms beginning with some B(s), which we 
write B(s)(' . '). 
As Eq. (2.41) is linear in p(M), we treat those different 
terms separately. For (i), we obtain 

E{A' (tl)E{p(M) }B' (t2)q(M)} 

= r(tl' t2)E{p(M)}E{q(M)} 

= E{M'(tl)M'(t2)}E{p(M)}E{q(M)}, (2.45) 

which is exactly the rhs of (2.39). For (ii), we obtain 
E{A'(tlK' ')A(s)B'(t2)q(M)}, which vanishes, because 
A(s)B'(t2) = O. Finally, for (iii), we obtain 

E{A'(tl)B(s)(' . ·)B'(t2)q(M)}, 

which vanishes again, because A' (tl)B(s) = O. Q.E.D. 

Remark 4: Like Theorem 2, Theorem 3 can again 
be extended, under suitable conditions, from poly
nomials to analytic functionals of M(t). 

D. Fock-Space Realizations and Fictons 

It is known that the standard commutation relations 
for bosons and fermions can be realized in sym
metrical and antisymmetrical tensor algebras; these 
are the so-called "Fock representations." (Here we 
use the word "realization," leaving "representation" 
for representation by random functions; see Kastlerl4 

for an excellent account of the "Fock representation.") 
It is therefore natural to look for similar realizations 
of our generalized commutation relations. So far, we 
have been able to find such realizations only for 
A = + 1, -1, and 0; hence, the problem of realizabil
ity for arbitrary values of A remains open. 

The construction of realizations requires the 
following result: If r(t, t') is a real symmetric kernel 
of positive type defined on TxT, it is possible to 
find a Hilbert space Je with inner product «. , .» and a 
mapping x('): T -+ Je such that, for any t, t' E T, 

«x(t), x(t'») = r(t, t'). (2.46) 
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Proof' (See exercise III.3.2 of Ref. 18.) Let .1£0 be 
the pre-Hilbert space of formal finite linear combina
tions of functions f(t, .), provided with the inner 
product 

Then, take the mapping x(·): t -+ f(t, .), and take for 
X the completed space of Xo . 

It can be shown that if yO is another mapping from 
T to .1£ satisfying (2.46), there is a unitary transforma
tion U of .1£ such that y(t) = Ux(t). In other words, the 
family of inner products (2.46) uniquely defines the 
shape of the curve x(t). 

In case T = Rand f is a continuous and stationary 
covariance, a more explicit construction will be given, 
which will be needed in Sec. 3D, but not in the sequel 
of this section. Bochner's Theorem asserts that 

(2.48) 

where dF(v) is a positive finite even measure. Now 
take for .1£ the space L2(dF(v» of complex functions 
h(v) such that 

Ilh(v)llk = JRlh(v)12 dF(v) < + 00. (2.49) 

The mapping from T to X, 

(see Appendix A of Ref. 14). The three cases A = 0, 
-I, and + I are now treated separately: 

(i) A = O. Hilbert space: H = 1'(.1£); vacuum state 
'Y 0 = 1 = vector whose components are 1 in C and 0 
in X@11 for p > 0; 

creation operator: B(t) = x(t)®, (2.54) 

where ® denotes the tensor product. 
(ii) A = -1. Hilbert space: H = 6)(X); vacuum 

state: 'Yo = 1; 

creation operators: B(t) = (X)!.it;x(t)®; (2.55) 

the operator (X)! reduces to (p)! times the identity 
on .1£@11. 

(iii) A = + 1. Hilbert space: H = 6)(.1£); vacuum 
state: 'Yo = 1; 

creation operator: B(t) = (X)!Sx(t)®. (2.56) 

In each case A(t) is defined as the adjoint of B(t). 
For A = 0 it is a pure routine calculation to check 
that Eqs. (2.1-2.3) are satisfied; for A = ±I the proof 
is a little bit more involved, but may be found in any 
textbook on quantum-field theory. The realizations 
given above of A(t), B(t), and M(t) = A(t) + B(t) 
will be called the "canonical realizations." 

We now indicate a few interesting properties of the 
para stochastic operators M(t), some of which are 
independent of the realization. 

(2.50) (i) For A = 0 and -I, the operators M(t) are 

obviously fulfills (2.46). 

The mapping xO is now used to construct explicit 
realizations of the generalized commutation relations 
(2.1)-(2.3). Let Je@11 be the pth-tensor power of .1£, 
completed for the norm, with the usual convention 
that .1£@o is the field C of complex numbers. The 
unrestricted, anti symmetric , and symmetric tensor 
algebra are, respectively, defined as 

00 

1'(.1£) = EB .1£@11, (2.51) 
11=0 

6)(X) = EB .it;X@11, (2.52) 
11=0 

00 

6)(X) = EB XS@11, (2.53) 
11=0 

where E8 denotes a direct sum, and where .it; and S are 
the anti symmetrization and symmetrization projectors 

18 J. Neveu, Calcul des probabilites (Mason Cie., Paris, 1964). 

bounded. 

Proof for A = 0: For any'Y in H, 

IIB(t)'Y112 = (B(t)'Y, B(t)'Y) = (A (t)B(t)'Y, 'Y) 

= f(t, t) 11'Y112; (2.57) 
hence 

IIB(t)11 = IIA(t)11 = (f(t, t))t, (2.58) 

and therefore, 
IIM(t)11 :::;; 2(f(t, t»!. (2.59) 

Proof for A = -1: For any'Y in H, 

IIA(t)'Y112 + IIB(t)'Y112 = ([B(t)A(t) + A(t)B(t)]'Y, 'Y) 

= f(t, t) 11'Y112 (2.60) 

and the same estimate (2.5) holds as for A = O. 

(ii) For A = + 1, the operators M(t) are unbounded. 

Proof: It is known from Sec.2.B or the Introduction 
that for fixed t, 

('Yo, [A(t) + B(tW'Yo) = E{mn(w)}, (2.61) 
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where mew) is a Gaussian random variable. Bounded
ness of M(t) would imply 

(2.62) 

which is impossible for a Gaussian random variable. 
It can nevertheless be shown that the M(t)'s have 
dense domains of definition. 

(iii) For A = + 1, the operators M(t) commute 
among themselves. 

Proof: It follows from the presence of the sym
metrization operator in (2.56) that the B(t)'s, and 
therefore the A(t)'s, commute among themselves; 
then, using (2.1) and the symmetry of r(t, t'), we have 

M(t)M(t ' ) = M(t')M(t), (A = + 1). (2.63) 

F. Fictons 

In quantum-field theory and the many-body prob
lem, the spaces C, Je, ... ,Je®P are known as the 
zero-, one-, ... , n-particle space. The operator B(t), 
acting on the n-particle space, has values in the (n + 
I)-particle space; thus, it "creates" a particle. Simi
larly, the operator ACt) "destroys" a particle. The 
problems that are dealt with in this paper are mathe
matical ones, with no real particles present; neverthe
less, it is convenient to speak of fictive particles, which 
will be called "fictons." For example, in the diagrams 
of Eq. (2.27), any curved line connecting ti and ti may 
be thought of as a ficton, created at time Ii and 
destroyed at time Ii' 

At present, physics knows only two kinds of 
particles, bosons and fermions. Wavefunctions for n 
particles, which must be either completely symmetrical 
(bosons) or antisymmetrical (fermions), belong to the 
symmetrized or anti symmetrized nth-tensor power of 
the one-particle space. Noticing that for A = 0 the 
creation and destruction operators have been realized 
in the unreslricledtensor algebra (2.51), and that there 
is a similar lack of symmetry in the Boltzmann 
statistic of distinguishable particles, it may be con
cluded that for A = +1, -1, and 0, fictons are, 
respectively, bosons, jermions, and "Boltzmannons." 
To make up for the lack of real existence of Boltz
mannons, it will be shown in the second part of this 
paper that linear stochastic equations which are 
intractable with bose-fictons become soluble with 
Boltzmann-fictons. 

E. Random Representations of 
Parastochastic Functions 

The representation of a family of self-adjoint 
operators by random variables is beset with a funda-

mental difficulty; as shown by Nelson,19 such rep
resentations are to be found only for commuting 
operators. Yet, it is easily seen that if A =F + 1, the 
para stochastic operators M(t) do not commute. In
deed, Theorem 1 gives, for the fourth-order moment, 

E{M1M 2M aM4} = r12ra4 + Ar13r24 + r14r 23 , 

(2.64) 
which, for A =F 1, differs from 

E{M1M aM 2M 4} = Ar12ra4 + r13r24 + r14r 2a • 

(2.65) 

A possible way of avoiding this difficulty is to look for 
representations by random matrices .AL(w; t) satisfying 

E{M(t1)· •• M(tn)} = Tr E{.AL(w; t1)· •• .AL(w; tn)}, 

(2.66) 

where Tr denotes the trace. Both members of (2.66) 
are then invariant under cyclic permutations (for the 
rhs it is a well-known property of the trace, and for 
the lhs it follows from Theorem 1). No further a 
priori invariance is required. If T = R, it may still be 
possible to find scalar-valued random representations 
by restricting Eq. (2.9) to ordered moments, for which 
tl ::; 12 ::; •.• ::; tn' 

Explicit random representations of the para
stochastic function are now given for A = + 1, 0, 
and -1. The existence of random representations 
for other values of A remains an open problem. 

1. A = + 1. Representation by Gaussian Random 
Functions 

In the canonical realization, the operators M(t) 
commute among themselves [see Eq. (2.63)], and may 
therefore be represented by scalar random functions. 
Let us evaluate the multivariate characteristic function 

F(ZI"", zn) = E{exp (ij~/iMi)}' (2.67) 

It follows from (2.1) that the commutator of l:i(zjAj) 
and l:j(zjBJ is a scalar; we may therefore use (1.2) to 
obtain 

F(ZI, ... , zn) = E{exp [il:;(zjBj)] 

x exp (-t ~ ZiZjrii) 
t" 

By Eq. (2.3), we have 

X exp [il:/z jA j)]}. (2.68) 

(2.69) 

19 E. Nelson, Dynamical Theories of Brownian Motion (Mathe
matical Notes) (Princeton University Press, Princeton, N.J., 1967), 
Theorem 14.1. 
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Hence, 

F(Zl"", Zn) = exp (-t.i Z;Zirii) , (2.70) 
t,)=l 

which is the characteristic function of a multivariate 
Gaussian process with zero mean value and covariance 
r.15 To summarize: For J. = +1, the parastochastic 
function M(t) can be represented by a Gaussian random 
function with zero mean value and covariance r. 

Remark 5: This result could have been inferred from 
Theorem 1. Indeed, Eq. (2.26) reduces for J. = + 1 to a 
well-known formula expressing even-order moments of 
a Gaussian random function in terms of its covariance. 
The most pleasant properties of Gaussian random 
functions are probably that (i) moments are express
ible in terms of the sole covariance, and Oi) that they 
are invariant under linear transformations. The 
parastochastic functions retain these properties for 
arbitrary J.. The first one follows from Theorem 1. 
To prove the second one, assume that there is a 
measure df.t(t) on T; let A(t) and B(t) satisfy Eqs. 
(2.1-2.3), and let K(t, t') be the kernel of a linear 
integral operator; define 

A'(t) = IT K(t, t')A(t') df.t(t'), 

B'(t) = t K(t, t')8(t') df.t(t'), 

M'(t) = ITK(t, t')M(t') df.t(t'); 

(2.71) 

a simple calculation shows that A'(t) and B'(t) still 
satisfy Eqs. (2.1)-(2.3), with the new covariance 

2. J. = O. Representation by Random 
Wigner Matrices 

Random matrices have been introduced by Wigner7 
in the study of energy levels of complex systems, 
especially of heavy nuclei. A considerable amount of 
material has been published on this subject, concerned 
mostly with the distribution of eigenvalues and of the 
spacings between eigenvalues; the reader is referred 
to Porter's book for a review and a collection of 
reprints.20 

Definition 3: Let Tand r(t, t') be defined as before. 
An infinite double sequence of real random functions 

I. C. E~Porter, "Statistical Theories of Spectra: Fluctuations," in 
Perspectives in Physics (Academic Press, Inc., New York, 1965). 

U (w·t) wI'th IX p = 1 2 ... n ... is called a uf\)rz!J " , " " , 
"random Wigner matrix function" (or simply a 
"Wigner matrix") if 

(i) the matrix is symmetric, i.e., 

(2.73) 

(ii) the .A{,a/w; t)'s with IX < P (IX = p, respectively) 
are independent versions of.a same Gaussian random 
function, defined on T, with zero mean value and 
covariance r(t, t') [2r(t, t'), respectively]. 

We denote by .A(,L\"l(w; 1) the finite truncated 
matrices 

.A{,(Nl(W; t) = .A(,~~l(w; t), IX, P = 1,"', N. (2.74) 

It can easily be shown that .A{,(Nl(w; t) is invariant 
under arbitrary orthogonal transformations. 

The following theorem asserts that parastochastic 
functions with J. = 0 can be represented by Wigner 
matrices; the proof is not essential for the under
standing of the sequel. 

Theorem 4 (Equivalence Theorem): Let M(t) be a 
para stochastic function defined on an arbitrary set T 
with J. = 0 and covariance r(t, t'), and let .A(,~II(w; t) 
be a Wigner matrix with the same covariance. For 
any integers IX, p and any 11' ... , tn E T, the following 
mean square (m.s.) convergence takes place: 

m .S. hm ... ----''--7-~ . [.A{,UVl(w; 11) .A{,(Nl(w; tn)] 

N->oo (N)! (N)! all 

with 
= E{M(t1)··· M(tn)}!5all , (2.75) 

!5ap = 1 if IX = p, 
= 0 if IX ¥= p. (2.76) 

In particular, this theorem states that the random 
lhs of (2.75) becomes statistically sharp as N -+ 00. To 
show mean square convergence, it suffices to prove (i) 
convergence of the expectation value of the lhs to the 
rhs, (ii) convergence of the expectation value of the 
squared lhs to the squared rhs. Our proof of the first 
point will be somewhat similar to Wigner's original 
derivation of the semicircle distribution7; however, 
different notations will be used. 

Notations and definitions: Matrix indices varying 
from 1 to N are denoted by Greek letters and sub
scripts to such indices by Latin letters. In calculating 
the expectation value of the lhs of (2.75) it will be 
necessary to consider sequences of matrix indices, 

IX, Yl, Y2,"', Yn-l, fl, (2.77) 
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called "step sequences"; IX and {J are "external" 
indices, and Yl' ... , Y n-l are "internal" indices. The 
pair of successive matrix indices (Yi-l' Yi) is called 
the ith "step"; Yi-l and Yi are the "entrance" and the 
"exit" of the ith step. (Notice that the exit of ~ step is 
also the entrance of the next step.) If the entrance and 
the exit are equal, the step is "diagona1." Two steps 
(Yi-l, Yi) and (Yi-l' Yi) are "equivalent" ("opposite", 
respectively) if Yi-l = Yi-l and Yi = Yi (Yi-l = Yi and 
Yi = Yi-l> respectively). A "pairing" is defined for the 
class of all step-sequences with a given number n = 2p 
of steps as a partition of the set {l, 2, ... , 2p} into 
pairs (il,jl), (i2 ,j2)' ... , (ip ,jp). For a given step
sequence, a pairing can also be considered as a 
partition into pairs of the set of steps. The first (last) 
step in a pair is called a "creative" ("destructive") step. 
A given step-sequence and pairing are "compatible" if 
paired steps are always equivalent or opposite. In a 
given pairing, two pairs are "crossing" if the creative 
step of one pair occurs between the creative and 
destructive step of the other pair. A pairing is "non
crossing" if there are no crossing pairs. We are now in 
position to prove the following: 

Lemma 4: In the class of all step-sequences with 2p 
steps and given external indices IX and (J, the number 
qz')(n) of step-sequences which are compatible with a 
given pairing II of {I, 2, ... , 2p} is given by 

C~~)(Il) = N P + O(NP- 1
), if IX = {J and the pairing 

is non crossing, 

otherwise. (2.78) 

Proof: Without the restriction to compatible se
quences, the indices Yl' Y2' ... ,Y2p-l would vary 
independently from I to N, and there would be N2p-l 
step-sequences. Compatibility imposes constraints 
which reduce this number. Calling constraints 
"independent" if none of them can be deduced from 
the other ones, we obtain that the number of compat
ible step-sequences is N2 p

-l-Q, where q is the number of 
independent constraints on the internal indices. The 
condition that paired steps be equivalent or opposite 
implies that the exits of the p destructive steps must 
repeat the exits or the entrances of the corresponding 
creative steps. These p constraints will be called "exit
constraints." If IX ¥= {J, the p exit-constraints are easily 
proved to be independent; this results in at most 
NP-l compatible sequences; therefore, as far as 
Lemma 4 is concerned, the case IX ¥= {J is settled. 

From now on it is assumed that IX = {J; this 
equality may reduce the number of independent 
constraints to p - 1. Lemma 4 is now proved by 
recurrence on p, the number of pairs. For p = 1 the 

lemma is obvious. Assume that it holds for all pairings 
with (p - 1) pairs. Let there be given a pairing of 2p 
ordered steps into p pairs, and let the first destructive 
step be the ith. There are three possible situations: 

(i) The ith-step (Yi-I, Yi) and the (i - l)th-step 
(Yi-2, Y i-l) are paired and opposite. 

(ii) The ith and (i - l)th-steps are paired and 
equivalent. 

(iii) The ith- and. (i - l)th-steps are not paired. 

First consider step-sequences of type (i); they are of 
the following form: 

IX, YI"" ,Yi-3, Yi' Yi-I, Yi' Yi+l,'" ,Y2n-I' IX. 

Now delete the ith- and (i - l)th-steps to obtain the 
following subsequence: 

IX, YI"", Yi-3, Yi' Yi+l"", Y2n-l, IX. 

The original step-sequence and the subsequence have 
the same number of crossing pairs because the deleted 
pair (i - 1, i) does not cross any other one. From the 
recurrence hypothesis and the observation that 
the matrix index Yi-l' which does not appear in the 
subsequence, can take any value from 1 to N, it is 
inferred that the number of step-sequences of type (i) 
is Np + O(Np-l) if the original pairing is noncrossing, 
and O(Np-l) otherwise. Now consider sequences of 
type (ii). The constraint that the entrances of the ith
and (i - l)th-steps be equal is independent of the 
p - 1 exit-cons taints; for the entrance of the ith-step, 
which is the first destructive one, cannot be the exit 
of a destructive step; therefore there are O(NP-I) step
sequences of type (ii); it does not matter whether or 
not they have any crossing pairs. Finally, consider 
sequences of type (iii). As the (i - l)th-step is 
necessarily a creative one, there must be at least one 
crossing. The constraint that the entrance of the 
ith-step be equal to the entrance or the exit of the 
corresponding creative step [which is not the (i - l)th] 
is, for the same reason as in the preceding case, 
independent of the p - 1 exit-constraints; therefore 
there are again O(Np-l) step-sequences of type (iii). 
The proof of Lemma 4 is completed. 

Proof that Theorem 4 Holds in the Mean: Writing 
out the matrix products in (2.75), we want to show 
that 

N 
'" E{ A(,(N)(W' t) ,.L., f aYI ,1 

yl,··.i'n-l=l 
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It will be convenient to associate the step-sequence 
(2.77) to the lhs of (2.79); then, to every matrix 
element .A{,(N)(w; ti) corresponds the step (Yi-l' Yi)' 

l'Z-l)!l • 

As the matrix elements are Gaussian with zero mean 
value, odd-order moments vanish and even-order 
moments are given by the sum over all pairings of 
{I, 2, ... , n} of the products of covariances of pairs 
(see Remark 5). Equation (2.79) is satisfied for odd n 
because both members vanish. Now assume 11 = 2p; 
the contribution to (2.79) arising from a given pairing 

II = {(iuM,' .. , (ip,jp)} 

of the set {I, 2, ... , 2p} is 

N 

(2.80) 

N-P L E{"~~:;:lYi1(W; ti).A{,~~lYi1(W; tj)}' .. 
Yl,"',Y2p-l=Y 

E{.A{,~~~~lYi (w; tip).A{,~~~lYi.cw; t j )}. (2.81) 

The very definition of the Wigner matrix gives 

E{1(,(N) (w·t.).A{,(N) (w·t.)} 
u 'li-lYi '1. Yj-ll'J '1 

= r(t, t'), if the ith- and the (i - l)th-steps 
are equivalent or opposite, and not 
diagonal, 

= 2r(t, t'), if they are equivalent and diagonal, 

= 0, otherwise. (2.82) 

Discarding for a while diagonal steps, we find that 
(2.81) is equal to 

r(ti1' th )· .. r(ti
p

' tjp)N-PC~~)(il), 

where C~~)(II) is the number of compatible step
sequences. Letting N -+ 00, using Lemma 4, and 
summing over all partitions il, we find that the lhs of 
(2.79) converges to 

(2.83) 

where € is equal to one for noncrossing pairings and 
to zero otherwise. This is precisely the value assigned 
to the rhs of (2.79) by Theorem 3 for A = 0. It was 
legitimate, indeed, to discard step-sequences with 
diagonal steps, for the presence of a diagonal step 
imposes an additional constraint, and the correspond
ing contribution then vanishes in the limit N -+ 00. 

Proo/that Theorem 4 Holds in the Mean Square: To 
evaluate the expectation value of the square of the 
Ihs of (2.75) we proceed as above, and are led to 
consider "double step-sequences" 

IX, Yl' •.. ,Yn-l, {3; IX, Y{, ... ,Y;,-l' (3. 

There are "factored" pairings II12 of this double step
sequence which are merely products of a pairing ill 
of the left-hand step-sequence and a pairing II2 of the 
right-hand step-sequence. Symbolically, we write 
IIa = IIIII 2 • For such pairings the number of 
compatible double step-sequences is obviously the 
product of the numbers of compatible left- and right
hand sequences. Therefore, the contribution of IIlII2 

to the expectation value of the square of (2.75) is the 
product of the separate contributions of III and II2 to 
the expectation value of (2.75). Pairings of the double 
step-sequence which are not factored give, in the 
limit N -+ 00, a vanishing contribution to the expecta
tion value of the square of 2.75, for they introduce at 
least one additional constraint. 

Summing over factored pairings only, we obtain 
that the limit of the expectation value of the square of 
(2.75) is also equal to the square of the limit of its 
expectation value, which proves mean-square con
vergence. Q.E.D. 

Remark 6: In the time-independent case, Theorem 
5 is a well-known result. 7•21.22 Indeed, assuming 
r(t, t') = 1, taking the trace of (2.75), and using 
(2.l9) and (2.21), we obtain 

1 [A{,(w)]n 1 f2 { (m)2}! m.~. lim - Tr -' --! = - mT> 1 - - dm. 
N-+oo N (N) 7T -2 2 

(2.84) 

From this it is easily inferred (see Ref. 22) that if 
WN(w; m) denotes the proportion of eigenvalues of 
the matrix .A{,(w)/(N)! that are less than m, then 

m.s.lim w'v(w; m) = W(m), (2.85) 
S-+oo 

where W(m) is the semicircle distribution, the density 
of which is given by (2.21). 

Actually Theorem 4 has been proved, in the time
independent case, under far less stringent conditions; 
such as cannot be relaxed are the conditions of 
symmetry and independence of the entries of the ran
dom matrix .A{,(w). Arnold2I proved that if (i) the .A{,~fl's 
with IX ~ {3 have the same distribution function. F 
(non-Gaussian), satisfying f x 6 dF < 00 and f x dF= 
0, (ii) the .A{,~I.:s have the same distribution function 
G, satisfying f X4 dG < 00, then Theorem 4 is still 
true; moreover, mean-square convergence can be 
replaced by almost sure convergence. It is not difficult 
to extend Arnold's proof to the time-dependent case. 

21 L. Arnold, "On the Asymptotic Distribution of the Eigen
values of Random Matrices," M.R.C. Report 736, The University 
of Wisconsin, Madison, Wisconsin . 

• 2 U. Grenander, Probabilities on Algebraic Structures (John 
Wiley & Sons, Inc., New York, 1963). 
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3. A. = -1, and Exponential Covariance. 
Representation by a Dichotomic Markov Process 

Under the assumptions that T = R, that A. = -1, 
and that r(t, t') = exp {- It - t'l} (the exponential 
covariance), it will be shown that, as far as only 
ordered moments are concerned, the parastochastic 
function M(t) can be represented by a dichotomic 
(two-valued) Markov process. 

Theorem 5 (Cancellation Theorem): If M(t) is a 
parastochastic function of a real variable t with A = 
-1 and exponential covariance, then 

(i) ordered moments of even order are given by 

E{M(tan) ... M(ta)M(tI)} 

= exp {-(tan - tan-I)}··· exp {-(f4 - ta)} 

X exp {-eta - tI)}' 

tan ~ ... ~ fa ~ tI· (2.86) 

(ii) There is a stationary dichotomic Markov process 
mew; t) with values ±l and transition probabilities 
(t> 0) 

P( + 11 + 1; t) = P( -11 -1; t) = to + e- t
), 

P( + 11 -1; t) = P( -11 + 1; t) = to - e-t ) 

(2.87) 
such that for fan ~ ... ~ ta ~ t1 , 

E{m(w; tan)· .. mew; ta)m(w; f I)} 

= exp [- (fan - tan-I)] ... exp [-(t4 - fa)] 

exp[-(t2 -fl »). (2.88) 

Proofof(i): By Theorem3,E{M(t2n)··· M(t2)M(tI)} 
is a sum of contributions arising from all possible 
pairings of the time-arguments t2n , ... , fa, fl· The A 
factor associated to every pairing is + 1 or -1 accord
ing as the number of crossings is even or odd. Recall 
that two pairs can be either disjoint, crossing, or 
concentric (see Sec.2.C). Equation (2.86) asserts that 
only the pairing (t2n' t2n- I), ... , (f4 , ta), (f2, II), 
where all pairs are disjoint, contributes to ordered 
moments of order 2n. Indeed, it will be shown that 
contributions from all other pairings cancel out. If 
t; and ti are paired and Ii ~ Ii' we shall say that a 
pair begins at tj and ends at t i • Consider a given 
pairing, distinct from the above-mentioned pairing; 
let ti be the first time such that a pair begins at ti and 
does not end at tH1 ; then another pair begins at I H1 . 

Let the pairs beginning at ti and IHI end at Ik and 11' 
respectively; if t 1 ~ tk , we say that the pairing is of 
type A; if Ik ~ 11' we say that it is of type B. There is a 
one-to-one correspondence between type A and type B 
pairings, obtained by interchanging the ends of the 

pairs beginning at Ii and tHI and leaving all other 
pairs unchanged. The products of covariances for 
corresponding pairings are the same. 

Proof: The unchanged pairs give the same factors, 
and the prod ucts of the covariances of the two 
remaining pairs are identical because, for II ~ tk ~ 
Ii ~ t i , 

exp (- Itk - til) exp (- It1 - til) 

= exp (- It 1 - til) exp (- Itk - tjl). (2.89) 

For corresponding pairings the parities of the number 
of crossings of the two special pairs with an arbitrary 
third one are the same. Proof: A third pair can have 
only ten topologically distinct positions with respect 
to t i , tHI , Ik' and tI; in each case the assertion is 
trivially true. As for type A, there is the additional 
crossing of (t i , tk ) with (tHI , tI ); it follows that the 
parities of the total number of crossings for corre
sponding pairings are different. Hence, corresponding 
pairings cancel each other. Q.E.D. 

Proof of (ii): The transition-probability matrix 

1[1 + e-t; 1 - e-tJ 
Pai t) = -2 1 -t 1 -/' ex, p = 1,2, 

- e; + e 
(2.90) 

satisfies the Chapman-Kolmogorov semigroup equa
tionI5 . 2a 

LPa/l(t I )Ppr(t2) = Pal.(t1 + t 2), t1 , t2 ~ 0, (2.91) 
II 

and therefore defines a Markov Process m(w; I) with 
possible values ml = + 1 and rna = -1. A well-known 
property of Markov processes is that the joint proba
bility that mew; tI ) = mal' ... , and mew; t:l» = map 
is, for t:l> ~ ... ~ t1 , given by 

(t)Pap,p-I(t p - t:l>_1)· .. Pa2al(t2 - (1), 

where the factor one-half is the unconditional prob
ability that mew; 11) = ± 1. [Equal initial probabilities 
are affected to mi and m2 in order to make the process 
mew; t) stationary.] 

To calculate the pth-order moment 

E{m(w; t:l» ••• mew; tI )} 

L mal' .. mapPa.lZp-I(t:l> - 1:1>-1) ••• 
«1.···,l%p=1,2 

Pa2aJt2 - II) . t, (2.92) 

it is convenient to define ~+(p) [~_(p), respectively] 
as equal to the rhs of (2.92) with Q(:I> held fixed and 
equal to one (two, respectively). It follows from (2.90) 

23 A. T. Bharucha-Reid, Elements of the Theory of Markov 
Processes and their Applications (McGraw-Hill Book Co., New 
York, 1960). 
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that ~+ and };_ satisfy the recurrence relations 

};+(p + 1) = HI + exp [-(tP+1 - tp)]}};+(p) 

+ Hi - exp [-(tPH - Ip)]}};_(p), 

(2.93) 

};_(p + 1) = Hexp [-(lpH - Ip)] - 1 }};-t-(p) 

- Hi + exp [-(111+1 - Ip)]}};_(p). 

(2.94) 

Adding and substracting (2.93) and (2.94), we obtain 

};+(p + 1) + };_(p + 1) 

= exp { -(tpH - tp) }[:E+(p) - ~_(p)], (2.95) 

~+(p + 1) - ~_(p + 1) = ~+(p) + ~_(p). (2.96) 

Changing pinto p + 1 and eliminating ~+(p + 1) -
};_(p + 1), we have 

~+(p + 2) + ~_(p + 2) 

= exp { -(tP+2 - 111+1) }[};+(p) + ~_(p)]. (2.97) 

The initial conditions are ~+(l) = -~-(l) = t· 
Iterating equation (2.97) n times, and noticing that the 
rhs of (2.92) is equal to };+(p) + };_(p), we obtain 
the desired formula (2.88). Q.E.D. 

Theorem 5 has an important Corollary which 
requires the following definition: 

Definition 4: A time-ordered monomial is a 
product M(tn)' .. M(t I ) with tn ~ ... ~ tI ; a time
ordered polynomial is a sum of time-ordered monom
ials. 

Corollary of Theorem 5: Let M(t) be the same 
parastochastic function as in Theorem 5; if tl ~ t2 

and p(M) is a time-ordered polynomial in the M(t)'s 
involving only times prior to t2 , then 

E{M(t1)M(t2)P(M)} = E{M(tl)M(t2)}E{p(M)}. 

(2.98) 

Proof- For time-ordered monomials it is an immed
iate consequence of (2.86); for polynomials it follows 
by linearity. 

3. LINEAR STOCHASTIC AND 
PARASTOCHASTIC EQUATIONS 

A. Formulation 

1. Linear Stochastic Equations 

Linear differential, partial differential, and integral 
equations with random coefficients (or kernels), such 
as arise in the study of turbulent convection, wave 
propagation in random media, impurity scattering, 

stochastic acceleration, random networks, etc., are 
called here "linear stochastic equations" (see Refs. 
1, 5, 9-13,24-26). 

For the kind of investigations we have in mind, it is 
useful to assign to every linear stochastic equation a 
random Green's function g(w) which satisfies a 
random operator equation, the general form of which 
is 

l(w)g(w) = u. (3.1) 

In Eq. (3.1), w is an element of a probability space .Q 

and lew) is a given random operator in a function 
space F [e.g., L2(R)], i.e., a mapping (I, w) -4-f' from 
F x .Q to F, which is linear inffor fixed wand measur
able in w for fixedf; the Green's function g(w) is also 
a random operator in the same function space; u is the 
identity operator in F. To avoid unnecessary complica
tions, it will be assumed that F is a space of scalar 
functions of a real variable x and that lew) and g(w) 
can, at least formally, be written as random integral 
operators with kernels lew; x, x') and g(w; x, x'); 
Eq. (3.1) then becomes a random integral equation 

f lew; x, x')g(w; x', x") dx' = !5(x - x"), (3.2) 

where !5 is the Dirac distribution. It will always be 
assumed that lew) has finite expectation value, and 
therefore can be split as follows: 

lew) = k + mew), (3.3) 

where k = k(x, x') is the expectation value of lew) 
and mew) = mew; x, x') has zero mean value. 
Inserting (3.3) into (3.1), we obtain 

[k + m(w)]g(w) = u. (3.4) 

This equation will be our starting point. 
To illustrate the preceding definitions we give two 

examples, which will again be used in the sequel. 

Example 1. A randomly frequency-modulated oscil
lator: The amplitude q(w; t) of a linear oscillator 
with a time-dependent random frequency mew; t) 
satisfies the following stochastic differential equation 

dq(w; t) 
dt = 1m (w; t)q(w; t). (3.5) 

For later convenience, mew; t) will be taken Gaussian 
with zero mean value and covariance r(t, t'). The 
Green's function g(w; t, t') is defined by the following 

U A. T. Bharucha-Reid, Proc. Symp. Appl. Math. 16,40 (1964). 
'5 A. T. Bharucha-Reid, Random Equations (Academic Press 

Inc., New York, 1968). 
28 J. B. Keller, Proc. Symp. Appl. Math. 16, 145 (1964). 
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conditions: 

[:t - 1m (w; t)Jg(W; t, t') = 0, for t > t', 

g(w; t', t') = 1, (3.6) 

g(w; t, t') = 0, for t < t'. 
With the aid of Dirac distributions, Eq. (3.6) can also 
be written as an integral equation similar to (3.2): 

(+00 
)-00 [o'(t - t1) - 1m (w; t)o(t - t1)]g(w; t1 , t') dtl 

= oCt - t'). (3.7) 

Example 2. Propagation of harmonic waves in a 
spatially random medium: The amplitude 'Y(w; x) 
of a time-harmonic wave radiated by a source with 
density j(x) into a random medium with refractive 
index n( w; x) satisfies the following stochastic partial 
differential equationS: 

~'Y(w; x) + k 2n2(w; x)'Y(w; x) = j(x), (3.8) 

where x is a three-dimensional variable. The Green's 
function g(w; x, x') is now defined as the amplitude 
at x corresponding to a source (l(x - x'); it satisfies 

[~'" + k2n~(x) + k 2m(w; x)]g(w; x, x') = o(x - x'), 

(3.9) 

where n~(x) and m(w; x) denote the mean and fluctua
ting parts of n2(w; x). 

To solve Eq. (3.4), we first of all show existence, 
uniqueness, and measurability of the solution. 
Depending on the specific equation under considera
tion, this may be a pure routine matter or a formidable 
task (examples 1 and 2 are good illustrations of those 
extreme situations). It will be assumed here that such 
problems have already been solved (see, e.g., Refs. 
25 and 27). The practical problem is in a sense more 
limited; usually only the first few moments of the 
Green's function are wanted, but if possible in explicit 
form, or at least as solutions of equations that can 
easily be solved numerically. Here only the two first 
moments are considered: the mean Green's function 
E{g( w)} and its covariance 

E{g(w) <2l g(w)} = E{g(w; x, x')g(w;y,y')}. 

The symbol <2l denotes the tensor product of two 
vectors or two operators in F. 

Our aim will be to obtain these moments as solu
tions of closed nonrandom equations, also called 
"master equations." ("Closed" means that it can be 
written explicitly with a finite number of terms.) Let us 

.7 Vo-Khac Khoan, Comp!. Rend. 265, 63 (1967). 

make a. brief survey of the difficulties of this program 
(see Refs. 5 and 8 for details). The central difficulty 
arises from the fact that, in spite of the linearity of 
(3.4), the Green's function g(w) has a nonlinear 
dependence on the random operator mew); this 
implies that, even if an explicit solution is known for 
almost every WEn, one still has to face the very 
difficult problem of averaging nonlinear functionals 
to obtain the-moments of g(w). Another way to see the 
difficulty is the following: Take the expectation value 
of (3.4) to obtain an equation relating E{g(w)} and 
E{m(w)g(w)}; then multiply (3.4) by m(w)k-1 before 
taking the expectation value, to obtain an equation 
relating E{m(w)g(w)} and E{m(w)k-1m(w)g(w)}, etc.; 
this leads to an infinite hierarchy of equations. 
Closed equations for the moments of g(w) can only 
be obtained by making some closure assumption 
(usually quite arbitrary) on this hierarchy. It is, e.g., 
often assumed that 

E{m(w )k-1m(w )g(w)} ~ E{m(w )k-1m(w )}E{g(w )}. 

(3.10) 

This assumption, called the "first cumulant-discard 
approximation," 8 leads to the following incorrect 
(but quite tractable) master equation: 

kE{g(w)} - E{m(w)k-lm(w)}E{g(w)} = u. (3.11) 

Kraichnan8 has shown that (3.10) and similar closure 
assumptions may lead to physically meaningless 
results, such as negative energy densities or negative 
probabilities. It should finally be mentioned that the 
direct numerical solution oflinear stochastic equations 
is an almost hopelessly difficult task: First, discrete 
random coefficients must be expressed in terms of N 
independent random variables; then, each of these 
random variables must be simulated by means of M 
independent trials; hence, when passing from non
random to random equations, the computing time is 
multiplied by a factor MN; of course, both M and N 
must be large to obtain a good accuracy. 

2. Linear Parastochastic Equations 

Let us write Eq. (3.4) in integral form, 

f [k(x, x') + mew; x, x')]g(w; x', x") dx' 

= o(x' - x"), (3.12) 

and let us assume that mew; x, x') is a Gaussian 
random function of x and x', with zero mean value 
and covariance: 

E{m(w; x, x')m(w;y,y')} = rex, x';y,y'). (3.13) 
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In view ofthe equivalence proved in Sec. 2E.1 between 
Gaussian random functions and para stochastic func
tions (with A = + 1), it appears natural to associate 
to (3.12) the following "linear parastochastic equa
tion": 

f [k(x, x')1 + M(x, x')]G(x', x") dx' = (l(x' - x")I. 

(3.14) 

In Eq. (3.14), M(x, x') is a parastochastic function of 
the two-dimensional variable (x, x'), acting in the 
Hilbert space H, with A = + 1, and covariance 
r(x, x'; y, y'). The operator I is the identity in H, and 
the "parastochastic Green's function" G(x, x') is, like 
M(x, x'), a two-parameter family of operators in H. 

Just as the stochastic equation (3.12), the para
stochastic equation (3.14) can be written in pure 
operator form 

(kI + M)G = I. (3.15) 

If F = L 2(R), it is useful to think of M, of G, and of I 
as linear operators in the Hilbert space L2(R; H) of 
functions 'F(x) E H such that 11'F(x)111 is square 
integrable. 

The "mean parastochastic Green's function" E{G} = 
E{G(x, x')} is defined as the vacuum expectation 
of G; similarly, the covariance of the para stochastic 
Green's function is 

E{G ~ G} = E{G(x, x')G(y, y')}, (3.16) 

where G ® G is a tensor product with respect to F, 
but an ordinary operator product with respect to H; 
specifically, if F = L2(R), then F ® F = L2(R2) and 
G ® G is the linear operator in the space L 2(R2; H) 
whose kernel is given by the rhs of (3.16). 

At least formally, the fact that any moment of 
mew) is equal to the corresponding moment of M 
implies that, similarly, any moment of g(w) is equal 
to the corresponding moment of G; this can be seen 
on the iterative solutions of Eqs. (3.4) and (3.15), 

GO 

g(w) = ~ [-k-1m(wWk-t, (3.17) 
n=O 

GO 

G = ~(_k-lMtk-\ (3.17') 
n=O 

which can be used to express any moment of g(w) 
(G, respectively) in terms of moments of mew) (M, 
respectively). It is not our aim to give a rigorous proof 
of this plausible assertion, since this would involve 
us into the questions of existence, uniqueness, measur
ability, and finiteness of moments of solutions of 

stochastic equations, questions which we are deliber
ately trying to avoid. We shall rather study the linear 
parastochastic equation (3.15) for its own sake, and 
without restricting ourselves to A. = + 1. 

B. Linear and Nonlinear Master 
Equations 

In this section, closed master equations are derived 
for mean parastochastic Green's functions. It is 
assumed that Eq. (3.15) has a unique solution, 

G(k, M) = (kI + M)-l, (3.18) 

which is both right- and left-hand inverse of kI + M. 
It is also assumed that the functional dependence of 
G on M is gentle enough to ensure that Theorems 2 
and 3 are still valid when polynomials in the M(x, x')'s 
are replaced by G(k, M). As noticed in Remark 3, 
this will be the case if the operators M(x, x') are 
bounded (A. = 0 or -1) and if G is an analytic 
functional of M. The question of gentleness, being 
intimately connected with the problems of existence 
and uniqueness, will not be tackled here, except in the 
special case of Example 1 of Sec. 3A.l, for which 
gentleness will be shown in Sec. 3D. 

As a preliminary result, we establish the following 
"pre-master equation," valid for any value of A, 

kE{G} - E{M'GM'G} = I, (3.19) 

where M and M' are uncorrelated versions of the same 
function in the sense of Definition 2. 

Proof of the pre-master equation: Taking the 
vacuum expectation of (3.15) and using Theorem 2 
and Remark 3, we obtain 

kE{G} + E{M'!{ G(M + EM')} = u. (3.20) 
dE £=0 

Here G(M + EM') is, by definition, the solution of 
Eq. (3.15) with M replaced by M + EM', which reads 

{kI + (M + EM')}G(M + EM') = I. (3.21) 

Taking the derivative of this equation with respect to 
E, for E = 0, we have 

(kI + EM) :E G(M + EM')£=o = -M'G(M). (3.22) 

Then, using (3.18), 

:E G(M + EM')<=o = -(kI + M)-lM'G(M) 

= - G(M)M'G(M). (3.23) 

Inserting (3.23) into (3.20), we obtain the pre-master 
equation (3.19). 
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The three special cases A = + 1, 0, and -1 give rise 
to quite different master equations, and will be 
examined in Secs. 3B.1-3B.3 which can be read 
independently. 

1. A = + 1. Equations with Gaussian Coefficients 

It is now shown that for A = + 1, the mean para
stochastic Green's function satisfies a linear functional 
differential equation. In the parastochastic equation 
(3.15), k operates only on the function space F; it is 
convenient for a while to replace it by an operator 
which, like M, acts also on H. Assuming that (3.18) 
still holds, we have 

G(k + EM', M) = G(k, M + EM'); (3.24) 
hence, 

:E G(k, M + EM').=o = :E G(k + EM', M).=o· 

(3.25) 

The rhs of (3.25), being linear in M', can be written 
in terms of the functional derivative ~G/~k as 

:E G(k + EM', M)E~O = <~~ 'M). (3.26) 

Inserting (3.25) into (3.20), and using (3.26), we have 

kE{G} + E{M<:~' M)} = u. (3.27) 

For A = + 1, the uncorrelated parastochastic 
functions M(x, x') and M'(X, x') can be represented 
by Gaussian random functions mew; x, x') and 
m'(w; x, x') (see Sec. 2E.1), which are, of course, also 
uncorrelated in the usual sense.6 From the preceding 
section, it is known that for Gaussian mew), the mean 
stochastic Green's function E{g(w)} for Eq. (3.4) is 
equal to the mean parastochastic Green's function 
E{G} for Eq. (3.15). Equation (3.27) can therefore be 
written in terms of ordinary stochastic quantities; 
in explicit integral form (3.27) then becomes 

I k(x, l)E{g(w; 1, x')} dl 

+fE{ml(W; x, 1) t5g(w; 1, x') m'(w; 2, 3)} dl d2 d3 
~k(2, 3) 

= b(x - x'), (3.28) 

where, for notational convenience, I, 2, 3 stand for 
Xl' X2, X3' It is known that two uncorrelated Gaussian 
random functions are also independent.15 As g( w) 
depends upon mew) but not upon m'(w), the expecta
tion values over mew) and m'(w) can be taken inde-

pendently; Eq. (3.28) then becomes 

f k(x, l)E{g(w; 1, x')} dl 

+f ~E{g(w; 1, x')} rex l' 2 3) dl d2 d3 
~k(2,3) , " 

= ~(x - x'), (3.29) 

where r is defined by (3.13). 
This linear functional differential master equation 

may have some interesting theoretical applications, 
but it is probably illadapted for numerical studies. 
It is unlikely that any more tractable exact master 
equation can be found in the Gaussian case (A = + 1). 

Remark 7: A more standard "stochastic" deriva
tion of the master equation (3.29) can be based on the 
following result, a special case of Theorem 2: If 
{mi(w)} is a set of correlated Gaussian random 
variables with zero mean value and covariance r ii , 

and if the function f(ml' ... ,mn) is differentiable, 
then 

E{mlw)f(ml(w), ... , mn(w»} = ! rikE{a
f

}. 
7' omk 

(3.30) 

Equation (3.30) is easily proved by writing the expecta
tion values in terms of the n-variate Gaussian prob
ability density. 

2. A = 0. The Kraichnan Equation 

In integral form the pre-master equation (3.19) 
reads 

f k(x, l)E{G(I, x')} dl 

-f E{M'(x, I)G(l, 2)M/(2, 3)G(3, x')} dl d2 d3 

= ~(x - x'). (3.31) 

As A = 0, Theorem 3 and Remark 4 can be applied 
to the second term on the lhs to give 

I k(x, l)E{ G(1, x')} dl 

-f rex, 1; 2, 3)E{ G( 1, 2) }E{ G(3, x')} dl d2 d3 

= ~(x - x'), (3.32) 

where r is defined by (3.13). In operator form, (3.32) 
reads 

kE{G} - E{ME{G}M}E{G} = u. (3.32 /) 

Using the fact that G is also the left-hand inverse of 
kI + M, it can be shown along the same lines that 
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E{G} satisfies also 

E{G}k - E{G}E{ME{G}M} = u. 

rem 3 plays no part; instead Remark 1 was applied to 
(3.32") the diagrammatic representation of the vacuum 

expectation of the iterative solution (3.17') of (3.15). 
Equation (3.32), which was first obtained by Kraich
nan,13 will be called the Kraichnan equation. The 
relation of our approach to Kraichnan's origin~l 

derivation and an interpretation of this equation in 
terms of Wigner matrices may be found in Sec. 3C. 
Notice that the Kraichnan equation has a quadratic 
nonlinearity; it may seem strange that the mean 
Green's function of a linear problem satisfies a non
linear equation; it should, however, be noticed that if 
(3.15) is linear, it is not homogeneous. 

Let us also derive a master equation for the co
variance of the parastochastic Green's function. 
Multiplying (3.15) by @F G, taking the vacuum 
expectation, and using successively Theorem 2, Eq. 
(3.23), and Theorem 3, we obtain 

E{(k + M)G ~ G} 

= kE{G ~ G} - E{M'GM'G ~ G} 

- E{M'G ~ GM'G} 

= kE{G ~ G} - E{M'E{G}M'}E{G ~ G} 

- E{M'E{G ~ G}M'}E{G} 

= u@E{G}. (3.33) 
F 

Multiplying (3.33) by E{G} on the left, and using 
(3.32"), we finally have 

E{G ~ G} = [E{G} ~ E{G}] 

We finally illustrate the Kraichnan equation on 
Examples 1 and 2 of the preceding section. 

Example 1: The para stochastic analog of (3.6) is 

[1r - iM(t)]G(t, t') = 0, 

G(t, t) = 1, 

for t > t', 

G(t, t') = 0, for t < t'. 
The Kraichnan equation then reads 

!£E{G(t, t')} 
dt 

( 3.35) 

+ fEr G(t, t1) }r(t, t1)E{ G(tl' t')} dt l = 0, 

E{G(t, t)} = 1, 

fort>t', 

E{G(t, t')} = 0, for t < t', 
with r(/, I') = E{M(t)M(t')}. 

( 3.36) 

Example 2: The para stochastic analog of (3.9) is 

[~ + k2n~(x) + k2M(x)]G(x, x') = 6(x - x'), (3.37) 

and the Kraichnan equation reads 

[~ + k2n~(x)]E{G(x, x')} 

- k4f E{G(x, t)}r(x, l)E{G(1, x')} d1 

= 6(x - x'). (3.38) 

3. A = -1. Dichotomic Markov Process and First 
Cumulant-Discard Approximation 

{ { }} 

A very simple master equation is now derived for 
+ E{G}E ME G ~ G M E{G}. (3.34) the linear stochastic operational differential equation 

The corresponding integral form is 

E{G(x, x')G(y, y')} 

= E{G(x, x')}E{G(y, y'n 
+ f E{G(x, l)}r(l, 2; 3, 4)E{G(2, x')G(y, 3)} 

x E{G(4, y')} dt d2 d3 d4. (3.34') 

It should be noticed that, once the mean Green's 
function is known, (3.34) is a linear equation for the 
covariance; similar equations can be obtained for 
higher-order moments of G. 

Remark 8: An alternative derivation of Eqs. (3.32) 
and (3.34) has been given by Frisch,5 in which Theo-

d 
- yew; t) = Cy(w; t) + mew; t)Dy(w; t), 
dt 

y( w; t) E $, (3.39) 

where C and D are bounded operators in a Banach 
space $, and where mew; t) is the dichotomic Markov 
process of Sec. 2.E.3. A simple calculation shows that 
the Green's function of Eq. (3.39) satisfies the sto
chastic integral equation 

g(w; t, t') 

= exp [C(t - t')] 

+ (texp [C(t - t")]m(w; til) Dg(w; til, t') dt". 
Jt' 

(3.40) 
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The bounded ness of C, D, and mew; t) implies uni
form normal convergence in any bounded time
interval of the iterative solution of Eq. (3.40). It 
follows that the expectation value of g(w; t,. t') can be 
taken term by term. In this way, a uniformly conver
gent series is obtained for E{g(w; t, t')} which obvi
ously involves integrals over time-ordered moments of 
m(w; t) only. Therefore, by Theorem 5, Eq. (3.40) is 
equivalent to the parastochastic equation 

G(t, t') = exp [C(I - I')] 

+ (texp [C(I - 1")]M(t")DG(I", t') dl", 
Jt' 

(3.41) 

where M(t) is a para stochastic function with A = -I 
and exponential covariance. After elimination of 
£{M(t)G(t, I')} between the vacuum expectation of 
(3.41) and the vacuum expectation of (3.41), which has 
first been multiplied by M(t), the following equation is 
obtained: 

E{G(t, II)} 

itit' = exp [C(t - tl)] + exp [C(I - I")] 
t' t, 

X D exp [C(t" - t')]DE{M(I")M(I')G(t', tl)}dt' dt", 

(3.42) 

where use was made of the fact that M(t) commutes 
with C and D, since it acts like a scalar on 33. 

The crucial step in deriving the master equation is to 
apply the Corollary of Theorem 5 to (3.42) in the 
following form: 

E{M(t")M(t')G(I', II)} = E{M(t")M(t')}E{G(t', tl)} 

= exp [-It" - t'i]E{G(t', II)}' 

(3.43) 

which is easily justified term by term on the iterative 
solution of (3.41). The resulting equation, being 
translation invariant, we put as 

£{G(t, t')} = E{G(t - t')}. (3.44) 

Taking the time-derivative of (3.42), and using (3.43) 
and (3.44), we finally obtain the master equation: 

:£E{G(t)} = CE{G(t)} + {tDexp [C(t - t')]D 
dt Jo 

x exp [-(t - t')]E{ GCt')} dt', (3.45) 

E{G(O)} = u, 

where U is the identity in 33. A direct, more traditional 
derivation of this equation may be based on the fact 
that (3.39) is an equation with Markov coefficients.5 ,28 

2S U. Frisch, Compt. Rend. 262, 762 (1966). 

The master equation (3.45) can be explicitly solved 
by Laplace transformation and will therefore be 
successfully applied to most one-parameter linear 
stochastic problems; the parameter will usually be the 
time (e.g., random electrical networks), but may also 
be a space-variable (e.g., vibration of rods with ran
dom mass densities or cross sections). Actually, Eq. 
(3.45) has already been proposed several times as an 
approximation under various names, such as one
fiction approximation or first-order smoothing approx
imation.5 •9 •26 The reason for this is probably the rather 
curious observation that the first cumulant-discard 
approximation is exact for Eq. (3.39), as can be seen 
by comparing (3.43) and (3.10). It may be asked, in 
view of this result, if it appears reasonable to apply 
the first cumulant-discard approximation to more 
general linear stochastic equations than (3.39). This 
question has been discussed in Ref. 5, where arguments 
are given which suggest that the first cumulant-discard 
approximation constitutes a uniformly valid approxi
mation when a certain "generalized Reynolds number," 
a measure of the importance of randomness, is small; 
however, no rigorous result of sufficient generality 
has yet been obtained. 

C. Kraichnan's Random-Coupling 
Model and Wigner Matrices 

From Theorem 4, which asserts that (J. = 0)
parastochastic functions can be represented by Wigner 
matrices, it may be inferred that for J. = 0, the para
stochastic equation (3.15) is equivalent to the stochas
tic matrix equation 

N 

~ [kr5~/l + N-!.M,~~)(W)]g~'~)(W) = r5~yU, (3.46) 
P~I 

where ..A(,~fJ(w) is a Wigner matrix (see Def. 3), whose 
elements are random functions mew; x, x') with zero 
mean value and covariance rex, x';y,y'); more 
specifically, 

m.s.lim g~~)(w) = O~fJE{G} (3.47) 
N-+oo 

and 

Despite this rigorous derivation, which is connected 
with existence and uniqueness problems, it will be 
enough to notice that Eqs. (3.47) and (3.48) can be 
justified, at least formally, by applying Theorem 4 
term by term to the iterative solutions of (3.15) and 
(3.46). We shall say that Eq. (3.46) constitutes a 
stochastic model for the parastochastic equation 
(3.15); following Kraichnan,13 we call it the random
coupling model. The word "coupling" refers to the 
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off-diagonal elements of the Wigner matrix; if this 
matrix were to become purely diagonal, Eq. (3.46) 
would reduce to N independent versions of the ordi
nary stochastic equation (3.4). It is rather surprising 
that the additional coupling produces actually a great 
deal of simplification. 

Before discussing the implications of the random
coupling model, we make a few comments on Kraich
nan's original derivation. The Kraichnan equation 
(3.32) was first obtained, not from the random
coupling model (3.46), but directly from the ordinary 
stochastic equation (3.4) on the basis of a closure 
assumption, called the direct interaction approxima
tion29 ; later on it was found, and this is a most 
remarkable achievement, that the resulting equation 
is also the exact solution of a modeJ.13.30 Kraichnan's 
formulation of the random-coupling model is some
what different from ours, since it involves a Fourier 
transformation on a discrete group; however, we 
believe that it is simpler to work directly with Wigner 
matrices. Kraichnan's derivation of (3.32) from the 
random-coupling model makes use of the following: 

(i) a variational procedure, somewhat similar to 
our introduction of an uncorrelated parastochastic 
function M'(t); 

(ii) a sharpness result similar to Theorem 3; 
(iii) an all-order perturbation expansion of the 

Green's function with a diagrammatic representation 
of the various terms.13 

The reason why it was possible to give a proof of the 
Kraichnan equation without recourse to perturbation 
expansions may be seen in the existence of Theorem 2, 
which has no counterpart in the Kraichnan theory. 

It may now be asked what is the significance of the 
random-coupling model. In mathematical physics, 
models are mostly used to get some qualitative insight 
into seemingly insoluble problems. To obtain a 
tractable problem, more or less realistic simplifying 
assumptions are made, involving usually a reduction 
of the number of dimensions (most exactly-soluble 
problems are one-dimensional; see, e.g., Ref. 31) and a 
special choice of the interaction laws (potentials, 
covariances, etc.). This picture does not at all fit the 
random-coupling model, for the model and the orig
inal underlying stochastic problem have the same 
dimensionality and the same covariances of the coeffi-

2. R. H. Kraichnan, Phys. Rev. 109, 1407 (1958); J. Fluid Mech. 
5,497 (1959). 

30 R. H. Kraichnan, Second Symposium on Naval Hydrodynamics, 
R. Cooper, Ed. (U.S. Government Printing Office, Washington, 
D.C., 1960). 

31 E. H. Lieb and D. C. Mattis, "Mathematical Physics in One 
Dimension," Perspectives in Physics (Academic Press Inc., New 
York, 1966). 

cients. The appearance of simple master equations is 
merely a consequence of the change from scalar sto
chastic quantities to Wigner matrices or, equivalently, 
from (A = 1)-parastochastics to (A = O)-parasto
chastics. It is true that the original stochastic equation 
also yields a closed master equation (3.29); however, 
this functional differential equation is oflittle practical 
use, whereas the Kraichnan equation is well-suited 
for both theoretical and numerical studies (this will be 
illustrated in Sec. 3D). The price which has to be paid 
for this is that the random-coupling model is probably 
too artificial to describe any natural system; we did 
not write any real system, since, in principle, nothing 
prevents us from constructing such a system. Briefly 
stated, the random-coupling model is a mathematical 
rather than physical model. Yet, following Kraich
nan,8.13.32 it is now shown that there are important 
qualitative and quantitative contacts-between the 
ordinary stochastic equation (3.4) and the random
coupling model (3.46) or, equivalently, the para
stochastic equation (3.lS)-which are expressed by 
the following consistency and approximation proper
ties. 

1. ConSistency Properties 

Any integral of motion of the original problem 
(e.g., an energy integral) will usually survive in the 
random-coupling model. This is a consequence of the 
fact that para stochastic operators are self-adjoint and, 
hence, behave roughly as real numbers. For example, 
the randomly frequency-modulated oscillator (3.S) 
has the energy integral 

q(w; t)q(w; t) = const. (3.49) 

The parastochastic analog of (3.S) is 

d 
dt Q(t) = iM(t)Q(t), (3.S0) 

and denoting by Q*(t) the adjoint of Q(t), we have 

!{ (Q*Q) = Q*iMQ + (iMQ)*Q = 0; (3.S1) 
dt 

hence, Q*Q is also a constant. For turbulent convec
tion, wave propagation in random media, etc., 
energy spectra are of fundamental importance. An 
energy spectrum is defined, for a stationary problem, 
as the Fourier transform of the covariance of the 
solution. As a consequence of Bochner's Theorem, 
it is always a nonnegative function. To show that this 
property survives in the model, we prove, more 

32 R. H. Kraichnan, Symposium on the Dynamics of Fluids and 
Plasmas, S. I. Pai, Ed. (Academic Press Inc., New York, 1966). 



                                                                                                                                    

384 U. FRISCH AND R. BOURRET 

generally, that the parastochastic covariance 

E{G(x, x')G*(y,Y)} 

is of positive type, i.e., that for any Xl>" • ,xn ; 

Y1>'" ,y» and any complex numbers C1 , ••• , Cn, 

.. 
I C,CJ('Yo, G(Xi' Yi)G*(X j , Yj)'Yo};;;:: O. (3.52) 

i,i=l 

The left-hand side can be written as 

C~ CjG*(x;, Yi)'YO 'j~lCJG*(Xj' yj),¥o) 

. = IIJ1CiG*(X;,Yi)'Yo r;;;:: 0, (3.53) 

which proves the assertion. 
Finally, it should be mentioned that the random

coupling model does not necessarily preserve realiza
bility conditions which are of non probabilistic nature. 
In a recent paper, Orszag and Kraichnan33 studied the 
problem of stochastic acceleration by means of the 
random Liouville equation 

oj oj q oj . - + Vi' - + - . E; • - = 0, I = 1,2,3, (3.54) at ax, m OVi 

where E; is a given random electric field. For the case 
of a time- and space-independent electric field with 
three independent random components, they find that 
the random-coupling model predicts some negative 
values for E{f}, a fact which is inconsistent with the 
interpretation off as a distribution function. 

2. Approximation Properties 

In Sec. 3D, the mean Green's function for the 
randomly frequency modulated oscillator (example 1 
of Sec. 3A) and for its random-coupling model will be 
compared numerically. An excellent agreement will be 
found there, even in the asymptotic range, as long as 
the generalized Reynolds number Ro (to be defined 
there) is small compared to one. 

More generally, if the parastochastic equation (3.15) 
is written 

(kI + RoM)G = I, (3.55) 

it is conjectured (by us and also by Kraichnan8
) that, 

as Ro goes to zero, the exact "Gaussian" mean Green's 
function (.:t = +1) approaches (in a sense not yet 
specified) the mean Green's function for the random
coupling model (.:t = 0). A more precise conjecture 
will be made in the concluding section. To support 
this conjecture, it can be shown that (i) the perturba
tion expansions of both mean Green's functions in 
powers of Ro agree up to second order, and (ii) if 

sa S. A. Orszag and R. H. Kraichnan, Phys. Fluids 10, 1720 (1967). 

Theorem 1 is applied to evaluate perturbation terms 
of arbitrary order, the random-coupling model mean 
Green's function retains only those contributions to 
the exact mean Green's function arising from non
crossing pairings. Since the first cumulant-discard 
approximation, which corresponds to the even more 
restrictive class of disjoint pairings, seems to behave 
well for small Ro (see Ref. 5), the random-coupling 
model should, at least, be an improvement on this 
approximation. 

A surprising feature of the random-coupling model 
is that, even for Ro» 1, it seems to give correct 
predictions for such over-all quantities as relaxation 
times; for example, if in (3.5) m( w; t) is assumed to be 
time-independent with variance 0'2, the exact and model 
mean Green's functions are exp (-ta2t2)andJl(2at)/t, 
respectively; in both cases the relaxation time is of the 
order of a-I. In contrast to this, the first cumulant
discard approximation yields the mean Green's 
function cos at, which does not show any damping at 
all (see Refs. 5 and 13). 

D. Nonlinear Integral Equation 

This section is devoted to the following special case 
of the Kraichnan equation, 

dy(t) = _ (tr(t _ t')y(t _ t')y(t') dt', yeO) = 1, 
dt Jo 

(3.56) 

which is obtained from (3.36) by assuming that the 
real covariance r is stationary and by writing 

E{G(t, t')} = yet - t'). 

Moreover, it will be assumed that ret) 
(i) is continuous, 
(ii) is absolutely integrable, i.e., 

LW(t)' dt < + 00, 

(iii) has a Fourier transform 

f~(Y) = -.!.. r e-itv • ret) dt, 
27T JR 

(3.57) 

(3.58) 

which is not merely nonnegative (Bochner's Theorem), 
but strictly positive for any real Y. 

Examples of such covariances are e- t
\ e-1tl , and 

(t 2 + 1)-1. 
It will be shown that (3.56) has a solution which is 

unique, real, even, bounded by one, of positive type, 
and which goes to zero as t goes to infinity. Except 
uniqueness, we have not been able to obtain any of the 
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preceding results directly from the nonlinear equation 
(3.56). Our somewhat unusual proofs will be based on 
the important property of (3.56), namely, that it is 
satisfied by the vacuum expectation E{Q(t)} of the 
solution of the linear parastochastic equation (see 
Example 1 of Sec. 3B): 

dQ(t) = iM(t)Q(t), Q(O) = I, (3.59) 
dt 

where M(t) is a (A = 0) parastochastic function of the 
real variable t with stationary covariance ret - t'). 

It was shown in Sec. 2D that the operators M(t) 
are bounded. In the stationary case, the estimate 
(2.59) reduces to 

IIM(t)11 ~ 2r1(0). (3.60) 

Furthermore, it follows from (i) that B(t), and thus its 
adjoint A(t), as well as M(t), are continuous for the 
operator norm. 

Proof: Continuity is implied by the following 
relation: 

II(B(t + h) - B(t»'I"112 = ([B(t + h) - B(t))'Y, 

X [B(t + h) - B(t)]'1") 

= (A(t + h)B(t + h)'I", '1") 

+ (A (t)B(t)'I" , '1") 
- (A(t + h)B(t)'I", '1") 

- (A(t)B(t + h)'I", '1") 

= 2[r(0) - reO)] 11'1"11 2
, 

(3.61) 
where (2.1) has been used with A = O. 

In deriving the Kraichnan equation in Sec. 3B, 
existence and uniqueness for linear parastochastic 
equations were presupposed. In the present case, 
uniqueness results from the existence of the energy 
integral [see (3.51)] 

Q*(t)Q(t) = Q*(O)Q(O). (3.62) 

The continuity of M(t) implies that (3.59) has a 
solution, which reads 

Q(t) = I + i fM(tl) dti 

+ j2fflM(tl)M(t2) dt1 dt2 + .. '. (3.63) 

The uniform normal convergence in any integral (0, T) 
of this series is proved by applying (3.60) to estimate 
(3.63) term by term, i.e., 

IIQ(t) ~ 1 + 2rl(0)T + ... + [2r1(O)T]n/n! + ... 
= exp [2r1(0)T]. (3.64) 

This estimate then shows that Q(t) is an analytic 
function of M(s) for 0 ~ s ~ t, and this justifies the 
extensions of Theorems 2 and 3 from polynomials in 
M(s) to Q(t)-extensions used in Sec. 3B to derive the 
pre-master and master equations. After these pre
liminaries, we turn back to the nonlinear equation 
(3.56). 

Uniqueness. Uniqueness for (3.56) does not follow 
from uniqueness for the parastochastic equation 
(3.59), but requires a separate proof. To show unique
ness in any interval (0, T), let (3.56) be written in 
integral form 

(t (t' 
yet) = 1 - Jo Jo ret' - t")y(t' - t")y(t") dt' dt", 

(3.65) 

and let YI(t) and Y2(t) be two continuous solutions of 
(3.65); their difference z(t) = YI(t) - h(t) satisfies 

(t r 
z(t) = -! Jo Jo ret' - t"){[YI(t' - t") 

+ Y2(t' - t")]z(t") 

+ [YI(t") + JI2{t")]z(t' - t")} dt' dt" 

(I t' = -! Jo Jo [ret' - t") + ret")] 

x [YI(t' - t")Y2(t' - t")]z(t") dt' dt". (3.66) 

Now let 

C = sup 1 [r(t' - t") + r(t")] 
O~(~t'~T 

x [YI(t' - t") + Y2(t' - t")]I, 

D = sup Iz(t)l. (3.67) 
O~t~.T 

Using (3.67) to estimate (3.66), we find 

Iz(t)1 ~ tDCt2/2!, for 0 ~ t ~ T. (3.68) 

Using (3.68), we obtain a second estimate for z(t) 
involving t4

; repeating this process n times, we have 

Iz(t)1 ~ tDnCt2n/(2n)! ~ tDnCT2n/(2n)!, 

for 0 ~ t ~ T, (3.69) 

and it follows that z(t) = b, which proves uniqueness. 
To show that yet) is real and even, it suffices to check 

that yet) and Y( - t) also satisfy (3.56), and to use 
uniqueness. 

Existence, boundedness, and positive type: Existence 
follows from 

yet) = E{Q(t)} = ('Yo, Q(t)'Yo), (3.70) 
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where Q(t) is the unique solution of the linear para
stochastic equation (3.59). Then, using the Schwarz 
inequality and (3.62), we have 

ly(OI = 1('Fo, Q(t)'Yo) I ~ IIQ(t)'Foll 

= (Q(t)'Fo, Q(t)'Fo)! 

= (Q*(t)Q(t)'Fo, 'Fo)! 

= ('JI'o, 'JI'o)! 

= 1. (3.71) 

Therefore ly(t)1 is bounded by one. 
At this point the explicit realization, given in Sec. 

2D, of the para stochastic function M(t) is needed. 
Recall that 

M(t) = B(t) + B*(t) = x(t) @ +(x(t)@)*, (3.72) 

where x(t) is given by (2.5). Let N denote the self
adjoint operator 

N: h(v)~ -vh(v) (3.73) 

acting in the Hilbert space Je = L 20\v) dv), and let 
Ho denote the extension of N to the tensor algebra 
(2.51)-an extension which is also self-adjoint and 
reduces to zero on C and to N @ N @ ••• @ N, (taken 
p times) on Je®p. Equation (2.50) may be written as 

x(t) = e-itNx(O). (3.74) 

Then an easy calculation, based on (3.72), shows that 

perturbation theorem,34 iHT also generates a strongly 
continuous semigroup 

(3.79) 

With the operator H T being self-adjoint, this semi
group is unitary.34 The following relations, together 
with (3.78) and (3.79), imply that yet) is of positive 
type: 

n 

L ciC;E{exp [i(ti - t;)HTJ} 
;,;=1 

= (~IC; exp (it;H T)'Fo, itl Ci exp (it;H T)'JI'O) 

= II ;~/; exp (itjH T)'JI'o Ir ~ O. (3.80) 

Using the spectral decomposition of HT and the 
Riemann-Lebesgue lemma, it is easily shown that if 
HT has a continuous spectrum, then lim y(t) = 

t-+± 00 

O. As HT is of the type studied by Friedrichs,35 
namely, obtained from an operator Ho with continuous 
spectrum by perturbation with creation and destruc
tion operators, it may be that the asymptotic behavior 
of yet) is given by spectral perturbation theory. In the 
present case a direct method will be used. 

Asymptotic behavior. In order to show that 
lim yet) = 0, it is convenient to introduce the 
t-+oo 

M(t) = e-itHOM(O)eitHo. (3.75) Laplace transforms 

jim = 100 

ii'ty(t) dt, ~ = 'JI + ifl, (3.81) Performing in (3.59) the change of variable 

Q(t) = e--itHoS(t), (3.76) and 

and using (3.75), we obtain for S(t) the following 
equation: 

dS(t) = i[Ho + M(O)]S(t), S(O) = I. (3.77) 
dt 

In terms of Set), the solution of (3.56) reads 

yet) = ('Fo, e-itHoS(t)'Fo) = (eitHo,¥o, S(t)'Fo) 

= ('Fo, S(t)'Fo) = E{S(O}, (3.78) 

where we used Ho'fo = O. 
Equation (3.77) is reminiscent of the Schrodinger 

equation for a quantum-mechanical system with total 
Hamiltonian HT = Ho + M(O). Equation (3.59) then 
corresponds to the "interaction representation." The 
interest of (3.77) is that it is an equation with constant 
coefficients for which semigroup and spectral tech
niques are available. The operator iHo generates the 
strongly continuous semigroup eitHo , and the 
operator iM(O) is bounded; therefore, by a well-known 

km = 100 

ei'tr(t)y(t) dt. (3.82) 

Since yet) is bounded and ret) is absolutely integrable, 
the former converges in the open half-plane fl > 0, 
and the latter in the closed half-plane fl ~ O. 

A few preliminary inequalities are needed which 
involve 

(3.83) 

(i) If fl ~ 0, then Ik(OI ~ c1 • This is a consequence 
of (3.71). 

(ii) If fl ~ 0 and I~I ~ 2c1 , then (kC{) - i~)-l = 
(i~)-l + ~-2FC{), with IF(OI :::;; 2. This inequality is 
implied by 

(3.84) 

3. E. Hille and R. Phillips, Functional Ana~)'sis and Semigroups 
(American Mathematical Society, Providence, R.I., 1957), 2nd ed. 

3. K. O. Friedrichs, Lectures in Applied Mathematics, Vol. 3'; 
"Perturbation of Spectra in Hilbert Space" (American Mathe
matical Society, Providence, R.I., 1965). 
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which holds under the same conditions as (ii) and 
follows from (i). 

(iii) Idy(t)lldt:::;; C1 for any t. This follows from (3.56) 
and (3.71). 

(iv) Re [key)] > 0 for any real v. Proof; Putting 
fl = 0 in (3.82), and noticing that r(t) and yet) are 
even, we obtain 

key) = t fooOO 

eivtJ'(t)y(t) dt. (3.85) 

Since the Fourier transformation exchanges ordinary 
products and convolution products, key) is the 
convolution product of the Fourier transforms of 
ret) and yet). The former is, by Sec. 3.C(iii), an 
everywhere strictly positive continuous function, and 
the latter is a positive measure, since yet) is of positive 
type. Therefore, their convolution product is an 
everywhere positive function. Q.E.D. 

For fl > 0, the Laplace transform of (3.56) reads 

-i,pa) - 1 = -kWpW. (3.86) 
Hence, 

(3.87) 

As yet) has a bounded derivative, it is of bounded 
variation, and the Laplace inversion formula36 gives 
for fl > 0 

yet) = (21T)-1 

X lim i+Xe-i(v+il'lt[k(v + ifl) + fl - ivr 1 dv. 
X-+oo -x 

(3.88) 

For fixed real v the integrand of (3.88) converges as 
fl ~ 0 to 

(3.89) 

which is finite because of (iv). Furthermore, the 
conVergence is uniform for v in any bounded closed 
interval (- Y, + Y) because the integrand, as a 
function of v and fl, is continuous on the compact set 
(- Y, + Y) X (0, fl1)' Because of (ii), the integral of 
the limit exists (as a Cauchy principal value). It is 
then easily shown, by splitting up the integration 
interval (-X, +X) into (-X, - Y), (- Y, + Y), and 
(+ Y, +X), and by using uniform convergence in 
( - Y, + Y) and inequality (ii) in the remaining inter
vals, that 

f
+X 

yet) = (21Trl1-i~oo -x e-ivt[k(v) - ivtl dv. (3.90) 

sq uare integrable; hence, the former is also square 
integrable; since it has a bounded derivative, it follows 
that 

lim yet) = O. (3.91) 
l~±oo 

Explicit solutions. These are obtained for ret) = 
E2e- 1tl • With the same notations as in the preceding 
section, we have 

kW = 100 

ei'tE2e-ty(t) dt 

= E25'({ + 0. (3.92) 

Equation (3.87) then becomes a difference equation 

(3.93) 

Iterating (3.93), we obtain the continued-fraction 
expansion 

_({) 1 E 2 

Y = -.~ + 'r + 1 
-/~ -I", 

E2 --=--- + .... (3.94) 
+ -i{ + n 

This well-known continued fraction is equal to the 
ratio of two Bessel functions,37 

(3.95) 

The original function y(t), which is given by the 
Laplace inversion formula,36 is, from a practical view
point, probably less useful than direct numerical 
solutions of (3.56). 

Numerical solutions. The mean Green's function 
for the randomly frequency-modulated oscillator (3.5) 
with Gaussian mew; t) is known explicitly·; it reads 

YE(t) = exp ( -t ffr(t' - til) dt' dt'} (3.96) 

It is interesting to compare this exact mean Green's 
function to the solution y K(t) of the Kraichnan equa
tion (3.56) and to the solution YC-DCt) of the first cumu
lant-discard equation, which reads 

dy(t) = _ (tr(t _ t')y(t') dt', yeO) = 1. (3.97) 
dt Jo 

Thus, y(t) appears as the Fourier transform of All three mean Green's functions YE(t), YK(t), and 
[key) - iv]-l. From (ii), it is inferred that the latter is YC-D(t) have been calculated numerically by dis

cretization of the time variable and for the following 
3. G. Doetsch, Mathematische Reihe, BAND 24: Einfiihrung in 

Theorie und Anwendung der Laplace-Transformation (Birkhauser 
Verlag, Basel, 1958). 

37 G. N. Watson, Theore of Bessel Functions (Cambridge Univer
sity Press, New York, 1944), 2nd ed. 
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y(t) y(t) 

0.5 R.O.25 
o 

larger values of Ro the first cumulant-discard approxi
mation gives insufficient damping. 

Very similar results, in particular for the critical 
values of Ro, are obtained with the covariances r 2 and 

r 3 • 

E. Concluding Remarks 

It is hoped that the parastochastic formulation has 
contributed to clarify the mathematical basis of the 
method of Kraichnan, which, for the present, is the 

t 50 

{al (bl 

t 20 only one that (i) involves no heuristic approximations, 
(ii) applies to all linear stochastic equations without 
any restriction on the covariances of the coefficients 
or on the number of independent variables, (iii) 
yields a tractable master equation. 

10 t 8 

-0.2 
(el 

FIG. 2. Exact mean Green's functioil YE(t) for the randomly 
frequency-modulated oscillator (upper curve). Mean Green's 
function YK(t) for the corresponding random-coupling model 
(middle curve). Mean Green's function YO-D(r) for the corresponding 
first cumulant-discard approximation (lower curve). All three 
calculated with the covariance r,(t) = R~(l + t 2

)-'. Tl:le parameter 
Ro is the generalized Reynolds number. 

choices of the covariance: 

It is easily found that in each case, the mean Green's 
functions actually depend, except for a rescaling of the 
time, only on the dimensionless number 

Ro = €T, (3.99) 

called the "generalized Reynolds number." 5 

The results of the calculation with r 1(t) have been 
plotted on Figs. 2a-2d for various values of Ro. They 
show that 

(i) YE and YO-D agree within less than five per cent 
as long as Ro is less than one-tenth; 

(ii) YE and YK agree within less than five per cent as 
long as Ro is less than one-half; 

(iii) the relaxation times for YE and YK are approxi
mately equal for arbitrary large Ro; 

(iv) there is a good qualitative agreement between 
YE andYo_D as long as Ro is less than one fourth; for 

The method described in Sec. 3B.3 for stochastic 
differential equations with a dichotomic Markov 
process (D.M.P.) as coefficient has two advantages 
over the method of Kraichnan: the original equation 
is solved exactly, and the resulting master equa
tion (3.45) is more tractable than the Kraichnan 
equation, for it can be solved by integrals. On the 
other hand, the range of possible applications is of 
course limited to problems with one independent 
variable. Applications of the D.M.P. to the Goldstein 
diffusion model, proton magnetic resonance, and 
Brownian motion have already been published else
where.4 In a forthcoming paper by one of the authors 
(Frisch), the distribution of electronic energy levels in 
a one-dimensional binary alloy will be calculated 
exactly, provided that the potential function can be 
represented by a D.M.P. 

A few open problems are now indicated. 
Realizations and random representations of the 

time-dependent generalized commutation relations 
have been obtained only for A. = + l, 0, -1. What 
happens for other values of A. ? 

It is of fundamental importance, we believe, to give 
a rigorous basis to the conjecture made in Sec. 3C 
that the solution of the Kraichnan equation approaches 
the exact mean Green's function as Ro -- 0. To make a 
more precise statement, let us again consider the 
para stochastic equation (3.59) for the randomly 
frequency-modulated oscillator. Under the assump
tion of stationarity, this equation was converted into 
an evolution equation (3.77) involving the time
independent "Hamiltonian" HT = Ho + M(O). Intro
ducing a positive generalized Reynolds number Ro, 
we consider the two families of Hamiltonians, 

H(,P(Ro) = Ho + RoM(O), A = +1,0, (3.100) 

where the superscripts one and zero refer to the 
Gaussian case and the random-coupling model, 
respectively. Denoting by dE(}..)(m, Ro) the spectral 
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measure17 associated to H!j>, we conjecture that, as 
Ro-+ 0, 

sup I i ('Yo, [dE(1)(mR~, Ro) 
B Ju 

-'dE(O)(mRL Ro)]'}!'o} 1= O(Rol), (3.101) 

where B is an arbitrary Borel subset of the real line. 
If f(t) = R~e-ltI, Eq. (3.101) can be checked (not too 
easily) on the explicit solutions (3.95) and (3.96). 
Anyhow, such a conjecture seems to account well for 
the observed numerical "closeness," even in the 
asymptotic range (see end of Sec. 3D). One should 
try to prove it directly on the operators (i.e., not on 
the master equations), e.g., by means of the perturba
tion method of Friedrichs.35 The proof might then be 
extended to stochastic equations with coefficients that 
are stationary in time but depend also on other 
variables because the method which led us to introduce 
a time-independent Hamiltonian is easily generalized. 

Finally, we recall that the method of Kraichnan 
was originally designed for turbulence dynamics13 •3o 

and the many-body problem3s rather than for linear 
stochastic equations. It may be asked if those problems 
have a parastochastic reformulation, too. Although 
this question is still under investigation, we would 
like to mention that Kraichnan's master equatior.<: 
for turbulence in the random-coupling model have 
already been obtained without any recourse to pertur
bation theory. The derivation, based on the result 
stated in Remark 7, is quite similar to that of Eqs. 
(3.32) and (3.34). 
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APPENDIX 

The probability distribution dP;,(m)/dm is calculated 
for -1 ::;; A < 1; the notations are the same as in 
Sec. 2.B. In view of the boundedness of M the 
moment generating function 

F;.{z) = 2 z-n-l('Yo, M"'Yo) (AI) 
n2:0 

8. R. H. Kraichnan, J. Math. Phys. 3, 475 and 496 (1962). 

converges for Izllarge enough to the Stieltjes transform 

F;.(z) =J+oo dP;Jm) 
-'Xj z - m 

(A2) 

of the probability distribution. Introducing the vector 

x = 2 z-n-l(A + 8)"0/0 , (A3) 
n --0 

we notice that 

(A4) 

Obviously, x satisfies the equation 

x = rl(A + B)x + rl'Yo. (AS) 

Using the representation (2.13) and (2.14), we obtain 
a second-order difference equation for the coordinates 
{x)" 0 of x: 

Xo = z-Yox1 + Z-l, 

XI! = r1(j"_lx"_1 + f"x,lf-l) , 11 ~ 1. (A6) 

Dividing the last equation by X,,, we have 

(A 7) 

Iterating (A 7), we obtain the continued-fraction 
expansion 

1 [J .tl Fiz) = Xo = - (A8) 
z-z-z- z -

where thefn's are given by (2.16). 
It follows from the Poincare-Perron Theorem39 

and the convergence of ~x! that the continued fraction 
picks out the right solution of (A6). Since (A8) is a 
positive-definite J-fraction,40 it converges for Im Z > 0 
to the Stieltjes' transform of a probability distribution, 
which is even because F;,(z) is an odd function of z. 
This probability distribution can be obtained by 
means of the Stieltjes' inversion formula40 ; for the 
case of an absolutely continuous even probability 
distribution, this formula reads 

dP,(m) 1 . -'- = - - hm lm F;.(m + i1J). (A9) 
dm 1T ~>o 

q .... o 

If the probability distribution is not absolutely con
tinuous, the same formula still holds provided that the 
limit is taken in the sense of distributions. 

39 L. M. Milne-Thomson, The Calculus of Finite Differences 
(Macmillan and Co., Ltd., London, 1951), 2nd ed. 

40 H. S. Wall, Analytic Theory of Continued-Fractions (D. Van 
Nostrand, Inc., Princeton, N.J., 1948). 
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Let us first look at two special cases. For A = -1, 
(A8) becomes 

Applying the inversion formula to the approximated 
continued fraction, we obtain 

F_1(z) = Z/(Z2 - 1), (AlO) dP(m) 

which is the Stieltjes' transform of t[b(n1 + 1) + 
b(m - 1)], the simplest Bernouilli distribution. For 
A = 0, (AS) becomes 

1 
Fo(z) = -

z- -z-
(All) 

where the analytic branch, which behaves like Z-l for 
large Izi in the upper half-plane, must be taken. 
Applying the StieItjes' inversion formula to (At 1), we 
obtain the semicircle distribution (2.21). 

In the general case, we cannot directly apply the 
inversion formula to (A8) for the continued fraction 
converges more and more slowly as 1m z -+ O. 
Instead, we use the following indirect procedure. 
For -1 < A < + I, the sequence 1';' converges to 
(l - 2)-1 as n -+ 00. In (AS), we approximate!; by 
(I - 2)-1 for n ~ N, and notice that 

z 

(1 _ ).)-1 _ ... 

z 

= (1 - },)-!Fo«l - ).)!z). (AI2) 

Rim) = lim Fo((1 - ;,)l(m + ifJ». 
q>O 
q-+O 

Using (All), we obtain 

Rl(m) = H(l - A)1m - i[4 - (l - A)m2]f}, 

(AI4) 

if Iml < 2(1 - A)-1, 

= H(1 - 2)lm - [(1 - 2)m2 - 4]!}, 

otherwise. (AIS) 

For Iml ~ 2(1 - A)-1, the probability density dP;.(m)f 
dm vanishes because the coefficients of (Al3) and 
R(m) are real. For Iml < 2(1 - A)--1, the finite 
fraction (AD) has been calculated numerically for 19 
values of}. ranging from -0.9 to +0.9. N was succes
sively given the values 10 and 40; no appreciable 
differences were found, even for ;, = +0.9. The 
results are shown on Fig. 1; the probability distribu
tion being even, only positive values are plotted. 
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Unique Hamiltonian Operators via Feynman Path Integrals 

EDWARD H. KERNER AND WILLIAM G. SUTCLIFFE· 
Sharp Physics Laboratory, University of Delaware, Newark, Delaware 

(Received 12 May 1969) 

The old problem of how to represent uniquely a prescribed classical Hamiltonian H as a well-defined 
quantal operator fl is shown to have a clear answer within Feynman's path-integral scheme (as expanded 
by Garrod) for quantum mechanics. The computation of fl involves the momentum Fourier transform of 
a coordinate average of H. A differential equation for a reduced form of the Feynman propagator giving 
fl from H is found; and the example of polynomial H worked out to give the Born-Jordan ordering rule 
for fl in this case. 

INTRODUCTION 

From its beginnings, quantum theory, as comprised 
fundamentally of commutation rules on coordinates 
and momenta, plus the dynamical law fbp = ili"iJ, has 
contained a substantial logical gap: how to represent 
the Hamiltonian, say H(x,p), uniquely as an opera
tor. 1 When H has simple structure like f(x) + g(p), 
the problem does not seem to arise, e.g., f(x) + 
g( -ilia/ox) will often do; but even here there is 
ambiguity owing to the ambiguity of the idemfactor 
f/J(x,p)/f/J(x,p) = 1, which multiplies f or g. Apart 
from this, when the Hamiltonian contains a term like 
X2p2, for instance, the question2 of ordering x- and 
p-factors receives no clear answers under representa
tions of x and p in accordance with the commutation 
rules. A logically distinct ordering rule becomes 
necessary. Many have been proposed (Born-Jordan, 
Weyl-McCoy, etc.). Each has a certain plausibility.3 
None has universality or basic theoretical standing, 
as their variety attests. 

In the present note4 it will be shown that 
Feynman's5 path-integral formulation of quantum 
mechanics in the Hamiltonian statement of it, first 
indicated by Feynman and later developed by Garrod,6 
does provide a unique construction of the Hamiltonian 
operator. The reason is that the path-integral scheme 
moves directly to seize the statement of the dynamical 
law, based upon the primitive action principle, with
out so much as a glance at commutation rules; these 
come up only later, as a deduction, not as a first 
principle. 

* Present address: Lawrence Radiation Laboratory, Livermore, 
California. 

1 See J. R. Shewell [Am. J. Phys. 27, 16 (1957)1 for bibliography. 
2 L. Cohen, J. Math. Phys. 7, 781 (1966). 
3 For instance, the import of the Weyl-McCoy rule is shown by 

U. Uhlhorn, Ark. Fysik 11, 87, (1956). 
4 A preliminary report was given in Bull. Am. Phys. Soc. 14, 

68 (1969). 
5 R. P. Feynman, Rev. Mod. Phys. 20, 367 (I948). 
• R. P. Feynman, Phys. Rev. 84, 108 (1951) (Appendix B); C. 

Garrod, Rev. Mod. Phys. 38, 483 (1966). 
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CALCULATION OF HAMILTONIAN 
OPERATOR 

We confine discussion to a particle dynamics 
controlled by Hamilton's equations x = oH/op, 
p = - oH/ox, which make stationary the action 

A(~) =f P • dx - H dt 
9' 

(1) 

computed on a set of paths ~ between fixed endpoints 
in x, p space. Let us agree that x stands for the collec
tion of all Cartesian coordinates, p their canonical 
mates. It is a separate issue, which will not be con
sidered here, to allow general contact transformations 
or generalized coordinates other than Cartesians. 
Except as noted below, only a Cartesian coordinate 
representation of quantum mechanics is then in view. 

Feynman's hypothesis is that quantal probability 
amplitudes "P(x, t) evolve according to 

"P(x", t") = J K(x", x', t" - t')"P(x', t') dnx' , (2) 

where the propagator K is computed from the "sum 
over all paths ~": 

K "-' ~ exp (i/ Ii)A(~), 
:r 

(3) 

A(~) being the classical action equation (1). Rather 
than Feynman's action S L(x, x) dt, which apparently 
limits things to Lagrangians that are quadratic in x, 
it is Garrod's use of A(~) that holds the power to 
advance to very general Hamiltonians. The propor
tionality constant in Eq. (3) is to be taken simply as 
(27T1i)-n, where n is the number of degrees of freedom, 
in order to recover ordinary Schrodinger dynamics. 

Now, following Garrod initiaIly, we work out Eqs. 
(2) and (3) infinitesimally. Let t" - t ' be very small. 
In accordance with Eq. (1), we reckon a family of 
paths ~ with fixed endpoints for t ' :::;; t :::;; t" as 

~1: p = PI' X = x' + [(x" - x')/(t" - t')](t - t'), 

~2: p = P2, X = x' + [(x" - x')f(t" - t')](t - t'), 
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and so on, i.e., :r is simply straight-line motion in x 
running from x' to x" at an arbitrary but fixed 
momentum p. The family :r is then parametrized by p, 
and the I~' is just an S dp. Equation (3) reads 

K = (27T1i)-nI dnp exp (i/Ii)[p.(x" - x') - (t" - t')ii], 

where H is the time average of Hover p = fixed, 
x = x(t); that is, 

H = _1_ J't"H (x' + x" - x' (t - t'), p) dt 
t" - t' t' t" - t' 

= f~(X' + (x" - x')u, p) duo (4) 

Expanding the exponential in K to first order in 
t" - t' 7 (nothing more is needed in view of the 
limit t" - t' -- 0, to be taken in a moment), we have 

K = b(x" - x') - (i/Ii)k(x", x')(t" - t'), 

where k, the "reduced propagator," is defined as 

k(x", x') == (27T1i)-n I d"pH exp (i/ Ii)p • (x" - x'). 

(5) 

Now the dynamical law equation (2) becomes 

iii 1p(x", t") - 1p(x", t') =Ik(X", x')1p(x', t') d"x', 
t" - t' 

and in the limit t" -- t' this is 

I;. a'lp(x", t') -Ik(" ') ( , t') d'n , In - X ,x 1p X , X • 
at' 

The essentially unambiguous meaning of the Hamil
tonian operator in the sense ili-,p = fl1p, and the connec
tion of quantal fI and classical H, is now evident: 

as 

fl1p(x", t') == I k(x", x')1p(x', t') dnx/, 

k == p-Fourier transform of x-time 
average of H, averaged over an 
infinitesimal interval in which 
coordinates run in straight-line 
motion [Eqs. (4) and (5)]. (6) 

In a purely formal manner, Eq. (4) can be expressed 

fJ = f[exp u(x" - x'). V']H(x', p) du 

= [exp (x" - x') • V'] - 1 H(x' ) 
(

" ') r1, ,p , x - x . v 

7 R. P. Feynman, Ref. 5, 374. 

where the exponential is understood to be written as 
a power series in (x" - X'). V' (which sometimes can 
break off in a polynomial). Denoting the p-Fourier 
transform of H as 

<I>(~) • H(x', p) 

== Je(x', Ii;) = _1_ IH(X', p)(exp ! p.;) d"p, 
(27T1i)" Ii 

the reduced propagator is, formally, 

k = {[exp (x" - x') • V'] - 1 Je(x' Iz~)} 
(x" - x') • V' '!;=x"-x' ' 

where in Eq. (5) the operators of Fourier transforming 
and the time averaging have been reversed. 

The formal calculation suggests in passing that 
there is a simple differential equation for k which may 
show its makeup a bit more clearly. This can be 
obtained from Eq. (5) by performing 

(x" - x') • (V' + V")k 

= (x" - x') • (V' + V")<I>(x" - x') 

. fH(X' + u(x" - x'), p) duo 

Call w the argument x' + u(x" - x'). Then the right
hand side here is 

o + <I> • f(X" - x') • [uV w + (1 - u)V w]H(w, p) du 

= <I> 'f(X" - x'). VwH(w, p) du 

]

1 a 
= <1>. - H(x' + u(x" - x'),p)du 

o au 

= <l> • [H(x", p) - H(x', p»), 

so that k satisfies 

(x" - x'). (V' + V")k = <1>. [H(x", p) - H(x', p)] 

or 

(x" - x') • (V' + V")k 

= Je(x", Ii(x" - x'» - Je(x', Ii(x" - x'». 

In the whole discussion above, it will be clear how 
to go into a momentum representation by starting 
with an action 

f -x· dp - H dt 

instead of the "coordinate" action (1), to which it is 
canonically equivalent [the two action integrands 
differing by d(x • p)]. 
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EXAMPLES OF OPERATOR ORDERING 

In one dimension let H be f(X)pk (or a sum of such 
terms). Then it follows from Eq. (6) that 

fbp(X", t) = 2:1i f f ( exp ~ p(x" - XI») pk 

X ff(X ' + (x"- x')u)du 1jJ(x',t)dpdx' 

=( -lli)kf b(k)(x" - x') 

x f,r (x' + (x" - X')U) du 1jJ(X', t) dx' , 

or, dropping primes, 

A k (k)f(k)(x) ak
-

I 
H1jJ(x, t) = (-ilil L -- ----;;=i 1jJ(x, t). 

1=0 I 1+ 1 ax 
For f= 1 and k = 1, the conventional p = -ilia/ax 
follows, in terms of which the operator equation 

fl = L (- iliY (k)fW(x) pk-l 
1 1 + 1 

is obtained for fl. This is, for f = x"', 

fl = ;:~ = L' (_ili)l(k) (m)_I!_ Xm-lpk-l 
1 1 1 + 1 ' 

with L' meaning a sum on I from 0 to min (k, m). 
Finally, let us compare the latter with other well

known ordering rules. 
Weyl-McCoy rule: 

/".... 
xmpk = 2-m L (7)xm-Ipkxl 

= L' (-tli)IC) (7)~ Xm-lpk-l, 

or, for m = 2 and k = 2, 

/".... 
X2p2 = X2p2 - 2ilixp - i1i2. 

Symmetrization rule: 

/'--... 
xmpk = l(xmpk + pkxm) 

= txmpk + t L' (-ili)l C) (7) I! X;:'-lpk-l 

and 
./'-.... 
X2p2 = X2 p2 - 2ilixp _ 1i2. 

Born-Jordan rule: 

/'--... 
xmpk = (k + 1)-1 LPk-lxTnpl = (m + 1)-1 LXm-lpkXl 

= L/C-iliy(k) (m)_l_! Xm-1pk-1 
1 11+1 ' 

with 
/'--... 
X2p2 = X2p2 - 2ili x p - 11i2. 

These rules can be written in the common form 

where 
a l = 21 (Weyl-McCoy rule), 

2 
- --- (symmetrization rule), 

15/0+ 1 
= 1 + 1 (Born-Jordan rule). 

The coefficients ao and a1 are the same for all rules, 
so that all give the same result for k or m unity. For 
k and m ;;:: 2, the rules differ from each other by 
terms of order 1i2. The ordering rules proposed 
by Von Neumann and Dirac have been shown by 
SheweUl to be nonunique and so have not been 
considered. As mentioned in the beginning, all such 
rules stand as independent assumptions in quantum 
theory when based on commutation rules, whereas 
in the present discussion, for the simple case of 
polynomials in x and p, it is exactly the old Born
Jordan8 rule that comes out straightforwardly from 
Feynman's single basic postulate. 

Quite generally, the path-integral calculus in the 
form of the final result, Eq. (6), entails simply Fourier 
transformation and one quadrature (for H) for 
obtaining fl substantially uniquely. The range and 
freedom from ambiguity of this calculus may argue 
strongly for its fundamental position in quantum 
theory. 
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~~e G.oldstein problem for the ladder-approximation Bethe-Salpeter equation for a spin-t fermion
anti ermlOn sy~tem bound to zero total mass by particle exchange is re-examined It is su ested that 
the probl~m ans~s ~ec~us.e.attention has previously been focused on the wrong Dirac-s ac~gsectors of 
t~e equatIOn. Cntena IImltmg the acceptable behavior of solutions are investigated and Ft is shown that 
dIscrete spe~tra for th~ values of the coupling constant are allowed to exist for the T-A sector and S-V 
sector solutIOns. Contmuous spectra are always excluded. 

1. INTRODUCTION 

When the first solution of the ladder-approximation 
Bethe-Salpeter equation1. 2 describing a bound system 
of two fermions was found by Goldstein,3 it turned 
out to have an associated problem which remains to 
the present day. Contrary to the expectation of finding 
a dIscrete set of values for the coupling constant g 
for the interaction between the fermions and the 
exchange field quanta for which the bound system 
would have zero total mass, the equation appeared 
to have solutions for a continuous range of values. 
Later, however, it was shown4 that none of these 
solutions would satisfy a normalization condition. 
If the simple equation that Goldstein discussed is to 
have any physical significance, it appears necessary, 
therefore, to introduce a cut-off procedure which 
reduces or removes the contribution of high relative 
momenta to the solutions. This is justified by assuming 
that some equivalent, but as yet unknown, form factor 
exists. Narayanaswamy and Pagnamenta5 have pub
lished the results of numerical calculations using such 
a cut-off. The present author has considered zero
total-mass solutions using a relativistic square-well 
potential in configuration space.6 This is similar to 
introducing a cut-off, but one which is less violent than 
that of Narayanaswamy and Pagnamenta. 

There is, however, another possibility. In two 
previous papers/'s hereafter referred to, respectively, 
as I and II, we have considered formal solutions of 
the ladder-approximation equation for a zero-total
mass spin-i fermion-antifermion system, and in 
Table I of II we have classified these solutions according 
to their total angular momentum J2, parity if, and 

charge parity C. properties. In particular, to the 

1 H. A. Bethe and E. E. Sal peter, Phys. Rev. 84, 1232 (1951) . 
• M. Gell-Mann and F. E. Low, Phys. Rev. 84, 350 (1951). 
3 J. S. Goldstein, Phys. Rev. 91, 1516 (1953). 
; s. Mandelstam, Proc. Roy. Soc. (London) A233, 248 (1955). 

P. Narayanaswarny and A. Pagnarnenta, Nuovo Cirnento 53A 
875 (1968). ' 

• R. F. Kearn, J. Math. Phys. 10, 594 (1969). 
7 R. F. Kearn, J. Math. Phys. 9, 1462 (1968). 

angular momentum and parity assignments J and 
(-IV+I, there correspond solutions of type 

fP, gTA-, f TA- (1) 

and to assignments J and (-1 V, there correspond 

fTA+, gTA+, fSv. (2) 

~or eac~ of the six types of solutions, charge parity of 
eIther SIgn may be selected by suitable choice of a 
quantum number j. The Goldstein problem is associ
ated with the solutions oftypefP andfTA+. It seems 
possible therefore that we may be able to avoid the 
problem by considering solutions of the other four 
types listed in sets (1) and (2). 

In the following sections we shall investigate in 
detail the existence of solutions of each class for a 
particular case which allows some simplification and 
for which some solutions are already known, namely, 
where the exchange quanta are vector or axial-vector 
massless particles. Indeed, for the vector interaction 
the work of Tiktopoulos8 already shows that a discret; 
spectrum exists for nonvanishing as well as vanishing 
total mass. The results of our investigation applied to 
exchange of massless scalar or pseudoscalar particles 
are also quoted. 

The conventions and notation are those of Papers 
I and II. 

2. CONSTRAINTS 

In relative-momentum space, the ladder-approxi
mation Bethe-Salpeter equation for a spin-t fermion 
and spin-t antifermion, each of mass m, in a bound 
state of total momentum P = (PO, P) is 

{y. (p + iP) - im}f(p){y· (p - iP) - im} 

= i.h-2J d4krf(k)(p - k)-2, (3) 

where, in the notation of I, r = -r for a vector 
A 2 

exchange, r = r
4 

for an axial-vector exchange, and 
). = g2/(47T)2. 

8 G. Tiktopoulos, J. Math. Phys. 6, 573 (1965). 
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In the center-of-mass system the Wick-rotated9 

form of (3) becomes 

(y' p - im)f(p)(y' p - im) 

= _krr-2j d4kff(k)(p - kr2, (4) 

where the total mass E vanishes. 
Alternatively, in configuration spacelO we have, 

in place of (3), 

f(x)aP = -oJ d4x'[GD(x - x')]ap,ap(4x,-2)[ff(x')]pa, 

(5) 
where the Green's function is 

[GD(Y)]ap,aP = {y' (Oy + tiP) - m}ap 

X {y' (all - tiP) - m}apG(y) (6) 
andll 

G(y) = (hr4j d4qeiQ'Y(qi + m2rl(q~ + m2r\ 
where 

q1 = tP + q and q2 = tP - q. (7) 

The Wick-rotated form of (5) with P = ° may be 
written, for example, as 

f(x) = ).(y . ax - m) 

X j d4x'G(x - x')(4X,-2>rf(x')(y . ax - m). 

(8) 

There are a number of constraints which any 
formal solution of the problem must satisfy. 

A. Constraints Imposed by the Integral Form of 
the Equations 

Instead of working directly with the integral Eqs. 
(3) or (5), it is often more convenient to study a 
differential equation derived from one of these. 
Clearly, however, any solution of such a differential 
equation has to satisfy the integral equation in order 
to be acceptable. After Wick rotation and when 
E = 0, angular and Dirac-space factors may be 
separated, and this has been done explicitly for con
figuration space in Paper I. For the integrals in the 
right members of (4) and (8) to exist, the radial 
functions are restricted in their behavior near the 
origin and in the asymptotic region. Suppose that 
K and R are four-dimensional radial coordinates in 
the Euclidean momentum space and Euclidean con
figuration space, respectively. For the radial factor 

• G. C. Wick, Phys. Rev. 96, 1124 (1954). 
10 See Ref. 9, Eq. (38). 
11 The function G(y) is treated in full in R. F. Kearn, J. Math. 

Phys. 7, 2196 (1966). 

g(K) or g(R) associated with some set of terms in the 
complete solutionf(k) or f(x), if 

g(K) f'..I Ka as K --+ 0, 

g(K) f'..I Kb as K --+ 00, 

g(R) f'..I RC as R --+ 0, (9) 

then, in general, for the inverse-square potential we 
have assumed 

a > -4, b < -2, c > -2. (10) 

An exception occurs for the radial factor for any set 
of terms that the f operator causes to vanish. In our 
case, this occurs for tensor terms in f The integral 
equation, therefore, places no direct restriction on the 
behavior of radial factors w, lV, t 1 , and t2 (in the 
notation of Paper I) either in momentum space or 
configuration space. 

In configuration space, g(R) behaves asymptotically 
not as a power but as an exponential. Clearly, it must 
be a negative exponential. 

We note that the condition on b is sufficient to allow 
the Wick rotation. 

B. Configuration- and Momentum-Space 
Interchangeability 

We assume that the problem can be described both 
in momentum space and in configuration space. That 
is, the Fourier transforms of the wavefunctions in 
either space must exist. Referring to Papers I and II, 
we note that each separate radial function in a com
plete solution is associated in the bispherical basis 
with angular functions Zlmz+m,- of fixed I. It can then 
be shown12 that the corresponding radial functions 
gl(K) and gz(R) are related by the reciprocalformulas: 

RgzCR) = (27Tr2i211oo dKKJ21+1(KR)KgzCK), (lla) 

KgzCK) = (27T)2i-211oodRRJ2!+1(KR)Rg/(R), (llb) 

i.e., (27T)2Rgl(R) and Kgl(K) are mutual Hankel 
transforms13 with respect to the Bessel function of 
order 21 + 1. The existence of these transforms 
implies 

a> -21- 4, b < -t, c> -21- 4. (12) 

C. Configuration Space Normalization 

Configuration space wavefunctions must satisfy the 
Mandelstam criterion4 for normalization to be 
possible, i.e., 

c> -1. (13) 

" For example, as is done in the Appendix. 
13 V. A. Ditkin and A. P. Prudnikov, Integral Transforms and 

Operational Calculus (Pergamon Press, Oxford, 1965), pp. 71-75. 
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D. Momentum-Space Normalization 

Momentum-space wavefunctions must satisfy a 
normalization condition which we examine in detail 
in the next section. As is discussed there, we take this 
constraint to imply 

a> -2, b < -2. (14) 

Collecting all the constraints, we have, finally, 

a> -2, b < -2, c> -l. (lSa) 

From the considerations of the next section, it will 
appear thal some question remains concerning the 
limit on b in (14). While it appears necessary for 
b < -2, this condition may not be restrictive enough. 
One would expect that the configuration-space 
condition (13) be equivalent to some condition in 
momentum space. The rigorous determination of 
this condition will require a much more careful treat
ment of the various possibilities. However, we shall 
now present two facts from which it seems reasonable 
to expect that the required momentum-space condition 
is probably 

b < -3. (16) 

The first I ' is that mathematically (16) is a sufficient 
(but not necessary) condition to imply (13) and the 
second is that Goldstein's P-sector solutions,15 whose 
transforms violate (13), can be excluded only by 
assuming (16). We notice also that (16) is equivalent 
to the square-integrability condition Tiktopoulos has 
assumed. 

Taking account of this argument, we emend (ISa) 
to 

a> -2, b < -3, c>-l. (1Sb) 

When any of these quantities is complex, we under
stand that its real part satisfies (ISb). 

There is a quoted S-V sector solutionI6•I ? which has 
b = -3 and whose transform is stated to obey (13). 
We do not, however, confirm Eq. (3.22) of Ref. 
16, and the correct Fourier transform has c = -1. 

3. NORMALIZATION CONDITION 

We consider the normalization condition in momen-

with p2 = - E2, where E is the total proper mass of 
the bound system. In our case the interaction function 
G is independent of po, and 

I(pqP)aPy~ = b(4)(p - q){y. (p + lP) - imlay 

x {y' (p - lP) - im}6P' (18) 

Regarded as a matrix, the conjugate wavefunction f 
satisfies 

at all points in the complex po plane except on the 
real-axis cuts. Equation (17) now simplifies to 

-H27T)-4f d4p Tr [{y . (p - lP) - im }lh! 

- {y' (p + lP) - im}!y,f] = 2po, (20) 

and in this result we must put p2 = _E2. The terms 
involving y,ipO cancel upon taking the trace. Let us 
regard the integrand as a function in the complex po 
plane and perform the po integration first. Provided 
1/1 = O(lpOld), where d < -l as Ipol- 00, we may 
perform a Wick rotation in the normalization integral. 
The only visible change in (20) is then the appearance 
of an extra factor i in the left member. In the center
of-mass system P becomes (0, iE). We are interested 
in the form that the normalization condition takes in 
the limit as E - O. Let us suppose that all functions 
involved may be expanded in powers of E for small 
positive E, and in particular, 

/=/0 + E/I + 0(E2) (21) 

so that /0 satisfies (4). Then, from the Wick-rotated 
form of (20), we have 

-l(27T)-4if d'p Tr [A + E( -iydoY,!o + B) 

+ 0(E2)] = 2E, (22) 

where, after cycling factors inside the trace, 

tum space in the form given by Lurie, Macfarlane, A = (y • p - im)(loydo - /oY41o), 
and Takahashi18 : 

(23) 

(27T)-4i f f d4p d4qf(P)pa 

X {(%PO)[I(pqP) + G(pqP)]apy~}!(q)y~ = 2po, (17) 

U See Ref. 13, Eq. (3.5.14). 
10 See Sec. 4. 
1. A. Bastai, L. Bertocchi, G. Furlan, and M. Tonin, Nuovo 

Cimento 30, 1532 (1963). 
17 See Eq. (48). 
18 D. Lurie, A. J. Macfarlane, and Y. Takahashi, Phys. Rev. 140, 

BI091 (1965). See especially Eq. (3.24). 

B = (y • p - im)(loydl + hydo - foydl - hy,lo). 
(24) 

The contribution of A vanishes on performing the 
angular integrations in (22). The zero-mass limit ofthe 
normalization condition therefore becomes 
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If A = Ao + EAl + 0(E2), then, in the limit E - 0, 
f1 satisfies 

(y. p - im)fI(y· p - im) + A07T-
2 f d4krfI(k)(p - kr2 

= (A'l/AO)(Y· P - im)!o(Y· p - im) 

- ti{Y4!O(Y· P - im) - (y . p - im)!oY4}, (26) 

an equation which is invariant only under three
dimensional rotations. We have been able to show19 

in a specific case that Al = 0, and it is clear from (26) 
that h does not vanish, nor is it a multiple of to. It is 
not clear, however, what general conclusions can be 
drawn about the term B in (25). We assume that its 
contribution to the integral is not infinite. The finite
ness of f d4p Tr (Y4foYdo) can then be ensured by 
assuming (14). 

4. SOLUTIONS OF TYPE [P, [TA+ 

Since the substitution of any linear combination 
of matrices (1IlV for f(k) in the right member of (4) 
gives zero, there is no solution of type fTA+. 

PuttingfP = X(P)Y5 into (4), we obtain 

(p2 + m2)X(p) = -4€A.7r-2f d4kX(k)(p - kr2
, (27) 

where € = =t= 1 accordingly as the interaction is of Vor 
A type. Equation (27) is equivalent to the equation 
originally discussed by Goldstein,3 and its solutions 
were treated in detail by Kummer. 2o The different 
radial functions are distinguished by a parameter 
n (= 2j) having integral values. The solutions, which 
arise for a continuous range of A, have an acceptable 
radial behavior "" KJ as K- O. As K - 00, they 
behave as a linear combination of K-3±" where 

, = I(2j + 1)2 + 16d.]f. 

This satisfies (15a) for all cases (2j + 1)2 < -16d, 
where, is pure imaginary, and for a small range where 
, is real and less than I. The corresponding configura
tion space radial functions can be obtained with Eq. 
(lla) and are (mR)-lK,(mR). These are, of course, 
obtained much more easily by considering directly 
the differential form of the Bethe-Salpeter equation 
in configuration space. They are unacceptable since 
they behave like R-l-t; as R - 0 and so do not satisfy 
the Mandelstam criterion. Thus in this case it would 
appear that the criterion for momentum-space accept
ability is (I5b). 

19 A perturbation treatment of the ladder approximation Bethe
Salpeter equation for a bound fermion-antifermion system is 
currently in preparation. 

I. W. Kummer. Nuovo Cimento 31, 219 (1964). 

5. SOLUTIONS OF TYPE gTA± 

The configuration-space solutions gTA± == g;;~:Jm 
are defined in Eq. (12) of Paper II and contain 
three radial functions a, t1 , and t2 , associated in the 
notation of Paper I with bispherical angular func
tions Zlm+m- having, respectively, 1= j + t, 1= 
j + 1, and I = j. These radial functions satisfy a 
coupled set of equations which are written explicitly 
in differential form in Eqs. (49) of I. 

If we take p = mR as the independent radial variable 
and write 

d± = !!.. ± 2(j + IX) = 1. n± (28) 
0: dp p m a' 

~j = d!d; = cL!di, (29) 

Eqs. (49) of I become 

~H!a + dtt1 + dOt2 = -(1 + 8Ap-2)a, (30a) 

d"!(d;12 + 2a) = -11' (30b) 

(30c) 

for both V and A interactions with the potential we 
are considering. Using (lla), these can be converted 
into momentum-space equations21 and, in terms of 
the dimensionless radial variable (1 = Km-1 , they are 

~i+!{(1 - (12)a + ;(1(t1 + (2)} = 8Aa, 

(1212 - 11 = 2i(1a; (31) 

(1211 - 12 = 2i(1a. 

[For momentum-space operators d! and ~i' we 
replace p by (1 in the definitions (28) and (29) above.] 
Immediately, we have 

(32) 
and 

(33) 

It can be verified for any interaction that if we expand 
gTA± as 

(34) 
then 

(35) 

Comparing (33) and (35) with Kummer's equations 
(2.13) and (2.11), we see that gT A ± are just his "trans
versal" solutions. Since A in (33) above is positive, we 
have the case where Kummer finds a continuous 
range of values that permit solution of the integral 

n For a rigorous derivation one should go via the momentum
space integral equation. 
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equation.22 He shows, however, that none of these is 
acceptable. 

Near the origin the solution which behaves as a2iH 

is acceptable. Asymptotically, it is alw~s a linear 
combination ofterms,-.J a-3±''. where ~1 = [(2j + 2)2-
SA]!. In order to exclude the solutions for 2.1. ~ 
(j + 1)2, it would thus appear that in this case also 
we must take the criterion for momentum-space 
acceptability as (I5b). 

6. SOLUTIONS OF TYPE fT A-

When j = 0, as a differential equation in configura
tion space we have the radial equation [cf. (52) of I]: 

dt dIal = (1 + SAp-2)a1 • (36) 

Comparing this with the corresponding P-sector 
equation (53) of I, 

dJd;;p = (1 =f 16Ap-2)p, (37) 

we see that the solutions of (36) are those of (37), 
provided we put j = t in the latter and also redefine 
A. As discussed earlier, there is no acceptable P
sector solution, and hence also no acceptable solution 
of (36). It is just Kummer's "longitudinal" solution. 

When j ¥- 0, we have the coupled set of radial 
equations [cf. Eq. (46) of I]: 

aiw + 2(4a1 + cC!a2) = -w, 

d~[ -4a1 + 2j(cCia2 + w)] 

= -(2j + 1)(1 + SAp-2)a1' (3S) 

dild=ia2 + 2(j + 1)(4 a1 + w)] 
= -(2j + 1)(1 + SAp-2)a2' 

It turns out that the problem is more easily discussed 
in momentum space. Applying the transformation 
(lla) to (3S), we obtain21 

(1 - a2)iw - 2a(a1 + a2) = 0, 

d~dl{[(2j + 1) + a2
]a1 - 2ja(aa2 - iw)} 

= S(2j + I)Aa1, (39) 

d;rd::::l{[(2j + 1) - (l]a2 - 2(j + I)O'(O'a1 - iw)} 

= S(2j + I)Aa2' 

Between these equations, a1 and a2 may be eliminated, 
and there remains the following fourth-order differ
ential equation for w: 

[(1 + O'2)d=id~ - 8A][4d~(1 + 0'2)2 - SA(l - O'2)]W 

= -64jA(1 + O'2)W. (40) 

•• For the fermion-fermion system actually discussed by Kummer, 
the signs for Vand A interactions are different but for the fermion
antifermion system they are the same. 

Given any solution of (40), the corresponding 
solutions for a1 and a2 may be obtained from 

-Si(2j + 1)(1 + O'2)O'-
1a1 

= [4d~(1 + 0'2)2 - SA(l - (l) - Sj(l + O'
2)]w, 

Si(2j + 1)(1 + O'
2
)O'-

1a2 

= [4 ~(1 + 0'2,)2 - SA(l - 0'2) + S(j + 1)(1 + O'
2
)]w. 

(41) 

It is not obvious that exact solutions of (40) exist in 
terms of rational functions or commonly occurring 
higher transcendental functions. We turn therefore to a 
consideration of the properties of any solution at the 
origin and at infinity. The behavior at the origin is 
revealed by considering the indicial equation that 
arises when one assumes a solution for w in ascending 
powers of 0'. If w ,-.J O'r as 0' -+ 0, the indicial equation 
gives r = ±2j, ±2(j + 1); since j ¥- 0, these are all 
distinct. Applying (l5a) to each of the functions 
w, a1 and a2 , we find that only r = 2j and 2(j + I) 
are admissible. 

At infinity, we assume an expansion for w in 
decreasing powers of 0'; and if W,-.J O'-Q as 0' -+ 00, 

the corresponding indicial equation is 

32A(2A + 1) 

= [(q - 4)2 - (2j)2][(q - 4)2 - (2j + 2)2], (42) 

say, 

(43) 

At infinity, a1 and a2 are both ,-.J a-HI, so applying 
(15a) to them and to w gives q > 3, or, if the assumed 
more restrictive criterion (ISb) applies, then q > 4. 
In Fig. I we graph F(A) and Fiq) against A and q, 
respectively, for a typical value of j (j = 3). Since 
A > 0, only the portions of the graphs in the first 
quadrant are of interest. Including also the restriction 
q > 4, only those parts of the graphs drawn as solid 
curves are relevant. 

w satisfies a fourth-order differential equation. If 
for a given A there are n corresponding allowed values 
of q at infinity, then there are 4 - n independent 
linear relations which the solutions at the origin will 
have to obey in order to satisfy the conditions at 
infinity. Now there are two allowed forms for the 
solution at the origin. Therefore, for n = 3, we can in 
general always find a solution for this A. For n = 2 
there will, in general, be only a discrete set of values 
of A for which a satisfactory solution exists, and for 
n = 1, in general, no solution will be possible. 
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From the graphs, we see that if F(A') = Fj(4), then 
for ° < A < A' we can expect that a discrete set of 
values of A may exist allowing a solution, and for 
A > A' there will be no solution. 

For large j, the upper bound).' is given approxi
mately by 

).' ~ tiC} + 1) - t· (44) 

For the vector interaction there is also a positive 
lower bound. In the inequality following Tiktopoulos' 
equation (7), replacing e2j(41T)2 with A and setting 
E = 0, we find 

(45) 

If the restriction b < -3 can be relaxed to b < -2, 
then, if F(A") = FP), we see that for A" < A < ).' 
there are three acceptable values of q, and solutions 
could result for the whole continuum of this range 
of A. We believe this to be an unlikely possibility. 

It must be emphasized that it is not possible to 
state definitely with just the above considerations 
that acceptable solutions actually will occur in the 
way indicated. There is, for instance, the possibility 
of unique matching of a solution having a certain type 
of behavior at the origin with a solution having a 
certain type of behavior at infinity. This in fact 
happens with solutions of the P-sector differential 
equation in configuration space: All solutions are 
of the form p-lC~(p), where C~ is a modified Bessel 
function. If C~ is a K function, it has the correct 
behavior at infinity but not at the origin, and if it is 
an I function, the reverse is true for the range of , 
where , is real. 

q, and " ~ 

7. SOLUTIONS OF TYPE fBv 

Whenj = 0, the momentum-space radial equations 
obtained from Eq. (45) of I are 

4d;;-[(1 - ci)s + 2iav] = ±16As, 

d~4[(1 - i)v + 2ias] = -8AV. (46) 

Either s or v may be eliminated, leading (in general) to 
a fourth-order differential equation for the other 
variable. Applying relation (15a) to the behavior of s 
and v at the origin leads to the restriction s r-..J 0'2, rfl. 
Simultaneously with this, v can behave as 0'1 for either 
behavior of s, or another possibility is v'" 0'3 when 
s '" 0'0, There are thus two independent sets of solu
tions with suitable behavior at the origin. 

At infinity we assume an expansion for s in de
creasing powers of a and, if s'" a-q as 0'-+ 00, the 
corresponding indicial equation is 

C(q - 2)(q - 4) ± 16AJ[(q - 2)(q - 6) - 8A] = 0. 

(47) 

When the first factor vanishes, v'" a-Il-l and, 
when the second factor vanishes, v'" a-HI. Applying 
(I5b) then to both v and s at infinity, for the first 
factor to vanish we must have q > 3, and for the 
second factor to vanish we must have q > 4. Taking 
account of this restriction and also that A > 0, we 
show with the solid portions of the graphs in Figs. 2 
and 3 the simultaneous values of q and A which satisfy 
(47) for a V and an A interaction, respectively. 

Applying an argument similar to that used in Sec. 6, 
it follows that for a V i"teraction, a discrete spectrum 
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FIG. 2. A graph of Eq. (47) 
for a vector interaction. The 
solid portions show values of q 
for positive;' where S-V sector 
j = 0 formal solutions have an 
allowed asymptotic behavior. 

FIG. 3. A graph of Eq. 
(47) for an axial-vector 
interaction. The solid por
tions show values of q for 
positive ). where S-V sector 
j = 0 formal solutions have 
an allowed asymptotic be
havior. 
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of A could possibly be found for 0 < A < -{e, but for 
A ~ ls there would be no acceptable solution. For an 
A interaction, a discrete spectrum is possible with no 
upper bound. 

If negative values of A are admitted, a special case 
arises when A = -to An exact solution of the differ
ential equation for this value was found by Bertocchi 
et al.23 for a V interaction. In our notation it is 

s = dJd;(1 ~ (2) = - (1 : (2)3' 

V = _ id+ d1(_a_) = 4i a(3 + (2

) • (48) 
2 1 1 + a2 (1 + (2)3 

For this value of A, the present author has found 
three other independent exact solutions of Eqs. (46), 
but neither they nor the forms (48) satisfy the criteria 
(15b). 

When j :;l: 0, the momentum-space radial equations 
equivalent to Eq. (43) of I are 

dJd;[(1 - (
2
)s + 2ia(vI + V2)] = ±16AS, 

drd!"{[(2j + 1) - a
2
]ivI - 2(j + 1)a(iav2 + s)} 

= -8i(2j + 1)AVI' (49) 

drd:l{[(2j + 1) + a2
]iv2 - 2ja(iavI + s)} 

= -8i(2j + 1)AV2. 

Defining x by s = dt dux, we have found a sixth-order 
differential equation for x. If s '" a-q as a -- 00, this 
equation leads to the indicial equation 

[(q + 2j - 2)(q - 2j - 4) ± 16A][F(A) - Fj(q)] = 0, 

(50) 

where F(A) and F,(q) are given by (42) and (43). The 
first factor in (50) is clearly the generalization of the 
first factor in (47). If q has a value which makes 
the first factor or the second factor in the left member 
of (50) vanish, then VI and V2 together behave as 
0---'1-1 or as a-HI, respectively. If we apply (15b), this 
means that q > 3 on the quadratic curve 

(q + 2j - 2)(q - 2j - 4) ± 16A = ° (51) 

and that q > 4 on the quartic curve (42). On both 
curves the limiting values (q = 3, q = 4) correspond 
to stationary values of A. In the case of the quadratic 
curve, this value A" is given by 

A" = ±(2j + 1)2/16. (52) 

The properties of solutions of (49) near the origin 
can similarly be found by considering the sixth-order 

• a See Ref. 16. There appears to be a sign mistake in their equation 
(3.20), and the eigenvalue;' is negative. See also remarks on validity 
in Sec. 2. 

differential equation for x. Thus x has the independent 
types of behavior ar where tr has the values j + 2, 
j + l,j, -j + 1, -j, and -j - 1. The corresponding 
behavior of each member of the set {s, VI' V2} obeys 
(I5b) for each of the first three of these values, and 
the corresponding behavior of at least one member of 
the set {s, VI' V2} does not obey (I5b) for each of the 
other three of these values. 

Using the arguments of Sec. 6, we can expect a range 
of A to allow a continuous range of eigenvalues for 
which the set {s, VI' V2} has acceptable behavior 
everywhere, a discrete range of eigenvalues, or no 
eigenvalue at all; this depends on finding in that range 
of A a number n of acceptable values of q from (50) 
where, respectively, n > 3, = 3, < 3. 

With a V interaction, a discrete spectrum is there
fore possible for 0 < A < (lesser of A.', A/I). Whenj = t, 
the upper bound is A/I = (13! - 2)/8; for all other 
values of j, A' < A/I and the upper bound is given by 
(52), i.e., it is (2j + 1)2/16. For A greater than the 
upper bound, there will be no acceptable solution in 
general. The Tiktopoulos lower bound (45) must also 
apply in this sector. 

With an A interaction, a discrete spectrum is 
possible for ° < A < A', and for A > A' there will be 
no acceptable solution in general. 

8. SCALAR AND PSEUDOSCALAR 
INTERACTIONS 

The same methods that we have applied in Secs. 
6 and 7 can be used when the binding is due to the 
exchange of massless scalar or pseudoscalar particles. 
We quote the results. 

A. fSV Solutions 

When j = 0, a discrete A spectrum is possible in the 
range 0 < A < ! for a P interaction, and is possible 
for 0 < A with no upper bound for an S interaction. 

When j :;l: 0, for both Sand P interactions a discrete 
A spectrum is possible in the range ° < A < A', where 
A' is the value corresponding to q = 4 on the relevant 
quartic curve. It is the positive root of 

X(A' + 1) = j2(j + 1)2 

and, for large j, 

A' ~j(j + 1) - t. 

B. fT A- Solutions 

(53) 

(54) 

When j = 0, there is no acceptable solution for 
S or P interactions . 

Whenj:;l: 0, a discrete A spectrum is possible for an 
S interaction in the range ° < A < A', where A' is the 
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positive root of 

)"()" - 1) = P(j + 1)2. (55) 
For large j, 

)" '" j(j + 1) + t. (56) 

For a P interaction, there is again a discrete 
spectrum possible in the range 0 < ). < ).", where 

)''' = !(2j + 1)2. (57) 

The upper bound in this instance is determined by 
the quadratic curve. There is a distinctive feature 
of the jT A- solutions, common to both Sand P inter
actions and resulting from the slightly different form 
the quartic curve takes as compared with other 
cases considered previously. Its equation is 

F()') == 16)'()' - l) = [(q - 4)2 - (2j)2] 

X [(q - 4)2 - (2j + 2)2], (58) 

and the significant difference [e.g., from Eq. (42)] is 
the sign of the term linear in ;., Because F()') has a 
minimum value of -4 for)' = t, this means that for 
regions of the quartic graph having ordinates between 
-4 and 0, there are two positive values of ). which, if 
allowed eigenvalues, would produce the same types 
of behavior at infinity. 

C. gT A ± Solutions 

For all j, a discrete)' spectrum is possible for both 
Sand P interactions in the range 0 < ). < ).', where 

)" = !(2j + 1 )(2j + 3). (59) 

D. [P, [TA+ 

There are no acceptable solutions of these forms 
for either S or P interactions. 

9. CONCLUSIONS 

The solutionsjP,jTA+, and gTA± of the ladder-ap
proximation differential Bethe-Salpeter equation for a 
spin-t fermion-antifermion system bound to zero 
total mass by exchange of massless vector or axial 
vector particles do not satisfy a set of integrability 
criteria. But, barring uniformly unfavorable matching 
of the behaviors of either of the solutions fT A- or fSV 
at the origin and infinity, we have shown that a dis
crete eigenvalue spectrum of the coupling constant ). 
will exist for solutions of these types satisfying the 
integrability criteria. A state of any angular momen
tum, parity, and charge parity can be selected by 
suitable choice of f TA- or fSV and the quantum 
number j. (j = 0 is excluded for f TA-.) For both V 
and A interactions, upper bounds exist on the per-

missible values of ). except when j = 0 with an A 
interaction. These results appear to circumvent the 
"Goldstein problem." However, a word of caution 
is necessary. If we apply our method to the gTA± 
equations for V and A interactions that have already 
been considered in Sec. 5, we find that a range 
[0 < ). < Hj + 1)2] exists for which a discrete 
spectrum is possible. But this possibility is not 
realized since we know there is no spectrum in this 
case. This is, . therefore, a case where we do have 
uniformly unfavorable matching of solutions which 
are acceptable at infinity with those unacceptable at 
origin, and vice versa. On the other hand, if the sign 
of ). is reversed, the range 0 < ). < 00 is possible on 
our argument, and this corresponds to Kummer's 
fermion-fermion A interaction system, where a 
spectrum with no upper bound does exist. 

It is worth emphasizing that the criteria (I5b) for 
acceptability of any formal solution lead in each case 
where there is a finite eigenvalue range possible to 
marginal exclusion of a continuum. 

The method used in our investigation has been 
immediately applicable to a study of a fermion
antifermion system bound by exchange of massless 
scalar or massless pseudoscalar particles-the sixth
order equations that are involved being no more an 
obstacle than the one encountered in the S-V sector 
j =F 0 case. 

It seems reasonable to expect that the results found 
will carryover into the case where the exchange 
particles have nonzero mass, since solutions of the 
differential equations of typejP,jTA+, etc., will still 
exist and since the configuration-space potential has 
the same singularity. Of course the numerical values 
of any discrete eigenvalues and of their upper bounds 
can be expected to depend on the ratio of the ex
changed-particle mass to the mass of the binding 
fermion or antifermion. 

When the total mass E is nonzero, there is in 
general no splitting into the S-V, T-A, and P Dirac
space sectors. If, however, we believe that the E = 0 
solutions represent in some way the limit of the 
E =F 0 solutions, then the probable existence of dis
crete eigenvalue spectra for ). for E = 0 solutions 
makes it hopeful that such spectra will exist for E =F 0 
solutions. Tiktopoulos's results for the vector interac
tion already foreshadow this. 

It is encouraging that it appears unnecessary to 
introduce a high momentum cut-off. 
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APPENDIX 

In the (Wick-rotated) four-dimensional Euclidean 
configuration and momentum spaces the Bethe
Salpeter wavefunctions are related by the familiar 
Fourier transform integrals 

f(p) = f d4xe-iP
'
xf(x), 

f(x) = (hr4f d4peiP
•
xf(p). (AI) 

In an earlier paper (I) we introduced "bispherical" 
coordinates (R, v, w, rp) defined in terms of the usual 
four-dimensional Cartesian coordinates by 

Xl = R sin v cos rp, 

X2 = R sin v sin rp, 

Xa = R cos v cos W, 

X4 = R cos v sin w. 

(A2) 

It is of some interest to examine the transforma
tions (AI) in terms of bispherical coordinates in both 
configuration and momentum space. Denote the 
coordinates in momentum space by (K, v', w', 4>'). 

A simultaneous eigenfunction of the operators 
V and L~ in configuration space is [cf. Eq. (35) of I] 

f(x) = gl(R)Zlm+m-(V, W, rp) 

= Ngz(R)glm+m-(v)eimtPeim'ro 

= Ngz(R) sin 1ml v Cos1m'l v 

P<iml,lm'P ( 2) imtP im'tP 
X z-fClml+lm'p cos vee , (A3) 

where m = m+ + m-, m' = m+ - m-, and N is a 
normalization and phase factor. 

In (AI), 

d4x = dR· Ra dv sin v cos v dw drp, (A4) 

P . X = KR[sin v' sin v cos (rp - 4>') 
+ cos v' cos v cos (w - w')]. (AS) 

Thus, from (AI), 

f(p) = N L" dRR3gZ(R) Lrl2

d,. sin v cos vgzm+m-(v) 

X 12JrdweXP(imIW) 

X exp [-iKR cos v' cos v cos (w - w')] 

X f" drp exp (imrp) 

X exp [- iKR sin v' sin v cos (w - w')]. (A6) 

The integrations over wand rp can be separately 
performed; they lead to 

f(p) = (27T)2( - i)lml+lmVmtP'eim'ro' N LX) dRR3gl(R) 

X 1,/2dv sin v cos vg,m+m-(V) 

X J1ml(KR sin v' sin v)J1m'I(KR cos v' cos v). 

(A7) 

From Bateman's expansion24 and, alternatively, from 
Bailey's formulas,25 we have been able to deduce the 
general result 

1"/2J ~(S sin "p sin e) 

x J peS cos "p cos e) sin~+1 e cosP+1 ep~~,p)( cos 20) de 

= (_1)ns-IJ~+P+2n+I(S) sin~ "p cos~ "pp~,P)(cos 2"P). 

(AS) 
This, with (A 7), leads to 

f(p) = gz(K)Zzm+m-(v' , w', rp'), (A9) 
where 

Kgz(K) = (h)2i-2Zioo dRRJ2Z+1(KR)Rgz(R), (AIO) 

and this is Eq. (lIb). 

•• G. N. Watson, A Treatise on the Theory of Bessel Functions 
(Cambridge University Press, Cambridge, 1948), p. 370. 

.5 W. N. Bailey, Quart. J. Math. Oxford Ser. 9, 141 (1938). 
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.The simple cu~ic lattice with harmonic forces between nearest neighbors only is considered. Starting 
with the expression for the spectrum of squared frequency G(x) as a Fourier transform of a product of 
Bessel functions, the asymptotic expansions about singular points are studied. For a range of values of 
t~e ~ati<? of non~ntral to central force constants (J, simple app~oximatio~s are obtained which give quan
titative information on the spectru,?, not only very near the singular pOints, but over a substantial part 

.ofthe frequency range. For (J = t, It has been found that a cusp at x = t has been overlooked in previous 
work. In this case, essentially the entire spectrum is dominated by five singularities (at x = 0, !.i, :t, 1), 
and can be represented accurately by simple expressions. The approximations developed break down for 
very small (J, but appear to work well for ! ~ (J ~ 1. 

1. INTRODUCTION 

An earlier paperl described calculations on the 
frequency spectrum and momentum autocorrelation 
function for a simple cubic lattice with harmonic 
forces between nearest neighbors only. For equal 
central- and noncentral-force constants, extensions of 
known analytical approximations were made. These 
led to simple expressions, which were surprisingly 
effective in yielding results obtained previously by 
predominantly numerical methods. Some study has 
now been made of how well similar approximations 
describe the frequency spectrum for other ratios of 
the force constants. Since these new calculations 
have succeeded better than might have been expected, 
a brief account of them is given here. As'in the earlier 
work, the general background for the calculations 
may be found in the monograph of Maradudin, 
Montroll, and Weiss,2 or in references cited there. 

We take the ratio of noncentral- to central-force 
constants to be a, and use Eq. (2.2) of I. In terms of 
x = (W/WIY' the spectrum of squared frequency is 
then given by the Fourier transform 

G(x) = (6/17') L" cos 31](1 - 2x)F(1]) d1], (Ll) 

where 

F(1]) = J o(A1])J~[(3 - A)1]12]. (1.2) 

Jo(z) is the zero-order Bessel function of the first kind, 
and A = 3/(1 + 2a). In our considerations we 
emphasize the range 1 < A < 3, which corresponds 
to 0 < a < 1. 

1 E. M. Baroody, J. Math. Phys. 10, 475 (1969). This paper is 
referred to as I. 

• A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of 
Lattice Dynamics in the Harmonic Approximation (Academic Press 
Inc., New York, 1963). 

2. HEHA VIOR OF THE SPECTRUM NEAR 
ITS SINGULAR POINTS 

The location of the singular points of G(x) and 
information on the function very near these points 
may be obtained from the asymptotic form of F( 1]) 
for large 1]. In arriving at this information it is con
venient to apply the theory of Fourier transforms as 
presented by Lighthill.3 This may be done very directly, 
if we introduce the variable u = (3/217')(1 - 2x) 
and work in terms of the inverse transform 

F(n) = L:exp (27Tlu1])f(u) du, (2.1) 

where feu) = (7T/3)G(x) is an even function of u. 
Suppose that inf(u) there appears a pair of singular 
terms of the type 

lu - bl" R(b - u) + lu + bl" R(u + b), (2.2) 

where a. is real and nonintegral and H(z) is the dis
continuous function of Heaviside, which equals 
unity for z> 0 and vanishes for z < O. According 
to Table 1 of Ref. 3 (p.43), these terms imply a 

a M. J. Lighthill, Fourier Analysis and Generalised Functions 
(Cambridge University Press, Cambridge, England, 1958). The 
procedure which we follow here differs from that of the earlier paper 
where the Fourier transform theory was used in a formal way in 
obtaining the asymptotic behavior of the momentum autocorrela
tion function from G(x) , but not in studying the singularities of 
G(x) itself. The present procedure leads quickly to terms in G(x) 
involving fractional powers of the distance from a singularity, but 
cannot yield terms involving integral powers, since these do not 
contribute to the asymptotic behavior of F('f}). In the earlier work 
an intuitive approach was used in the study of G(x). This led to 
a term linear in (l - 3x) in Eq. (2.6) of I, a small term which 
proved to contribute consistently to the accuracy of the approxi
mation. This may be seen very clearly by a comparison with 
numerical results published recently by Jelitto [R. J. Jelitto, J. Phys. 
Chern. Solids 30, 609 (1969»). For (l - 3x) = 0.005, for example, 
Table 1 of Jelitto implies Gm - G(x) = 0.12834, while Eq. (2.6) 
ofl gives 0.12835. Without the linear term, the equation would give 
0.12885. In the present work we also looked for linear terms 
(following plausible procedures), but found none which made 
helpful contributions. 

404 
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corresponding term 

2(1X ') 
-,,---,-' -1 cos [217b1] - !17(1X + 1)] (2.3) 
I 21T1j1"+ 

in the asymptotic expression for F(1]). We may, 
therefore, recognize singular terms like (2.2) which 
belong inf(u) from an examination of 

F(1]) = [2AI(3 - A)]-1(2/7T1})! 

X {[cos (31] - 117) - 2 cos (All + 117) 

- cos [(3 - 2A)1l + 117]] + [8A(3 - A)ll]-l 

X [3(1 + A) cos (31] - ~17) 

+ 2(3 - A) cos (A1] + ~17) + (SA - 3) 

X cos [(3 - 2A)1] + {17]] + ... }. (2.4) 

This expression follows from (1.2) and the asymp
totic form of Jo(z). We keep in mind, of course, that 
the expansion does not apply for A = 0 or A = 3, 
and that results based on it are likely to be poor for A 
near these values. 

Because the spectrum satisfies G(x) = G(1 - x), 
conclusions from the above relations may be stated 
for the domain 0 ~ x ~ t. Comparison of the 
expression (2.3) with terms in (2.4) shows that, in 
specifying G(x), three regions need to be distinguished: 

A. 0 ~ x ~ Xl' 

B. Xl ~ X ~ x2 , 

C. x2 ~ X ~ !, 
where Xl = t(3 - A), and X 2 is the smaller of!(3 - A) 
and tA. The boundary points of region A, X = 0 and 
X = Xl' are always singular, the slope G/(x) becoming 
infinite as these points are approached from within 
the region. The specification of a third singular point 
depends onA. For A > t, the slope becomes infinite as 
X2 = t(3 - A) is approached from region C. On the 
other hand, for A < t. the slope becomes infinite 
as XII = tA is approached from region B. 

To complete the general picture, comments on 
three special cases are needed. For A = t, region C 
disappears and the singular point which bounds 
region B is X = t. There are a total of five singularities 
in the spectrum (rather than the usual six), and the 
central one is a double cusp, where the slope becomes 
infinite as x = ! is approached from either side. For 
). = 1, one has the case treated in the earlier paper. 
Region B disappears and the singularities bounding 
region A are at x = 0 and X = i. For A = 3 (vanishing 
noncentral forces), Eq. (Ll) involves a single Bessel 
function and G(x) = [l7xl(l - x)I]-l, the familiar 
result for a linear lattice. 

With one exception, these results on the location 
of singular points confirm those published in 1953 

by Rosenstock and Newell.4 For A = t (0" = !) the 
sketch given in their Fig. 1 fails to show the singularity 
at the point corresponding to X = t. 

As an illustration of the detailed use of Eqs. (2.2) 
and (2.3) to approximate G(x) near singular points, 
consider the term in (2.4) which includes the factor 
cos [31] - (3/217)] and corresponds to (2.3), with 
b = 3/217 and IX = t. On using (2.2) and taking account 
of multiplying constants, we see that this term follows 
from 

4[l7iAI(3 - A)]-l[1(3/217) - ul t H«3/217) - u) 

+ lu + 3/2171I H(u + 3/217)] 
inf(u), or from 

12~3[172AI(3 - A)]-l[lxll H(x) + 11 - xiI H(! - x)] 

in G(x). In this expression, the first part gives the 
dominant term in the expansion of G(x) near x = 0, 
while the second gives the corresponding term near 
X = 1. On working in this way with all the terms 
written explicitly in (2.4), we arrive at the following 
approximations for G(x) in the regions A, B, and C: 

Region A: near X = 0, 

G(x) = 12(3x)1 [1 + 3(1 + A)x + .. 'J, (2.5) 
172AI(3 - A) 21.(3 - A) 

near X = Xl = t(3 - A), 

12~2(3 - A - 6x)1 
G(x) = G(x1) - -'------:!----

172),-(3 - A) 

X [1 - (3 - A - 6x) + ... J ; (2.6) 
12A 

Region B: A > t, the slope G/(x) bounded every
where in the region, A ~ t, near X 2 = 1-A, 

G(x) = G(x ) _ 12(A - 3x)! 
2 172AI(3 _ A) 

X [1 - (SA - 3)(). - 3x) + ... J' (2.7) 
61.(3 - A) , 

Region C: A > t, just beyond X 2 = H3 - A), 

G(x) = G(X2) _ 12(3x - 3 + A)! 
172AI(3 - A) 

x [1 - (SA - 3)(3x - 3 + A) + ... J (2.8) 
6A(3 - A) , 

A < t, the slope G/(x) bounded everywhere in the 
region. 

• H. B. Rosenstock and O. F. Newell, J. Chern. Phys. 21, 1607 
(1953). We would like to thank Dr. Rosenstock for comments on 
the occurrence of the singularity at x = I. Once the question was 
raised, he could see from his methods that a cusp had been over
looked, but this omission had not come to his attention before. 
Dr. Rosenstock also kindly supplied numerical values of G(x) for 
certain points in the spectrum for the case (J = 1. 
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TABLE I. Coefficients Pi of Eq. (2.10) for two ratios of the TABLE II. Comparison of approximations for a(x) in region 
force constants. A for a = t. 

a a 

j ! ~ j ! . ! 4 

1 0.19444 0.20833 7 0.00063 0.00081 
2 0.01597 0.02344 8 0.00049 0.00060 
3 0.00360 0.00689 9 0.00039 0.00046 
4 0.00167 0.00310 10 0.00031 0.00036 
5 0.00112 0.00176 11 0.00025 0.00029 
6 0.00083 0.00115 12 0.00021 0.00024 

The leading terms in these expansions have been 
presented in a number of places in the literature, but 
less completely and explicitly than here. The second 
terms in the square brackets are probably new. 

Equation (2.1) is equivalent to the expression in
volving the Laplace transform of G(x) which was used 
in part of the calculations of the earlier paper. If 'Yj 
is replaced by ti'Yj and the variable x restored, (2.1) 
becomes 

exp (-l'Yj)Io(*A'YjiI~[T\(3 - A)'Yj] 

= L>Jexp (-'Yjx)G(x) dx, (2.9) 

which corresponds to Eq. (2.3) of I. This relation 
involving the zero-order modified Bessel function 
provides the most convenient basis for computing 
a substantial number of terms in the expansion of 
G(x) near x = O. When one wishes to determine G(x) 
accurately over all of Region A, it is also very helpful 
(as was seen in I) to replace (2.5) with an expression 
which contains a correctly divergent derivative at 
x = Xl = H3 - J.). That is, one uses 

G(x) = 1~(3x)t {3[1 - fJI(~) - f32(~)2_ ... ] 
7T2J. (3 - J.) Xl Xl 

- 2[1 - ~Jt}. (2.10) 
(3 - J.) 

Numerical values of the coefficients f3j through 
j = 12 are listed in Table I for a = t and a = t. 

3. THE SPECTRA FOR a = t AND a = t 
For a = t (J. = -i), the relationships developed 

above lead to a good description of G(x) over the 
full range 0 ~ X ~ 1. For Region A, Eqs. (2.6) and 
(2.10) work very well, as is shown by the comparison 
of several approximations given in Table II. With 
G(l) chosen to be 1.336 and only the first two terms 
in (2.6) applied, the two equations are in good 
agreement just below X = Xl = 1. In fact, G(x) is 
easily obtained throughout the region to an accuracy 
of several parts per thousand. 

x 

0.20 
0.22 
0.23 
0.24 
0.25 

From Eq. (2.10) 
Terms through Terms through 

j = 6 .i = 12 

0.820 
0.937 
1.012 
1.110 
1.3.45 

0.819 
0.936 
1.011 
1.108 
1.341 

From Eq. (2.6) 
with 

am = 1.336 

0.823 
0.939 
1.012 
1.107 
1.336 

It also turns out that the terms written explicitly 
in (2.7) lead to accurate values of G(x) throughout 
Region B. With J. = t, 

G(x) = G(t) - (4/7T2)(1 - 2x)!(1 + 2x). (3.1) 

On the other hand, from (1.1), 

G(l) = 2(2a + 1) rooJo(y/a)J~(y) dy. (3.2) 
7Ta Jo 

For a ~ t, this can be transformed to· 

GO) = [8(2a + 1)/n-3]K2(k) , (3.3) 

where k 2 = Ul - (1 - 4(2)!] and K(k) is the com
plete elliptic integral of the first kind. For a = t, 
G(t) = (16/7T3)K2(2-t ) = 1.774. Equation (3.1) should 
be an accurate approximation near X = t and become 
poorer as X = t is approached. That it is actually 
rather good throughout the region is shown by a test 
at x = t. One finds that G = 1.774 - (3~2/7T2) = 
1.344, only six parts per thousand greater than the 
value obtained above. The conclusion that G(x) is 
well described for all x is further supported by an 
evaluation of the normalization integral which gives 
1.001. The complete curve for G(x) as determined by 
our equations is given in Fig. 1. 

For a = t (J. = 2), the approximations based on 
expansions around the singular points provide a 
surprising amount of quantitative information about 
G(x), although they do not explicitly cover Region B. 
Equations (2.6) and (2.10) again work well for Region 
A and lead to G = 1.37 for x = Xl = t. In Region 
C, Eq. (2.8) gives 

2t 
G(x) = G(t) - 27T2 (3x - 1)~{19 - 21x), (3.4) 

which should be accurate just beyond x = X 2 = t. 
It is not quite correct throughout the region, of 

5 See W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and 
Theorems for the Special Functions of Mathematical Physics 
(Springer-Verlag, New York. 1966), 3rd ed .• pp. t03. 370. The state
ment on p. t03 would support (3.3) only for a < t. but further 
consideration showed that extension to the closed interval is 
justified. 
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1.5 

1.0 
G(x) 

0.5 

°0~--~0~.2~--~0~.4'---~0~.6'---~0~.8'---~LO 
X 

FIG. I. The spectrum of squared frequency G(x) for a = ! 
as given by Eqs. (2.6), (2.10), and (3.1). 

course, as is emphasized by a nonzero derivative at 
x = t. Tn view of our experience with the case a = t, 
however, there is reason to believe that it is a useful 
approximation even near x = t. It yields G(t)
G(t) = 17/47T2 = 0.431. Combining this with G(t) = 
0.988, as calculated from (3.3), gives G(!) = 1.419. 

This case is the only one which Rosenstock and 
Newell4 treated numerically. Their most relevant 
results are G(l) = 1.38, G(!) = 1.41, and G(t) = 
1.00, which are in remarkably good agreement with 
the values calculated above. In Fig. 2, the lines show 
G(x) as given by our equations for Regions A and C, 
while the crosses are the values of Rosenstock and 
Newell. 

The fact that (3.1) and (3.4) give good results 
throughout the appropriate regions of x is unexpected 
and, in part, fortuitous. Even so, when considered 
along with the earlier work for a = 1, these results 
indicate that, for t ~ a ~ 1, G(x) can be rather 

L5i~---------------

LO -
G(x) 

0.5 

x 

0.2 

u x 

OA 0.6 0.8 10 
X 

FIG. 2. The spectrum of squared frequency G(x) for a = t. The 
lines follow from Eqs. (2.6), (2.10), and (3.4). The crosses show 
the values of Rosenstock and Newell. 

accurately approximated by simple expressions arising 
from the singularities-not just very near the singular 
points themselves, but over a large part of the range 
o ~ x ~ 1. Since our approximations use the asymp
totic expansion of Jo(z) in all three factors in F( 'f]), 
they should fail for small a (A. near 3). For (J = 1, a 
case which has been treated by Montroll,6 they, in 
fact, give a very poor value of G(x2) - G(t). 
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The relation between various methods proposed recently for calculating the hot-carrier distribution 
function in semiconductors is discussed. In particular, it is shown that the method deduced heuristically 
by Rees from considerations of the stability of the steady state is an iterative prescription for solving a 
suitably chosen integral form of the Boltzmann equation. It is shown that this method is essentially an 
adaptation of Kellogg's method with additional sufficiency conditions imposed to guarantee the existence 
of a-positive solution and the convergence of the iterative process. The essential ingredient of these con
ditions is that the kernel of the integral equation be positive. It is further pointed out that the self-scatter
ing process introduced by Rees belongs to a larger class of operators that ensure the required positivity of 
the kernel. 

I. INTRODUCTION 

In a recent publication, Rees1 formulated an 
iterative method for solving the hot-carrier problem 
which is, in principle, applicable to any combination 
of scattering mechanisms. The underlying basis for this 
approach, it was claimed, was an appeal to the 
stability of the steady state. It is the purpose of this 
paper to show how these results can be derived from 
the Boltzmann equation, and in what way this work is 
related to other formulations using the integral equa
tion method. As we shall discover, the common 
feature of these formulations is that they lead to 
Fredholm equations of the second kind, for which 
there are well-known procedures for sol':ltion. Al
though we shall cite cases involving inhomogeneous as 
well as homogeneous equations, we shall discuss the 
details of a technique for homogeneous equations 
only, since this method appears to be the most 
effective for numerical calculations. 

In Sec. II we discuss the general basis for the integral 
equation method, and cite some examples of this 
approach. Sufficiency conditions for a unique, positive 
solution of the homogeneous Fredholm equation are 
stated, and a discussion of the convergence of an 
iterative method for obtaining this solution is given 
in Sec. III. We translate these conditions into restric
tions useful for the Boltzmann equation in Sec. IV by 
invoking the properties of this scattering operator. 
In the last section we show that the Rees method 
results naturally from this formalism. 

ll. THE INTEGRAL EQUATION METHOD 

Of the many and varied methods for solving the 
hot-carrier problem for arbitrary scattering processes, 
the most general have proposed numerical solutions 

1 H. D. Rees, Phys. Letters 26A, 416 (1968). 

of some suitably chosen integral form of the Boltzmann 
equation: 

~ E· Vd(k) 
Ii 

= Cf = f dk'[f(k')S(k', k) - f(k)S(k, k')]. (1) 

As written, this equation governs the steady-state 
distribution of carriers of crystal momentum k for the 
case of uniform electric field E, spatial homogeneity, 
and uniform temperature. The Fermi factors have 
been replaced by unity because we are studying semi
conductors of low enough carrier concentrations so 
that Maxwell-Boltzmann statistics apply. As will 
become clear. however, the ideas presented here may 
be extended at will to more general cases. The collision 
integral is characterized by S(k, k'), the rate of 
transition between states k and k'. The procedure, 
most generally, is then to add to both sides of Eq. 
(1) terms that are linear in f and its gradient, and so 
obtain 

~ [E + £(k)] • Vd + oc(k)f = Cf, (2) 
Ii 

where Cf represents the modified collision operator. 
The required integral form of the Boltzmann equation 
is obtained by integrating (2) along the characteristic 
curve of the partial differential operator, that is, by 
averaging over the collision-free trajectory of a particle 
drifting in the force field e[E + £]. Finally, the 
procedure for solution of the resulting integral equa
tion is an iterative one, starting from some zeroth
order approximant that is dictated in general by the 
choice of £ and the generalized relaxation time oc1(k). 
For the procedure to be practical, of course, conver-
gence must be rapid and the numerical work tractable. 

408 
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One proposal2 has been to pick E = 0 and 

(.«k) = f dk' S(k, k') == ).(k), 

for which choice Cfis the in-scattering contribution to 
the collision integral. In this case an inhomogeneous 
equation for the departure from equilibrium is 
obtained. The most convenient choice for the zeroth 
approximant is the relaxation-time solution of the 
Boltzmann equation that enters as the inhomogeneous 
term. 

Another possibiliti is to choose (.( and E from the 
zeroth and first moments of the collision operator 
with respect to the momentum transfer q = k' - k. 
In specific form this amounts to expandingf(k')/.fo(k') 
to two terms in a Taylor series about k, fo being the 
equilibrium solution. Then (.( is proportional to 
(k· E)/E, and E lies in the k direction. Tn this case a 
local solution of Eq. (2) was proposed as the starting 
solution for iteration. 

One situation where an appropriate choice for (.( 
and E leads to a one-dimensional integral equation 
well suited to accurate computer calculations was 
pointed out by Budd. 4 It occurs when, as is the case 
for nonpolar optical scattering, the interaction matrix 
element is spherically symmetric, although the process 
itself may be inelastic. If one sets E = 0 and (.(-1 = 
7'(£), the energy-dependent relaxation time with which 
the entire anisotropic part of the distribution relaxes, 
the modified collision term can be shown to depend 
only on the isotropic part of the distribution function. 
As a consequence of this simple dependence, the 
resulting homogeneous equation directly relates the 
entire distribution to its isotropic part, So. A one
dimensional homogeneous Fredholm equation for So, 
together with relations for the angular parts as 
quadratures involving So, can be immediately obtained 
by projection. 

Although in principle straightforward, the above 
considerations could lead to a time-consuming 
numerical computation. In practice, therefore, it is 
useful to develop criteria for picking the optimum 
form of Eq. (2) from the limitless class available. All 
such criteria are ultimately based on certain desirable 
properties of the kernel of the integral equation, and 
in general are of two complimentary types. The first 
type deals with simplicity in form of the kernel. The 
collision integral itself may possess special properties, 
as in the last example, but even for general collision 

2 H. F. Budd, J. Phys. Soc. Japan 18, 142 (1963). 
3 M. O. Vassell and J. K. Percus, Bull. Am. Phys. Soc., Ser. II, 

Il, 381 (1967). 
• H. F. Budd, Phys. Rev. 158, 798 (1967); J. Phys. Soc. Japan 21, 

420 (1966). 

operators it is possible to find a form (2) that makes 
the kernel the simplest possible to handle numerically. 
Criteria of the second type are usually dictated by the 
method of solution used, and are especially important 
when an iterative solution of a homogeneous integral 
equation is contemplated. The reason is that such 
schemes are inherently designed to solve eigenvalue 
problems, and could converge to different eigen
solutions, depending on the properties of the kernel, 
and the zeroth iterate chosen. However, we shall show 
in the next se~tion that, by a judicious choice of separa
tion (2), it is possible to guarantee convergence to the 
Boltzmann solution by iterating from any arbitrary 
positive function. The question might well be asked 
why it is necessary to consider eigenvalue problems, 
when in fact the transformed Boltzmann equation 
leads to an equation with known eigenvalue, whose 
eigenfunction one seeks. The answer is that alternative 
methods available (such as variational methods, 
approximation of the kernel by a degenerate kernel, 
and expansion offin a complete set offunctions) require 
in turn special intuition about the nature of the 
expected solution, detailed knowledge of the scattering 
rates in k-space, or a reasonable means of truncating 
an infinite system of algebraic equations. The iterative 
method requires only the ability to accurately com
pute integrals in k-space. 

m. THE MODIFIED KELLOGG METHOD 

In this section we discuss Kellogg's iterative method 
for solving the homogeneous integral equation, 

f(k) = P f dk'K(k', k)f(k), (3) 

its convergence properties, and the conditions on K 
and the zeroth iterate that are required in order to 
extract the desired solution. Accordingly, let us choose 
an initial approximation ()o and calculate successive 
approximations by the prescription 

()n(k) = f dk'K(k', k)()n_l(k') (4) 

for n ~ I, the aim being to repeat the process until 
satisfactory convergence is achieved. Further, let 
CPI' CP2, •.• , CPn' ••• be the eigenfunctions of K and let 
PI' P2,'" , !In'''' (with IPil < IPil, for i <j) be the 
corresponding eigenvalues. It can be shown, following 
Kellogg,5 that, if CPr is the first of the eigenfunctions to 

S See, for example, S. O. Miklin, InterlUltionai Series of Mono
graphs on Pure and Applied Mathematics. Integral Equations 
(Pergamon Press, Inc., New York, 1964), Vol. 4, p. 94. 
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which 00 is not orthogonal, the sequence of approxi
mations (4) converges to f{Jr' 6 For this reason the 
essential difficulty with this method is that, if one does 
not specify a priori whether 00 is orthogonal to a certain 
eigenfunction, it remains unknown which of the 
eigenfunctions and eigenvalues will result. To circum
vent this difficulty, we may argue as follows. It is clear 
that, if we know that 00 is not orthogonal to f{Jl' the 
smaIlest eigenvalue and corresponding eigenfunction 
will be determined. To adapt procedure (4) to our 
purposes, what has to be done is twofold: First, we 
must guarantee that the solution of the Boltzmann 
equation is f{Jl, i.e., that the lowest eigenvalue is 
f-t = 1; secondly, we must pick for 00 a function that is 
not orthogonal to f{Jl' but at once orthogonal to all 

f{Jn' n > 1. 
To fulfill these requirements, the assumed positivity 

of the Boltzmann solution proves useful. According to 
a theorem of Jentzsch,7 later refined and restated by 
Krein and Rutman,S if the kernel K is nonnegative 
and continuous except for jump discontinuities, then 
Eq. (3) has a unique positive eigenfunction, and this 
eigenfunction corresponds to the smallest of all the 
eigenvalues of Eq. (3).9 This means that, if a choice 
for or. in Eq. (2) is made so that the kernel K satisfies 
the conditions of Jentzsch's theorem, any method, 
iterative or otherwise, for calculating the eigen
function possessing the lowest eigenvalue determines 
the Boltzmann solution. For the method of interest 
to us it is sufficient to pick 00 to be any arbitrary 
positive function. 

Some of the formal arguments presented in the 
foregoing may be clarified by the following intuitive 
reasoning. If we suppose that the kernel Kin Eq. (3) 
is obtained by inverting Eq. (2) with £ = 0 but or. 
chosen arbitrarily, then, by operating on both sides of 
Eq. (3) with (ejli)E. Vk , we obtain 

~ E • Vd + or.(k)f = f-tCf = f-t(Cf + or.(k)f]. 
Ii 

Since the collisions conserve particles, and f -+ 0 
sufficiently strongly as k -+ 00 to be normalizable, 

• As originally stated, the proof of convergence is given for sym
metrical kernels and depends critically on the existence of a series 
representation for (), in terms of the eigenfunctions of K. However, a 
rigorous proof for symmetric kernels, avoiding the use of eigen
function expansions, can be found in F. Reisz and B. Sz.-Nagy, 
Functional Analysis (Frederick Ungar Pub!. Co., New York, 1955), 
p. 240. A similar treatment for nonsymmetric, completely continuous 
operators is given by H. F. Buckner, "Numerical Methods for 
Integral Equations" in Survey of Numerical Methods (McGraw-Hill 
Book Co., New York, 1962), p. 454. 

7 R. Jentzsch, J. Reine Angew. Math. 141, 235 (1912). 
8 M. G. Krein and M. A. Rutman, Functional Analysis and 

Measure Theory (American Mathematical Society, Providence, 
R.I., 1962), Trans!. Series I, Vol. 10, p. 272. 

• A more detailed statement of these matters is given in the 
Appendix. 

further integration of this equation over all k yields 
the condition 

(f-t - 1) f dkor.(k)f(k) = O. 

This implies that, provided or. and f are not mutually 
orthogonal, then f-t = 1 is an eigenvalue of K. Con
versely, for any eigenvalue other than f-t = 1, the 
corresponding eig~nfunction must be orthogonal to or.. 
Now the solution ofEq. (I), when it exists, corresponds 
to f-t = 1 and is by hypothesis positive. Thus, when 
or. is chosen to be of fixed sign, the Boltzmann solution 
is the only positive eigenfunction of the kernel K. 
It must be emphasized, however, that this condition is 
insufficient to guarantee that f-t = 1 is the smallest 
eigenvalue. In order to satisfy the latter condition, 
the class of or.'s that leads to an unambiguous deter
mination of the Boltzmann solution via Eq. (4) must 
be further restricted by the conditions of Jentzsch's 
theorem 

IV. PROPERTIES OF THE BOLTZMANN 
KERNEL 

In order to take full advantage of the results of the 
last section, it is necessary to show under what 
conditions our kernels will satisfy the conditions of 
Sec. III. In general, the scattering rate is written for a 
combination of processes belonging to two classes, 
elastic and inelastic. lO For processes that conserve 
electron energy, the principle of detailed balancing 
demands that the transition rate be symmetric, i.e., 
S(k', k) = S(k, k'). For inelastic processes, S is not 
symmetric, but by detailed balancing satisfies the 
relation 

e-Ek'lkBTS(k', k) = e·-EklkBTS(k, k'), (5) 

by virtue of which it is immediately symmetrizable. 
Furthermore, since S is essentially proportional to the 
square of a matrix element, it is positive. 

With these properties, Jentzsch's theorem may be 
immediately applied to the equilibrium case. By 
introducing the redefinitions 

f(k) = e-Ek/kBT g(k), 

A(k', k) = e-Ek'lkBTS(k', k) = A(k, k'), 

we may rewrite Eq. (1) to read 

f dk'A(k', k)[f-tg(k') - g(k)] = O. (6) 

In this case it is clear that the only positive solution is 
g(k) = const, corresponding to the eigenvalue f-t = 1. 

10 See, for example, A. C. Smith, T. F. Janak, and R. B. Adler, 
Electronic Conduction in Solids (McGraw-Hili Book Co., New York, 
1967), Chap. 7. 
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In order to discuss the general steady-state problem, 
let us first deduce the equivalent integral form for 
Eq. (2). We restrict ourselves without loss of generality 
to the choice f: = ° and oc arbitrary. Consider then the 
equation 

~ E· Vd(k) + Ol(k)f = Cf == J dk'T(k', k)f(k'), (7) 

where the modified collision operator is 

can be stated from a knowledge of the details of the 
scattering rates. It is interesting to observe that the 
quantity S(k) == oc(k) - A(k) is precisely the "self"
scattering rate introduced by Rees to simplify the 
numerical analysis, but that in our terms of reference 
S has the more essential role of ensuring positivity. 
Finally, one can easily show from Eqs. (8) and (13) 
that K is continuous except for a jump discontinuity 
when kll = kit, where kll is the component of k along 
E. 

T(k', k) = S(k', k) + [oc(k) - A(k)]b(k - k'), (8) We have shown therefore that the solution of the 
with Boltzmann equation (7), with suitably chosen Ol(k) , 

can be obtained by a convergent iterative process of 
I.(k) = J dk"S(k, k"). (9) the form (4), provided the zeroth iterate is positive. 

Now, in terms of the integrating factor eF , where Fis 
defined by 

(10) 

Eq. (7) reduces to 

V. REES'S METHOD 

Let us now apply Eqs. (4) to the integral equation 
(13). We are at liberty to introduce for an appropriate 
00 the sequence of iterated kernels P n (k', k) defined by 

(14) 

Since 

!!. E • Vk[eFf] = eFCj. 
Ii (11) The set of recurrence relations these satisfy from Eq. 

(4), i.e., 

100 

dte-pt = p-t, for Re p > 0, 

the formal solution of Eq. (10) is given by 

F(k) = {loodt exp [ - ~ E· Vk]}OC(k) 

J'oo ( et) = 0 dtoc k - hE, (12) 

where use has been made of the translation operator. 
The arbitrary constant at our disposal has been 
chosen for convenience to be F( 00) = 0, and is of no 
significance to the final result. Thus, by a similar manip
ulation on Eq. (II), by applying the result (12), and 
by inserting the initial condition.f(k) -+ 0 for k -+ 00, 

we obtain the required integral form 

f(k) =J dk'f(k') loodS exp [ - fOC(k - i E) dt] 

X T(k';k - ~E) 

== f dkl(k')K(k', k). (13) 

It is apparent that K is positive if T is nonnegative. 
Since A is by definition positive, being the integral of 
the positive function S, this is the case, for example, 
when oc(k) > A(k), although less restrictive conditions 

P ik', k) = J dk" P n-l(k', k")K(k", k), (15) 

is essentially Rees's result, except that K is further 
separated into two factors according to 

K(k", k) = J dkIllT(k", klll)Po(klll, k). (16) 

One may easily verify from Eq. (13) the following 
form for Po: 

PoCk', k) = e: exp [ - fOC(k - ~ tE) dt] 
X b(kx - k;)o(ky - k~)'f}(T). (17) 

Here T = h(kz - k~)leE, the time of flight of a particle 
drifting in the field E from k' to k, and 'f} is the unit 
step function: 

'f}(x) = 1, x > 0, 

= 0, x < O. 

When oc is the set equal to A, the probability of scatter
ing out ofk per unit time, Pf), measures the probability 
that no scattering occurs during this motion. Although 
no such physical meaning can be attributed to Po 
when oc ¢ .it, it is, however, interesting to note that 
Po is formally a Green's function defined by 



                                                                                                                                    

412 M. O. V ASSELL 

This formal property might have been anticipated 
from the fact that the transformation from Eqs. 
(7)-(13) can be achieved equivalently via Green's 
functions. 

We have thus demonstrated that Rees's method is 
essentially an adaptation of Kellogg's method to the 
Boltzmann equation. We further remark that his 
self-scattering rate is one of a number of means for 
separating the Boltzmann equation in such a way that 
the equivalent integral equation has a positive kernel. 
It must also be emphasized that, whenever an iterative 
procedure of the type (4) is used to solve the Boltzmann 
equation, it is essential to verify that the kernel 
satisfies the conditions of Jentzsch and that the 
zeroth iterate is positive. In this connection it is 
interesting to note that one of the virtues of Budd's 
method4 is that these conditions are built into the 
theory. Finally, other methods for calculating the 
smallest eigenvalue might prove useful for future 
study of the Boltzmann equation. 
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APPENDIX 

The theorem quoted below is usually stat,ed for a 
finite one-dimensional domain, but may be immedi
ately generalized to an infinite three-dimensional 

domain. It is a restatement and generalization by 
Krein and Rutman6 of a theorem of Jentzsch6 on the 
uniqueness of a positi ve solution of the homogeneous 
Fredholm equation. 

Consider the integral equation 

rp(s) = p, IbK(S, t)rp(t) dt. (AI) 

If the kernel K(s, t) is nonnegative and satisfies the 
following conditions for a ~ s ~ b: 

(i) K(s, t) is measurable and summable with respect 
to t; 

(ii) lim IbIK(S + h, t) - K(s, t)1 dt = 0; 
h-+O a 

(iii) there is an iterated kernel K(N)(s, t) such that 

f K(NJ(S, t)rp(t) dt > 0 

for every nonnegative continuous function rp(s), then 
Eq. (AI) has a unique positive eigenfunction, and the 
transposed equation 

rp(s) = ;{bK(t, s)rp(t) dt (A2) 

has a unique almost-everywhere-positive solution 
corresponding to the same positive eigenvalue. The 
eigenvalue is the smallest of all the characteristic 
numbers of Eq. (AI). 

The conditions (i) and (ii) are necessary and 
sufficient that the operator associated with the kernel 
K be completely continuous. The fact that continuity 
of the kernel itself is not required is of special im
portance to us. 
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The asymptotic behavior of the pair correlation w2(r) = (GoGr> between two spins at sites 0 and r on 
an axis of an isotropic antiferromagnetic triangular lattice is investigated with the aid of the theory of 
Toeplitz determinants as developed by Wu. The leading terms in the asymptotic expansion are obtained 
for large spin separation at fixed nonzero temperature. Evidence is presented that the zero-point 
behavior of the correlation is of the form w.(r) ~ £orl cos f7Tr, where r = Irl is the spin separation and 
£0 = 2l (E{)' = 0.632226080 ... , E~ being the decay amplitude of the pair correlation at the Curie point 
<critical point) of an isotropic ferromagnetic triangular lattice. A special class of fourth-order correla
tions Wier) = (GoG&GrGr+&> - (GoG&>(GrGr+&> between the four spins at sites 0, S, r, and r + S on the same 
lattice axis, where S is a lattice vector, is reconsidered. The asymptotic form of the correlation for large 
separation of pairs of spins r = Irl is obtained for all fixed temperatures. 

INTRODUCTION 

Recently, Wu1 has given a complete discussion of 
the asymptotic behavior of the Ising model pair 
correlation2•3 

w 2(r) = «(10(1r) 

between two spins at lattice sites 0 and r on the same 
row (or column) of a ferromagnetic rectangular 
lattice.' Wu obtained the asymptotic expansion of 
w2(r) for large spin separation r = Irl and fixed 
temperature T, in the three cases 0 < T < T c , 
T = T c, the critical temperature (Curie point), and 
T> T c. Wu's analysis of the asymptotic form of 
the Toeplitz determinant representing the pair corre
lation w2(r) is sufficiently general to permit immediate 
extension to many other cases of interest in the 
Ising model planar lattice,S with the exception of the 
antiferromagnetic triangular lattice.6 • 7 In this paper, 
the application of Wu's method is made to the special 
case of the isotropic lattice, when the function which 
generates the elements of the Toeplitz determinant 
has a different analytic form from that considered by 
Wu. The isotropic antiferromagnetic triangular lattice 
has no critical point, in the sense that the thermo-

• Research supported in part by U.S. Air Force through grant 
No. AF-AFOSR-1310-67. 

1 T. T. Wu, Phys. Rev. 149, 380 (1966). 
2 M. E. Fisher, Rept. Progr. Phys. 30, 615 (1967). 
8 C. Domb, Advan. Phys. 9, 149 (1960). 
• Along a row r = (k, 0) and along a column r = (0, k) where 

k = Irl is an integer, and the lattice vectors are used as the basis. 
I The form of the Toeplitz determinant used by Wu for pair 

correlations along a row of the quadratic lattice is that derived by 
E. W. Montroll, R. B. Potts, and J. C. Ward, J. Math. Phys. 4, 308 
(1963). 

8 A form of the Toeplitz determinant directly applicable to the 
triangular lattice is derived by J. Stephenson, J. Math. Phys. 5, 
1009 (1964). Alternatively, see Ref. 7. 

7 H. S. Green and C. A. Hurst, Order Disorder Phenomena (Inter
science Publishers, Inc., New York, 1964). 

dynamic functions have smooth temperature depend
ence, and there is no long-range order. The pair 
correlation decays to zero with increasing spin separa
tion. The asymptotic expansion is obtained in Sec. 1 
for T> 0, the main result being Eq. (1.31) with 
reference to Eqs. (1.1), (1.5), and (1.28) for definitions 
of the various symbols employed. The mathematically 
"critical" case T = 0 is considered in Sec. 2. Evidence 
is presented that the zero-point behavior of the pair 
correlation along a lattice axis is of the form 

w2(r) f'.J "or-i cos i7Tr, 

where r = Irl is the spin separation, and 

"0 = 2i(ElY = 0.632226080 ... , 

where El' is the decay amplitude of the pair correlation 
at the Curie point (critical point) of an isotropic ferro
magnetic triangular lattice [see Eqs. (2.5)-(2.9)]. 

In Sec. 3, fourth-order correlations 

w4(r) = «(10(1&(1r(1r+6) - «(1o(16)«(Jr(1r+6) 

between four spins at sites 0, 5, r, and r + 5 on the 
same lattice axis, where 5 is a lattice vector, are recon
sidered. The main result is Eq. (3.18) for the asymp
totic form of w,(r) for large spin-pair separation 
r = Irl and fixed nonzero temperature. The exact 
form of w,(r) at zero temperature is quoted in Eq. 
(3.24). 

1. PAIR CORRELATION FOR T > 0 

Consider a planar isotropic triangular lattice with 
interaction energy -J between neighboring pairs of 
spins, where J is negative. Antiparallel spin states 
are energetically preferred. It is supposed that the 
usual "thermodynamic limit" has been taken so that 
the lattice is "infinite" in two independent directions. 

413 
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The conventional notation 

K = JjkBT and v = tanh K, (Ll) 

where kB is Boltzmann's constant, will be used. Since 
J is negative, -1::;; v ::;; 0, v = 0 cor~esponds to 
T = 00, and v = -1 corresponds to T = O. The pair 
correlation w 2(r) between two spins on the same 
lattice axis may be expressed as a Toeplitz deter
minant.6.7 Since the lattice is isotropic, only one lattice 
axis need be considered. For spins on the same row, 
r = (k, 0), where k equals r = Irl and is the distance 
between the. spins measured in units of the lattice 
spacing. Then w 2(r) is equal to a Toeplitz determinant 
of order k with elements aIM = aq_ p ' p, q = 1, ... ,k, 
so 

w2(r) = det (ap.q)kXk, 

where aq_ p is given by 

(1.2) 

aq_p = (27T)-lJ:11 dwe-i(q-p)w 

X (2V(I + v2) - v2(1 - vfe+~w - (1 - v)2e-~W)~. 
2v(1 + v2) - v2(1 - v)2e-'W - (1 - v)2e+'W 

(1.3) 

Equivalently, aq_ p is the coefficient of ;q-p in the 
expansion of the generating function 

Fm = _;-1( 1 - 2v cos (j. ; + v
2e )t, (1.4) 

1 - 2v cos (j . ;-1 + V2;-2 

where (j is a real angle defined by 

cos (j = t(1 + e4K
), 0 < (j ::;; t7T. (1.5) 

(j = 0 corresponds to T = 00 and (j = t7T corre
sponds to T = O. The required expansion of the gener
ating function F(;) is made within the annulus 
Ivl < 1;1 < lvi-I. If, on the unit circle Co, we set 
; = eiw , we regain the integral form (1.3) for aq _ p : 

(1.6) 

(For the derivation of these formulas, see Ref. 6 or 
the monograph by Hurst and Green.7

) By analogy with 
Sec. 2 of Wu's paper, we set 

C(;) = -;F(;) = [(/ _-V::;;~I) (/ ~v:~~;;~l)r, 

so 

(1.7) 

PC;) = [(1 - ve+iO;)(1 - ve-iom-l , 

Q(;) = [(1 - ve+iO;)(I - ve-iomt, (1.8) 

where PC;) and Q(;) are both analytic for 1;1 < 1 < 
lvi-I, and continuous and nonzero for 1;1 ::;; 1. The 
correspondence between these formulas and those of 
Wu is immediately evident. Then, taking the result 
(2.6) from Wu's paper, we have 

W2 = Dk ",,-, (-I)kHRk+l( -xk), (1.9) 

where (_I)kHRk+l is exponentially (in k) close to its 
limit 

R = lim (- t)kHRk+l 
k-+ 00 

= (1 - V2)t(1 - 2v2 cos 2(j + V4)t. (1.10) 

R is obtained by using Szego's theorem1.5.6 to calcu
late the limiting value of the Toeplitz determinant 
generated by CC;), And (-xk ) is asymptotically given 
by 

(-xk ) ""-' (27Ti)-1 [ dUk- 1p(;-1)[Qmrl 

Joo 
= (27Ti)-1 [ d;;k-l[(1 _ veiO;-l)(1 _ ve-iO;-l) 

Joo 
X (1 - veiO;)(I - ve-iom-t, (1.11) 

where the integration contour is the unit circle Co. 
Alternatively, with; = eiw, we have 

(-xk ) ""-' (27To-1f" dw 

X eikw 1(1 - veiOeiW)(1 - ve-iOiW) 1-1. (1.12) 

The integrand in (1.11) has branch-point singularities 
at ve iO and ve-iO inside the unit circle, and at v-1e;o 
and v-1e-iO outside the unit circle. v is negative, so 
we select arg (v) = 7T and write v = Ivl ei1T

• We take 
the; plane to have a cut inside the unit circle from a 
point A: ; = Ivl ei(1T-O), along the radius AO to the 
origin 0: ; = 0, and thence along the radius OB to 
a point B:; = Ivl ei (1T+O). Here, 0 < (j < t7T. Cuts 
which must be made outside the unit circle do not con
cern us here. Now deform the contour of integration 
by contracting it onto the cut. Along OA set; = 
;1 Ivl ei(1T-O), and along OB set; = ;1 Ivl ei(1T+O) , where 
;1 is a new integration variable, 0 ::;; ;1 ::;; 1. The result 
is 

(-xk ) ""-' 7T-1
Vk 11d;I;~-1 

X {- ie-ikO[( 1 - v2;1)(1 - v2e-i26;1) 

X (1 - ei2°;11)(1 - ~1)]-t + c.c.}. (1.13) 

After slight rearrangement, 

(-x
k

) ""-' Re i27T-1vke-ikOe-i011 d;1;~ 

X [(1 - ;1)(1 - e-i2°;1)(1 - V
2;1) 

X (1 - v2e-i20;1)]-t. (1.14) 
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Now we require the asymptotic expansion 
integral J of the form 

of an 

1
1 3 

J = d~I~~(1 - ~1)-! II (1 - bi~l)-!' 
o i~l 

(1.15) 

where the b/s are unequal, bi :F 1, and Ibil ~ 1. In 
our case, 

bl = e-i20
, b2 = v2

, b3 = v2e-i28
• (1.16) 

Rearrange the factors in the products in terms of the 
combination 

( 
1 - ~1) 

X = 1 + a~l ' 
(1.17) 

where a, if real, is greater than -1, and otherwise 
is at our disposal, so 

(l - bi~l)-t = (1 + a~l)-~ G ~ :f 
x [1 + (~ ~ ::)xr!. 

Then 
3 

J = (1 + a)i II (1 - bi )-! 

where 

i=1 

X fd~l~~(1 - ~1rt(1 + a~1rlcCl; ;;J' 
(1.18) 

C(x) = IT [1 + (a + bi)xJ-i (1.19) 
t=1 1 - bi 

and has the formal expansion 
00 

C(x) = 2 C,.xr. (1.20) 
r=O 

Inserting this expansion in the integrand (1.18) and 
formally interchanging the order of summation and 
integration, we get 

.3. 3 i 
J = (1 + a)2 IT (1 - bi)-

i=1 

X r~ Cr f d~1~W - ~1r-!(1 + a~l)-r-i. (1.21) 

Now use Euler's integral representation of the hyper
geometric function,S 

3 

J = IT (1 - bi)-ir(k + 1) 
i=l 

<£) 

x 2 Cr (1 + a)-rr(r + t)r(k + r + !r1 

r=O 

x F(r + !, r + t, k + r + !; a(l + a)-I), 

(1.22) 
• Higher Transcendental Functions, A. Erdelyi, Ed. (McGraw-Hili 

Book Co., New York, 1953), Vol. I, Chap. 2. 

and formally expand the hypergeometric function: 

3 

J = IT (1 - bi)-ir(k + 1) 
i=1 

00 

x 2 Cr (1 + a)-rr(r + !r1 

r=O 
00 

x 2 [a(l + ar1]Sr(r + s + !)r(r + s + t) 
8=0 

x [f(k + r + s + !)f(s + l)rt, (1.23) 

which, after rearrangement with r + s = m, r = n, 
gives 

3 

J = IT (1 - bi)-if(k + 1) 
i=1 

00 

x L [a(1 + a)-l]mf(m + !)f(k + m + !)-l 
m=O 

m 
X L Cra-n[r(n + !)r(m - n + 1)]-1, (1.24) 

n=O 

whence an asymptotic expansion for J in fractional 
powers of k-1 may be obtained. The result is inde
pendent of a, though (i,24) conceals this, and remains 
valid even if -a equals one of the b/s. 

Several complications may arise. The series repre
sentation of the hypergeometric function in (1.22) 
may be divergent, in which case the series must be 
interpreted as an asymptotic expansion of the 
integral. This difficulty can always be avoided by 
choosing a = 0, in which case everything simplifies to 

3 

J = II (1 - bi)-if(k + 1) 
i=1 

00 

x 2 Crf(r + t)f(k + r + i)-I, (1.25) 
r=O 

which is the form we shall use. Then, in our case, 
the series expansion for C(x) diverges. The final 
expansion of J in fractional powers of k-1 is an 
asymptotic one. 

We now use these results in (1.14). It is convenient 
to abbreviate 

(1.26) 

where 

p = (I - 2v2 cos 2(J + v4)-1 (1.27) 

and 

cp = -1 arg (1 - v2 cos 2(J + iv2 sin 20). (1.28) 

Employing the asymptotic expansion (1.25) to the case 
of the integral in the expression (1.14) for (- xk ) and 
substituting the result in (1.9), we get the asymptotic 
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expansion of the pair correlation: 

W 2 "'" R( -xk) (1.29) 

,-...., (!7T sin O)-lvk Re exp [- i(kO + to - 17T - 4»] 

X ~ C
r 

f(k + l)f(r + !) . (1.30) 
r=O fmf(k + r + 2) 

Writing the first two terms in detail, we have 

W2"'" (t7T sin O)-lvk
. k-1{cos (kO + !O - 17T - 4» 

- (4k )-lH: + (2 sin 0)-1 cos (kO + to + 17T - 4» 

+ v2(1 - V
2
)-1 cos (kO + !O - 17T - 4» 

(1.31) 

The essential features of the behavior of the corre
lation are as follows: (i) an exponential decay Ivl k 

with (ii) alternating sign (_l)k modified by (iii) an 
additional k-1 decay and (iv) a slowly varying cosine 
envelope with period in k of 27T0-1 c:::: 7T Ivl-1 at high 
temperatures. The decay amplitude is (t7T sin 0)-1. 

2. PAIR CORRELATION AT T = 0 

The considerations of the preceding section no 
longer apply at T = O. The annulus in which the 
Laurent expansions of the generating functions 
F(e) and cce) are required has now contracted to the 
unit circle. The branch-point singularities have 
coalesced in pairs on the unit circle at e = e±i2~/3, and 
the procedure leading to the integral (1.11) for -Xk is 
invalid. If we pursue the previous calculation further, 
it is apparent that the integral in (1.14) for -Xk is 
divergent, and the limiting value R of (-I)k+1Rk+l 
is zero. However, OJ 2 ,....., R( -xk), and setting v = -1, 
o = 17T, 4> = -Y.27T in the leading term of the final 
asymptotic expansion (1.31) for OJ2 may yet provide 
some correct qualitative information about the 
behavior of OJ2 very close to T = 0, and perhaps 
even at T = O. (Higher terms in the asymptotic 
expansion are divergent at T = 0.) "Near" T = 0, 

which suggests that at T = 0 the essential features 
of the behavior of the correlation are (i) a k-t decay, 
with (ii) oscillating amplitude. Note that cos i7Tk is 
+1 when k is a multiple of 3, and -! for other 
integer values of k. 

From a numerical analysis of the correlation at 
T = 0, of which details may be found in Ref. 6, the 
author has previously suggested that the decay of 
OJ2 has the form 

OJ2 ,....., €ok-1 cos i7Tk, (2.2) 

where the numerical estimate of the constant €o is 

€o = 0.632226 ± 2, (2.3) 

whereas (27T-13-!-) = 0.8753 ... in (2.1). 
N ow let us try to relate the decay constant €o to the 

decay constant E'{ of pair correlations at the ferro
magnetic critical point.1 •9- ll E'{ is the only other 
available critical-point constant for the triangular 
lattice! The pair correlation OJ2 on the ferromagnetic 
lattice is equal to the Toeplitz determinant whose 
elements are generated above the critical point by 
the function5- 7 

D(~) = _e-1[( 1 - A-Ie) ( 1 - B~ )J1, (2.4) 
1 - A-l~-1 1 - B~-1 

where 0 ~ B < 1 and A > 1. [See Refs. (7) and (11) 
for the connection between the value of Band 
the lattice axis under consideration.] The ferro
magnetic critical point is given by A = 1. The 
generating function D(e) has branch-point singulari
ties at e = A ±1. There is a zero of order t at ~ = A 
outside the unit circle, and a pole of order ! at 
~ = A-I inside the unit circle. As A -+ 1 +, the 
zero and pole tend to coincidence on the unit circle at 
~ = 1. The decay of the correlation at the critical 
point is known to bell 

(° 2 ""'" ~ (1 + B)*, (2.5) 
k 1 - B. 

where 
E = 0.645002448 .... (2.6) 

\-

For the isotropic ferromagnetic triangular lattice, 

E'{ = 3-i 2! , E = 0.668618986 . . . . (2.7) 

Now compare the forms of the generating functions 
in the ferromagnetic case above as A -+ 1 +, and in 
the antiferromagnetic case as v -+ -1. The critical 
feature in the ferromagnetic case is that a zero of 
order t and a pole of order t coalesce on the unit 
circle Co at ~ = 1 as T -+ T c from above, with the 
zero approaching .; = 1 from inside Co and the pole 
approaching ~ = 1 from outside Co. The anti ferro
magnetic generating function has similar features as 
T -+ 0, v -+ -1, with coincidences of a pole and a 
zero occurring at ~ = e i211/3 and at ~ = ei47r

/
3

• In view 
of this, one might suppose that the decay constant 
€o on the antiferromagnetic lattice at T = 0 would 
be related to the square of the decay constant El at 

• B. Kaufman and L. Onsager, Phys. Rev. 76, 1244 (1949). 
10 M. E. Fisher, Physica 25, 521 (1959). 
11 R. E. Hartwig and J. Stephenson, J. Math. Phys. 9, 836 (1968). 
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FIG. 1. A ground-state arrangement of spins on an isotropic 
antiferromagnetic triangular lattice which corresponds to the expec
tation values (aoar) = w,(r) at zero temperature. The spin at site 0 
is an "up" spin (+). "Down" spins are denoted by (-:-). 

the ferromagnetic critical point. Numerical inspection 
shows that the combination 

is very close to. the estimate for lEo in (2.3). It is natural 
to guess that 

(2.9) 

The zero-point behavior of the pair correlation may 
be related to the three-sublattice structure of the 
triangular lattice. The correlations fall in groups of 
three, corresponding to the alternation in sign, being 
positive on the sublattice for which k is a multiple 
of 3 and negative on the other two sublattices. There is 
a direct correspondence between the "average state" 
apparent from the expectation values <aOur) = W 2 and 
the ground states which contribute most of the zero
point entropy,12 as discussed by Wannier (see Ref. 12, 
p. 361 and Fig. 8; Ref. 3, pp. 212-214. Also see Fig. 1 
of this paper). 

3. FOURTH-ORDER CORRELATIONS 

In this section, reconsideration is given to fourth
order correlations between a nearest-neighbor pair 
of spins at (0,0) and (l, 0) and a nearest.neighbor 
pair of spins at (k, 0) and (k + 1,0).13 All four spins 
lie on the same lattice axis. The required correlation 
function w, is given by 

w, = (UO,OUl,OUk.OUk+l,O) - (uO•Ou1,O)(Uk ,OUk+l,O) 

(3.1) 

where k > 0 is a measure of the separation of the 

IS G. H. Wannier. Phys. Rev. 79, 357 (1950). 
18 J. Stephenson. J. Math. Phys. 7, 1123 (1966). 

pairs of spins. Here ak , for all k, is given by 

(3.2) 

so the ak are the same as the elements of the Toeplitz 
determinant representing the pair correlation w2 • 

Employing the generating function F(~) in (1.3), we 
have 

Ok = (27TWl f d~~-(k+1)F(~), (3.3) 
Joo 

where Co is the unit circle. There is no pole at the 
origin if k S -1. This last expression is therefore 
most suited for calculation of a_k , k ;;::: 1: 

The calculation of ak , k ;;::: 1, will be similar to that 
for a_k • In (3.2), set w' = 27T - wand then ~ = eiw ' 

on the unit circle in the ~ plane; for k ;;::: 1 we obtain 

The asymptotic form of Ok and O_k, and thence w, , 
follows from (3.4) and (3.5) by an analysis similar to 
that used in the discussion of (-xk ) in Sec. 1. The ~ 
plane is cut inside the unit circle Co from A: ~ = ve-i8 

to 0 and from 0 to B: ~ = vei8, and the contour of 
integration contracted onto the cut AOB. Along OA, a 
new variable of integration ~1' 0 S ~1 S 1, is intro
duced through ~ = ~lve-i8 and along OB set ~ = 
~lvei8. Let us summarize the remainder of the calcula
tion. 

For a_k , 

(3.6) 

Introduce b1 , b2 , bs, p, and <p as in Sec. 1, Eqs. 
(1.16) and (1.26)-(1.28). Then 

O_k = 27T-V-1 Re {exp [-i(kfJ + t7T)]}J', (3.7) 
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where 

x D , ( 
1 - ~1) 

1 + a~1 
(3.8) 

in which the integrand has been rearranged in terms 
of the combination 

where D; are coefficients of xr in the formal expansion 
of [D(X)]-I. The leading term (r = 0) is 

ak""'" 17-i(sin O)iR-IVk+1k-i 

x cos (kO + to + i17 - cp). (3.17) 

Combining these results, for the leading term in the 
asymptotic expansion of the fourth-order correlation 
W4, we have 

x = (l - ~1)/(1 + a~l) 
(if a is real, a > -l),and 

(3.9) W 4 '" (_1)217-1
V

2kk-2 cos (kO - to + i17 + cp) 

D(x) = [1 + (~ ~ ::)Xr[l + (~ ~ ::)xr 

x [1 + G ~ ::)xr!· (3.10) 

Introducing the formal series expansion of D(x), 

<Xl 

D(x) = ~ Drxr, (3.11) 
r=O 

and using the Euler integral representation of the 
hypergeometric function, we get 

J' ,....., [(1 - b2)(1 - bs»)f(1 - b1)-tf(k) 
<Xl 

X ~ Drf(r + t)r(k + r + iY\l + arr 

T=O 

X F(r - t, r + t, k + r + !; a(l + a)-I). 

(3.12) 

For simplicity choose a = 0, insert the values of the 
bi' and observe that, from Eqs. (1.10) and (1.27), 

(1 - V2)!p-l = R, (3.13) 
thus obtaining 

a_k "" 217-i (2 sin O)-i 

X R . Vk
-

1 Re {exp [- i(kO - !O + i17 + cp)]} 
<Xl 

X ~ Drf(r + !)f(k)[f(t)r(k + r + m-1
• 

r=O 
(3.14) 

The leading term (r = 0) is 

a_k ,-." (i17 sin O)-iRvkk-i cos (kO - to + !17 + cp). 

(3.15) 

A similar calculation for ak yields 

ak'-'" 17-!(2 sin O)! 

X R-V+1 Re {exp [-i(kO + to + i17 - cp)]} 
00 

X L D~f(r + t)f(k)[f(i)r(k + r + -m-t, 
r=O 

(3.16) 

X cos (kO + to + i17 - cp) 
= ( _1)217-1

V
2klc2 

X {[sin (kOW - [sin (i17 - to + cp)]2}. (3.18) 

We note the "cancellation" of the factors Rand 
(sin O)i. 

At high temperatures, the main features of the 
correlation are (i) an exponential V2k decay, (ii) 
modified by an additional factor k-2 , together with 
(iii) a curious oscillation in sign, determined by the 
factor in curly brackets in (3.18). The correlation 
alternates regularly in sign as the separation k of the 
pairs of spins increases. The positive regions14 of the 
lattice are of approximate length (in lattice spacings) 
!:1k+, given by 

!:1k+ = (i17 - 0 + 2r/J)(O, (3.19) 

and the negative regions are of approximate length 
!:1k_, given by 

!:1k_ = (i17 + 0 - 2r/J)/O. (3.20) 

At high temperatures the correlation is very approxi
mately 

and the alternating positive and negative regions are 
of approximately equal length: 

!:1k+ = !:1L = 17/20. (3.22) 

As the temperature decreases, the regions of common 
sign shrink in length with !1k+ < !1k_, until at 
T = 0 the correlation is always negative or zero. 

The above asymptotic expansions were obtained 
for T> 0, and we cannot expect to get valid results by 
setting T = O. Nevertheless, the expression (3.18) for 
w, has the limiting form 

lim W4""'" -217-1 
. k-2(sin 117k)2, (3.23) 

T--+O+ 

and has the correct qualitative behavior, but the 
wrong decay amplitude, as we can see by comparison 

14 I.e., sets of adjacent spins along a lattice axis for which w. is 
positive. 
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with the exact (correct) result for (()4 at T = 0, which 
iSIS 

W4 = - [2(1Tk)-1 sin f1TkJ2, k '¢ 0, 

= 0, k a multiple of 3, k:;6 0, 
= -3/(11k)2, other integer values of k. (3.24) 

Numerically, for integer k, k :;6 0, 

0)4 = - [2(1Tk)-1 sin -§-rrkJ2. (3.25) 

Thus the correct decay amplitude (2/1T)2 differs from 
that obtained from lim 0)4 by a factor (2/1T). A 

T-O 
precisely similar difference occurs for the ferro-
magnetic fourth-order correlations1:! for which 

(()4""" A2kl(21Tk2), A < 1, T < T e , 

"" If(1Tk)2, A = 1, T = Te , 
,....., A-2k/(21Tk2), A > 1, T> Te. (3.26) 

The behavior of the antiferromagnetic correlation 
(()4 at T = 0 may be related to the three-sub lattice 
structure of the triangular lattice, as in the discussion 
of the pair correlation in Sec. 2. 

15 The exact formula for (1)4 at T = 0 may be obtained by setting 
v = -1 in Eq. (1.3). calculating at explicitly, and substituting the 
result in Eq. (3.1). Alternatively, see Ref. 13, Eq. (7.4). 

4. CONCLUDING REMARKS 

In this paper, formulas for the asymptotic decay of 
pair correlations (()2(r) have been obtained for fixed 
temperature when the two spins lie on the same axis 
of an isotropic triangular lattice. The oscillatory 
behavior of the correlations is peculiar to the tri
angular lattice, which exhibits one disordered phase 
over all temperatures. The qualitative form of the 
correlation is quite different from that associated 
with antiferromagnetic short-range order, which has 
osciIIatory behavior confined to a simple alternation 
of the sign (_1)k when the spin-separation vector 
r = (k, 0). It is usually supposed that the isotropic 
triangular lattice merely corresponds to an aniso
tropic triangular lattice with Neel point TN (anti
ferromagnetic critical point) at T = O. Now an 
anisotropic triangular lattice exhibits antiferromag
netic long-range order below the Neel point TN' But 
it is not immediately obvious what happens above 
the Neel point, since short-range antiferromagnetic 
order is incompatible with the oscillatory behavior 
of pair correlation derived above. The elucidation of 
this problem will be presented in the next paper of 
this series. 
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A detailed discussion of pair correlations w.(r) = (O'OO'r) between spins at lattice sites 0 and r on the 
axes of anisotropic triangular lattices is given. The asymptotic behavior of w2(r) for large spin separation 
is obtained for ferromagnetic and antiferromagnetic lattices. The axial pair correlation for the ferro
magnetic triangular lattice has the same qualitative behavior as that for the ferromagnetic rectangular 
Jattice: There is long-range order below the Curie point Tc and short-range order above. It is shown that 
correlations on the anisotropic antiferromagnetic triangular lattice must be given separate treatment in 
three different temperature ranges. Below the Neel point TN (antiferromagnetic critical point), the com
pletely anisotropic lattice exhibits antiferromagnetic long-range order along the two lattice axes with the 
strongest interactions. Spins along the third axis with the weakest interaction are ordered ferromagnetically. 
Between TN and a uniquely located tempetature T D' there is antiferromagnetic short-range order along 
the two axes with the strongest interactions, and ferromagnetic short-range order along the other axis. 
TD is named the disorder temperature because it divides the short-range-order region TN < T < TD 
from the region TD < T < 00, in which the axial pair correlations have exponential decay with tempera
ture-dependent oscillatory envelope. There is no singularity in the partition function at T D' so there are 
only two thermodynamic phases: ordered below the Neel point, and disordered above. Correlations at 
TD decay exponentially. Finally, special consideration is given to the anisotropic antiferromagnetic 
lattice when the two weakest interactions are equal, and TN = TD = O. The single disordered phase 
exhibits exponential correlation decay with oscillatory envelope for T > O. The exact values of the axial 
pair correlations at T = 0 are calculated. For large spin separation r along the strong interaction axis, 
w. = (-1)', and along the weak (equal) interaction axes 

w. """ 2'£1 . r! cos (In-r)[l - (8r2)-1 + .. 'J, 
where 

2t £2 = 0.588352663 ..• , 

and £ is a decay constant relating to pair correlations at the Curie point of a square lattice. 

INTRODUCTION 

Twenty-five years ago, Onsager1 published his solu
tion of the Ising problem2- 4 for the thermodynamic 
properties of the two-dimensional anisotropic rec
tangular lattice in zero magnetic field. Soon afterwards, 
Kaufman and Onsager5 presented an account of the 
short-range correlations6 and announced the formula 
for the long-range order parameter which is equal to 
the square of the spontaneous magnetization.? The 
first published derivation of the spontaneous mag
netization is that of Yang,S with a generalization to an 
anisotropic rectangular lattice by Chang.9 More 
recently, Wu10 has given an account of the way in 

• Research supported in part by the U.S. Air Force through 
Grant No. AF-AFOSR-J310-67. 

1 L. Onsager, Phys. Rev. 65,117 (1944). 
• E. Ising, Z. Physik 31, 253 (1925). 
3 C. Domb, Advan. Phys. 9, 149 (1960). 
• M. E. Fisher. Rept. Pro gr. Phys. 30, 615 (1967). 
• B. Kaufman and L. Onsager, Phys. Rev. 76, 1244 (1949). 
6 E. W. Montroll, R. B. Potts, and J. C. Ward, J. Math. Phys. 4, 

308 (1963). 
7 L. Onsager, Nuovo Cimento Supp\. 6, 261 (1949); B. Kaufman 

and L. Onsager, "Long Range Order" (unpublished). 
8 C. N. Yang, Phys. Rev. 85, 808 (1952). 
• c. H. Chang, Phys. Rev. 88, 1422 (1952). 

10 T. T. Wu, Phys. Rev. 149, 380 (1966). 

which the short-range pair correlation along a row of 
the rectangular lattice behaves for large spin separa
tion at various fixed temperatures. Kadanoffll has also 
calculated the general pair correlation in terms of a 
parameter linking the spin separation and the deviation 
of the temperature from the critical point. The results 
obtained for the quadratic lattice exhibit the following 
general features3 : 

(i) There is one singular point, or critical point, 
called the Curie point for a ferromagnet, and the Neel 
point for an antiferromagnet, below which there is 
long-range order, and above which there is short
range order. 

(ii) The features of anisotropic and isotropic lat
tices are similar. 

(iii) The transformation to an antiferromagnetic is 
trivial, and no new features in nonmagnetic properties 
are introduced (apart from an oscillation in sign of 
some of the pair correlations). In particular, the Neel 
point (antiferromagnetic critical point) is numerically 
equal to the Curie point (ferromagnetic critical point). 

11 L. P. Kadanoff, Nuovo Cimento, 44B, 276 (1966). 

420 
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We may contrast these qualitative features of a 
quadratic lattice with those of the triangular lattice, 
for which solutions were obtained in 1950 by a number 
of authors. I2- I4 In particular, we mention the solutions 
of HoutappeP2 for the general anisotropic triangular 
lattice, and that of WannierI3 for the isotropic lattice. 
The results obtained for the ferromagnetic triangular 
lattice exhibit the same general features as the quad
ratic lattice. However, for an antiferromagnetic lattice 
the situation is as follows: 

(i) There is one singular point which is at zero 
temperature for the isotropic lattice. 

(ii) The features of anisotropic and isotropic lattices 
are quite different. 

(iii) The transformation to an anti ferromagnet is not 
trivial in effect, and the Neel point is numerically lower 
than the Curie point of the corresponding ferromag
netic lattice. I5 The thermodynamic properties of the 
antiferromagnetic isotropic triangular lattice were 
commented on by Wannier.I3 In particular, he em
phasized the unphysical appearance of a finite zero
point entropy, and obtained its exact value. Since then 
the antiferromagnetic triangular lattice has largely 
been put on one side as a "curiosity." 

It is the purpose of this paper to examine carefully 
the properties of pair correlations w2(r) = «(1o(1r) on 
the axes of general anisotropic triangular lattices,lS.17 
with particular emphasis on the antiferromagnetic 
case. In Sec. I, triangular lattices are classified into 
two types A or D, according to whether they may be 
transformed to the completely ferromagnetic lattice or 
to the completely antiferromagnetic lattice, respec
tively. (The significance of this apparently trivial clas
sification is revealed by the end of Sec. 4.) In Sec. 2, a 
mathematically necessary classification of the gener
ating functions for the elements of the Toeplitz 
determinant representing the pair correlation is made 
[see Eq. (2.9)]. Mathematical arguments in subsequent 
sections depend on the results of Secs. I and 2. In Sec. 
3, correlations for the general ferromagnetic lattice are 
discussed in some detail. Much ofthe work is a genera
lization of Wu's results for the rectangular lattice,1O 
and is needed later. The two temperature ranges 
0< T < Tc and T> Tc and the special point T = 
Tc are considered, where Tc is the Curie point. In the 
opening paragraphs of Sec. 4, we show that corre-

12 R. M. F. Houtappel, Physica 16,425 (1950). 
18 G. H. Wannier, Phys. Rev. 79, 357 (1950). 
U For more detailed references, see Ref. 3. 
,. Corresponding ferromagnetic and antiferromagnetic lattices have 

interactions of equal magnitude and opposite sign. 
16 J. Stephenson, J. Math. Phys. 7, 1123 (1966). 
17 H. S. Green and C. A. Hurst, Order Disorder Phenomena 

(Interscience Publishers, Inc., New York, 1964). 

lations on an anisotropic antiferromagnetic lattice 
must be given separate treatment in three different 
temperature ranges and at two special points. Below 
the Neel point TN, the completely anisotropic lattice 
exhibits antiferromagnetic long-range order along 
the two lattice axes with the two strongest interaction 
energies. Spins along the third axis with the weakest 
interaction energy are ordered ferromagnetically in 
energetically unfavored orientations. A moment's 
consideration will show that this is also the way in 
which an antiferromagnetic triangular lattice attains 
its ground state. Between TN and a uniquely located 
temperature T D (Eq. 4.2), the lattice exhibits anti
ferromagnetic short-range order along the two axes 
with the strongest interaction energies, and ferro
magnetic short-range order along the other axis. T D 

is introduced here as the disorder temperature because 
it divides the short-range-order region TN < T < Tv 
just mentioned, from the region Tv < T < 00, in 
which the pair correlation has exponential decay with 
a temperature-dependent oscillatory envelope (4.18). 
Notice that the antiferromagnetic lattice exhibits only 
two thermodynamic phases: an ordered phase below 
the Neel point TN, and a disordered phase above. 
There is no singularity in the partition function at 
T D' Special consideration is given to correlations at 
TN and T D' In fact, the correlations can be evaluated 
exactly at T D [Eqs. (4.16) and (4.33)], a result which 
stems from the special form of the Eq. (4:2) 
determining T D and its graphical interpretation. 
Some special anisotropic anti ferromagnetic lattices 
are mentioned briefly in Sec. 5. Finally, in Sec. 6 the 
exact values of pair correlations at T = 0 are calcu
lated for the special anisotropic antiferromagnetic 
lattice when the two weakest interactions are equal. In 
this case TN = TIl = 0, so the Toeplitz determinants 
representing the correlations simplify, and can be 
evaluated exactly [see Eqs. (6.19) and (6.20»). Some 
concluding remarks are made about possible genera
lizations of this work. 

1. CLASSIFICATION OF ANISOTROPIC 
LATTICES 

In this paper, we consider pair correlations between 
two spins on the same axis of a general anisotropic 
triangular lattice, with interaction energies -J1 , -J2 , 

-J3 between parallel neighboring spins along row (1), 
column (2), and diagonal (3) axes, respectively [Fig. 
1 (a»). The triangular lattice may alternatively be 
thought of as a quadratic lattice with rows (1) and 
columns (2) plus a single second-neighbor interaction 
along the diagonal direction (3) [Fig. 1 (b»). For a 
completely ferromagnetic lattice the J1 , 1 = 1, 2, 3, are 
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FIG. I. (a) The tri
angular lattice and 
(b) the associated 
square lattice with a 
single second-nearest
neighbor bdnd. 

all positive, and parallel spin states are energetically 
preferred. There is no loss of generality in supposing 
that Jl > 12 > Ja > 0 in this case. For a completely 
antiferromagnetic lattice the 1l , I = 1, 2, 3, are all 
negative, and antiparallel spin states are energetically 
preferred. There is no loss of generality in supposing 
thatJl < J2 < 1a < 0 in this case, so that the diagonal 
interaction Ja is weakest. The pair correlation between 
two spins at sites 0 and r on the same lattice axis may be 
represented by a Toeplitz determinant6•l6 of order 
k, where k is a positive integer which is one greater 
than the number of lattice sites between 0 and r on the 
relevant lattice axis. Thus, for spins along row (1), 
r = (k,O) and the separation of the sites 0 and r is 
r == Irl = k, measured in terms of lattice spacings. 
For spins along the diagonal (3), r = (k, k), and the 
separation r of the sites 0 and r depends on whether the 
lattice is triangular, as in Fig. 1 (a), in which case r = k, 
or whether the lattice is square, as in Fig. ltb), in 
which case r = (2)!k. It is simplest to work in terms of 
k. The elements of the Toeplitz determinant are then 

ap.a = aa-p, p, q = 1, ... , k, (1.1) 

and depend only on the difference (q - p) of row and 
column indices. Explicit formulas for the general 
element an' with n = q - p, have been derived else
where by the present author16 and are alternatively 
available in the monograph by Hurst and GreenY If 
we use the notations 

Kz = Jl/kBT, kB Boltzmann's constant, (1.2) 

C l = cosh 2Kz and Sl = sinh 2Kl , (1.3) 

I = 1, 2, 3, then, for correlations along the (3) diagonal 
axis, we have 

1 f"d -inw =- we 
21T -" 

ClC2Sa + SlS2Ca - Ca cos w + i sin w x 
IClC2Sa + SlS2Ca - Ca cos w + i sin wi 

(1.4) 

The final subscript 3 in an(Jl, J2, J3)a refers to the (3) 
axis. Corresponding expressions for the other axes (1) 

and (2) are obtained by cyclic permutation of indices. 
Thus an is the coefficient of e-inw in the expansion of 
the generating function 

A(w) = ClC2Sa + SlS2Ca - Ca cos w + i sin w 

IClC2Sa + SlS2Ca - Ca cos w + i sin wi 
(1.5) 

The elements of the Toeplitz determinant have 
certain symmetry properties which will be useful in 
classifying the types of lattices and in reducing the 
number of cases which need be considered. These sym
metry properties are, along the (3) axis, 

an(Jl, J2, Ja)a = an( -Jl , -J2, Ja)a 

= (-l)n+lan( -Jl , J2, -Ja)3 

= (_l)n+lan(Jl' -J2 , -J3)a. (1.6) 

These formulas show that the effect of reversing the 
signs of any two oftheJl , I = 1,2,3, may be taken into 
account quite easily. For example, properties of corre
lations on a lattice with two of the J l negative may be 
obtained by transformation using (1.6) from corre
lations on a completely ferromagnetic lattice with all 
J l positive. Lattices which may be transformed to a 
completely ferromagnetic lattice in this way will be 
called Class A. On the other hand, properties of 
correlations on a lattice with one of the Jz negative 
may be derived using (1.6) from correlations on a com
pletely anti ferromagnetic lattice with all Jz negative. 
Lattices which may be transformed to a completely 
antiferromagnetic lattice in this way will be called Class 
B. It may easily be seen that these cases cannot be 
transformed into one another, and that they exhaust 
the possibilities at this level of classification. 

2. CLASSIFICATION OF GENERATING 
FUNCTIONS 

Next we classify the types of generating functions by 
their distinguishing analytic structure. To facilitate the 
classification we employ the dual and inversion trans
formations. a.ls The dual transformation relates a tri
angular lattice with parameters Kl to a honeycomb
lattice with parameters Ki given by 

e-2KI* = tanh Kl == VI' 

or alternatively, 

1= 1,2,3, (2.1) 

sinh 2Kz sinh 2K,· = 1 and cosh 2Kf = coth 2K/, 

I = 1, 2, 3. (2.2) 

18 I. Syozi and S. Naya, Progr. Theoret. Phys. (Kyoto) 24, 829, 
(1960). 
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The inversion transformation relates triangular lattices 
with parameters Kl and Kt, I = I, 2, 3, where 

e
- 4Ka + (VI + V2Va)(V2 + VIVa) d I' (23) = , an cyc lC. . 

(1 + VI V2Va)(Va + VI V2) 

Lattices for which Kl and Ki are real exhibit a phase 
change at a critical temperature given by 

IKII = IKil (2.4) 

Successive application of the inversion and dual trans
formations (the order is irrelevant) is equivalent to 
relating a triangular lattice with parameters Kl by a 
star triangle transformation to a honeycomb lattice 
with parameters Kt*. It is easy to confirm that 

cosh 2Kt* = coth 2Kt = (CI C2Sa + SIS2Ca)/Sa, 

(2.5) 

and thence rearrange expression (1.4) for the Toeplitz 
determinant element to 

1 lIT . an = - , dwe-znw 

271 -IT 
(cosh 2Kt* sinh 2Ka - cosh 2Ka cos OJ + i sin w) 

X • 
Icosh 2Kt* sinh 2Ka - cosh 2Ka cos OJ + i sin wi 

(2.6) 

Now express sinh 2Ka in terms of Va = tanh Ka, and 
multiply numerator and denominator in (2.6) by 
(1 - vi), which is a real positive quantity, to obtain 

1 fIT . . an = - dwe-znW
( - e-'W

) 

271 -IT 
(1 - vae 2K3+* eiw)(l - vae - ZK3+* e iW) 

X 1(1 _ vae 2K,+* eiw)(1 _ vae-2K3+* eiW)I' 
(2.7) 

The form of the generating function in (2.7) is con
venient for a study of correlations. Sometimes it will 
be useful to introduce an alternative notation 

A-I = V3e2K3+* and B = v3e-2K3+* , (2.8) 

so that B = (va)2A, with Re Kt* > O. Let us observe 
that cosh 2Kt* is real, and distinguish the three cases 

(a) 1 < cosh 2Kt*, 

Case (a): We may take Kt* to be real and positive. 
Then 1 < cosh 2Kt* if and only if 

(2.11) 

which, in combination with (2.10), yields 

(1 + v t v 2va)(va + v t v2) ~ (VI + VZVS)(V2 + VtVa) ~ O. 

(2.12) 

From this inequality and Eq. (2.3) we deduce that 
o < e-4K ,,+ < 1, so K{ is real and positive. 

Case (b): We may take Kt* = Re (Kt*) + ii71, with 
Re (Ki*) > 0, so 

exp (2Kt*) = (-1) exp (2 Re Kt*). 

Then cosh 2Kt* < -1 if and only if 

(2.13) 

which, in combination with (2.10), yields 

(VI + V2V3)(V2 + VI V3) 5 (l + Vt V2V3)(V3 + VIV2) 5 O. 

(2.14) 

From this inequality and Eq. (2.3) we deduce that 
1 < e-4K3 +, so Kt is real and negative. 

Case (c): We may take Kt* = iiOa, where 03 is real 
and positive. Then -1 S cosh 2Kt* = cos 03 S 1 if 
and only if 

(VI + V2VS)(V2 + VIVa) 

5 0 5 (1 + VIV2Va)(Va + VI ( 2). (2.15) 

From this inequality and Eq. (2.3) we deduce that 
e-4K3+ is negative, so Kt is complex. 

To use these inequalities, one determines which of 
them is satisfied for the lattice direction of interest and 
the temperature range under consideration, and one 
calculates Kt from (2.3) and then e2Ka+o from 

(2.16) 

(b) cosh 2Kt* < -1, 

(c) -1 S cosh 2Kt* S 1. 

(2.9) It is important to note that the above inequalities are 
unaltered on changing the signs of both J1 and J2 • 

These inequalities will now be re-expressed in terms of 
VI variables, since their significance can then be 
appreciated more easily. In the following inequalities 
the upper sign refers to the case when Va > 0, and the 
lower sign to the case V3 < O. We first note that 

(1 + V IV 2Va)(va + V IV 2) ~ (VI + V2Va)(V2 + VIVa). 

(2.10) 

3 CLASS-A FERROMAGNETIC LATTICE 
WITH J I > J 2 > Ja > 0 

In this section we consider the completely ferro
magnetic triangular lattice with JI > J2 > Ja > O. To 
determine the analytic structure of the generating 
function, observe that 1 > VI > V2 > Va > 0, so that 
the only inequalities which may be satisfied are those 
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TABLE I. 

To' Curie Point, 11, I., and 13 > 0 TD , Disorder Point, 11 < I. < I. < 0 

1 + v,v.v. 1 + VIV,V. = -VI - V, + V. 

= VI + V. + V. + v1v. + v.v. + VIV, - VIV. - V,V. + vl V. 

CIC,S. + SlS,C. = C. 
CIS,C. + SIC,S. = C, 
SlC,C, + CIS,S. = Cl 

CIC,S3 + SlS,C, = C. 
CIS,C. + SIC,S. = - C. 
SlC,C, + CIS,S, = - Cl 

ClC,S. + SlS,C, = -So 
ClS,C. + SlC,S3 = S, 
SlC,C. + ClS,S3 = Sl 

S1S2 + S.S. + S,Sl = 1 
ZlZ. + Z,Z. + ZaZl = 1 

SIS, - S.S. - S,Sl = 1 
ZlZ. - Z,Z. - Z.Zl = 1 

ClC. - C,C. - C,Cl = -1 
ZlZ, - ZlZ. - Z.Zl = -1 

of case (a) in (2.12) (upper sign). It follows that corre
lations along all three axes have the same qualitative 
features, so, without loss of generality, we consider 
only correlations in the diagonal (3) direction. Now 
K{ and Kt* are real and positive. With notational 
abbreviations as in Eq. (2.8), 

(3.1) 

we see that 0 ::;; B < 1, and that the Curie point T c 
is determined by A = I or 

(3.2) 

In rearranged form 

e-2K.+ == tanh Kt* = (1 - vs)/(1 + vs) == e-2K
., 

(3.3) 

which is equivalent to Kt = Ka. Now using the de
fining equation (2.3) for Kt, (3.3) can be written 

(1 - Va - VI V2 + v1v2va)2 = (VI + V2 + V2Va +.VSVl)2. 

(3.4) 

Taking the positive square root, we obtain the Curie
point equationl7 

1 + V1V2Va = VI + V 2 + Va + VI V2 + V2Va + VaVI' 

10 

ksT 

i¥ 
6 

To 

2'0 

(3.5) 

FIG. 2. Graphs of fer
romagnetic Curie point 
Tc, and antiferromag
netic Neel point TN, and 
disorder point TD, in 
terms of \J.\lkB vs J./IJ.I 
for various fixed values 
of JlIJ •. Graphs of To 
are in the right-hand half 
of the figure where J 3 > 
O. Graphs of TN are ex
tensions of the Tc graphs 
into the left-hand half of 
the figure where Ja < O. 
The upper curves in the 
left-hand half of the 
figure are TD curves. 
Ordering the graphs from 
the lowest, the values of 
JlIJ. for each graph are 
1.0, 1.S, and 2.0. 

which is symmetrical in VI' V2' and Va. Various 
algebraic rearrangements of this equation are listed in 
the first column of Table l. For example, in terms of 
variables 

z! = e-2KI
, 1 = 1,2,3, (3.6) 

the Curie point T c is determined from3 

Zl Z2 + Z2Za + ZaZl = 1. (3.7) 

Graphs displaying the variation of kBTC/J2 with Ja/J2 

for various fixed values of the ratio Jl /J2 are sketched 
in the right-hand half of Fig. 2. It is straightforward to 
verify the following properties of A and B over the 
temperature intervals indicated: 

T < Tc: 0 < B < A < 1, 

T = Tc: A = 1, B = (tanh Ka)2, 

T> Tc: 0 < B < A-I < 1. 

(3.8) 

The generating function for the elements of the 
Toeplitz determinant now has the same form as that 
considered by WU,lO with the notational change OC2 -

A, OCl - B. Below the Curie point the generating 
function is 

(1 - Ae-i"')(1 - Bei
"') 

1(1 - Ae-i"')(1 - Bei"')1 ' 
(3.9) 

with 0 < B < A < 1. This form of the generating 
function gives rise to ferromagnetic long-range order. 
The limiting value of the correlation is, by application 
of Szego's theorem, 

J2 = lim w 2(k, k) 
/<-+00 

= (1 - A2)t(1 - B2)t(1 - AB)-i 

= [1 - (sinh 2Kt/sinh 2Ka)2]t 

= (1 - J{,2i, (3.10) 
where 

J{,2 = [(1 - vD(1 - vi)(1 - V~)]2 , 

16(1 + ViV2Va)(vi + v 2Va)(V 2 + vavI)(va + Vi V2) 

(3.11) 
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and is symmetric in VI , V2 , and Vs • 3 is the spontaneous 
magnetization.19.20 The asymptotic approach of the 
correlation to its limiting value has been studied by 
WU,lO and the results in his paper may be taken over 
with the appropriate notational changes: 

w2(k, k) - 32",,32 A2"2[~J2[I + 0(1)J. 
27Tk 1 - A k 

(3.12) 

Above the critical point the generating function has 
the form 

-iw (1 - A-1eiW)(1 - BeiW
) 

-e 
1(1 - A-VW)(I - BeiW) I ' 

(3.13) 

with 0 < B < A-I < I, which gives rise to ferro
magnetic short-range order. From Wu's paper, the 
asymptotic form of the correlation is 

w2(k, k) "" A-k (7Tk)-l 

X (I - A-2)-i(1 - B2)t(1 - AB)-l. (3.14) 

The decay of the correlation at the critical point21 has 
been studied in detail by Wu10 and by Hartwig and the 
present author.22 For completeness, the corresponding 
result is 

w (k k) '"" E (1 + B)t 
2' kt 1 - B 

X [1 - _1 (! - B ) + ... J 
8k2 8 (1 - B)2 ' 

where 

E = exp ( -1(1 + y) - "~2 '(2:4~ 0) 

= 0.645002448 ... , 

(3.15) 

(3.16) 

and y is Euler's constant. In particular, for the iso
tropic ferromagnetic triangular lattice at its Curie 
point, A = I and B = 7 - 4(3)1, so 

w2(k, k) "" Etk-![1 + (I92k2)-1 + .. 'J, (3.17) 

where 

Et = r!2! ,E = 0.668618986' . '. (3.18) 

Since the formulas above are valid for a general aniso
tropic ferromagnetic lattice, it is clear that, by speciali
zation of the values of A and B, we may derive a variety 
of results. For example, if we set Is = ° and 

A = (sinh 2Kl sinh 2K2)-I, B = 0, (3.19) 

11 H. S. Green, Z. Physik. 171, 129 (1963). 
I. R. B. Potts, Phys. Rev. 88, 352 (1952). 
21 M. E. Fisher, Physica 25,521 (1959). 
II R. E. Hartwig and 1. Stephenson, 1. Math. Phys. 9, 836 (1968). 

then the above formulas are valid for correlations 
along the diagonal direction of a quadratic lattice. 

In summary, we note that Class A lattices exhibit a 
Curie point Tc which divides the temperature range 
o < T < 00 into two regions. Below Tc there is ferro
magnetic long-range order and above Tc there is ferro
magnetic short-range order. 

4. CLASS-B ANTIFERROMAGNETIC 
LATTICE WITH J1 < J2 < Ja < 0 

In this section we consider the completely anti
ferromagnetic triangular lattice with 11 < 12 < la < o. 
To determine the structure of the generating function, 
observe that -I < VI < V2 < Vs < 0, so that only 
lower inequalities in (2.12), (2.14), and (2.15) need be 
considered. It is especially important to observe the 
sign of e-4K3+ in Eq. (2.3): 

e-4K3+ (VI + V2Va)(V2 + VIVa) 

(1 + VI V2Va)(va + VI V2) 
(4.1) 

The choice of 11 < 12 < Is < ° leads to the following 
conclusions. The factors (VI + v 2Vs) and (V2 + VIVa) 

are negative at all temperatures. The sign of the factor 
(va + V1V2) depends on temperature, for the equation 

(4.2) 

must be satisfied at some temperature T D, above 
which (va + VIV2) is negative, and below which it is 
positive. We shall call T D the disorder point· (D == 
disorder). When T> T D, e-4K3+ is negative and case 
(c) in Sec. 2 holds. When T < T D, the lower inequality 
(2.14) of case (b) holds. Therefore, when T < TD , K;t 
is real and negative, and K;t* = Re (K;t*) + ti7T with 
Re (K;t*) > 0, so, with notational abbreviations ana
logous to those of Eq. (3.1), 

A;I = Va exp (2K~*) = (-l)va exp (2 Re K~*) (4.3) 

and Ba = v~Aa, we have 0 < Aa < 00 and 0 < Ba < 
I. The Neei point TN (antiferromagnetic critical point) 
is determined by Aa = I, or 

(4.4) 

In rearranged form, 

e-2K3+ == tanh K~* = (1 - va)f(1 + va) == e-2Ks, 

(4.5) 

which is equivalent to Kt = Ka. Now using the 
defining equation (2.3) for K;t, (4.5) can be written 

(1 - Va - l'IV2 + V1V2Va)2 = (VI + V2 + V2VS + VaVl)2, 

(4.6) 
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or 

Taking the (numerically) positive square root, we 
obtain the Neel-point equation17 

I + V1V2Va 

= -VI - V2 + Va + V1V2 - V2l'3 - V3Vb (4.8) 

which is symmetrical in VI and V2 , and may be re
arranged in the three forms 

- (VI + (2)(1 + Va) = (I - va)(l - V 1( 2), 

(Va - ( 2)(l - VI) = (I + (1)(1 + V21'a), (4.9) 

(V3 - 1'1)(1 - v2) = (I + v2)(1 + V1V3), 

which are satisfied if and only if J1 , J2 < Ja < O. 
Various other algebraic rearrangements of this equa
tion are listed in the second column of Table I. For 
example, in terms of Z! variables in Eq. (3.6), the Neel 
point TN is determined from 

(4.10) 

Equation (4.2) which determines T]) may also be 
expressed in terms of z! variables: 

(4.11) 

There is a remarkable. "similarity" between the equa
tion determining the Curie point Tc of a ferromagnetic 
lattice (3.7), and Eqs. (4.10) and (4.11) above deter
mining the Neel point TN and disorder point T D of an 
antiferromagnetic lattice. Equation (4.11) for T D 

may be rearranged in the three ways 

1 + Z1Z2 = Za(ZI + Z2), 

1 - zlza = Z2(Za - ZI)' 

1 - Z2Za = ZI(Za - Z2), 

(4.12) 

which have a solution if and only if Ja is the weakest 
interaction and is negative. Various other algebraic 
rearrangements of Eq. (4.11) for TD are listed in the 
third column of Table I. Graphs displaying the varia
tion of kBT N/IJ21 and kBT D/IJ21 with J3/1J21 for various 
fixed values of the ratio J11J2 are sketched in the left
hand half of Fig. 2. 

Thus, for the anisotropic antiferromagnetic tri
angular lattice, we must consider correlations sepa
rately in the three temperature regions 0 < T < TN, 
TN < T < T D , and T D < T < 00, and at two special 
points TN and T D' However, as we shall see later, the 
lattice is ordered below TN and disordered above TN, 

so there are only two thermodynamic phases. The 
equations determining TN and T D were obtained using 
inequalities derived in Sec. 2 for correlations along the 
diagonal (3) direction of the triangular lattice, but the 
same equations and the division of the whole tempera
ture range 0 < T < 00 into three regions arise also 
from analysis of correlations along the other lattice 
axes. In fact, alternative definitions of TN and T D can 
be given independent of the correlations, though this 
point is not considered further here. 

A. Pair Correlation Along Diagonal (3) Axis 

The interaction Ja in the diagonal direction is 
weakest, and the behavior of the pair correlation in 
this direction is quite different from that along the 
other two axes. There are three temperature ranges and 
two special points TN and T D to consider. 

Case 1: 0 < T < TN' Using the variables A 3 and 
B3 defined in Eq. (4.3), we observe, when 0 < T < TN, 
that 0 < Ba < A3 < 1. The generating function (2.7) 
now has the same form as that in Eq. (3.9), which was 
derived in Sec. 3 for a ferromagnet below its Curie 
point. Although J3 is negative, there is ferromagnetic 
long-range order below TN, and the pair correlations 
along the (3) axis are all positive. The long-range 
order parameter 

(4.13) 

is given by Eq. (3.10). 

Case 2: T = TN' Now Aa = 1 and 0 < B3 < 1, so 
that Eqs. (3.15) and (3.16) determine the behavior of 
the correlation. The Neel point may be "low" for an 
antiferromagnetic lattice (Fig. 2), so the decay ampli
tude of the critical point correlation in the (3) direction 
may be "large." 

Case 3: TN < T < T D' rn this temperature range, 
1 < Aa < 00 and 0 < Ba < 1. From Eqs. (3.13) and 
(3.14), we deduce that there is ferromagnetic short
range order. If the two weakest interactions Ja and J2 

are comparable in strength, then TN and T]) are "close" 
together (Fig. 2), and the short-range order region is 
"small." Note that, below T D, the pair correlations 
along the (3) axis are all positive and decrease monot
onically with increasing spin separation. Ja is the 
weakest interaction, and below T D its effect is swamped 
by the stronger interactions J1 and J2 • As T ->- T D 

from below, (va + V1V2) ->- 0 from above, and Ki->
- 00. The inversion lattice, which is antiferromagnetic 
along its (3) direction, has reached absolute zero! 
Also A;-l = v3e2K3+* ->- -Va and Ba ->- -Va, so the 
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asymptotic formula (3.14) for the correlation between 
T x and T D breaks down. 

Case 4: T = T D' T D has been called the disorder 
point because it separates two disordered regions, in 
contrast to the Neel point which separates regions of 
long- and short-range order. At T D the generating 
function (2.7) now simplifies to 

(4.14) 

whence the Toeplitz determinant elements an are 

an = 0, n ~ 1, 

ao = -Va, (4.15) 

an = -( -var-1(l - vi), n ~ -l. 

The Toeplitz determinant is trivial to evaluate at T D, 

and the exact value of the correlation is 

(4.16) 

which represents exponential decay. It is interesting to 
note that the zero-field pair correlation between two 
spins separated by a distance k on a linear chain with 
interaction energy -J is just vk

, where 

v = tanh (J/kBT).2a 

Case 5: T> T D. The factor (vs + V1V2) is negative, 
e-4K3+ is negative, and case (c) in Sec. 2 holds. Set 
Kf = ilOs, where Os is real and positive. The gener
ating function (2.7) is now 

-iw (1 - vaei83eiW)(1 - vse-i83ei"') 
-e (4.17) 

1(1 - vaei93eiW)(1 - vae-i93ei"')1 ' 

and has the same form as that considered by the 
present author in the preceding paper of this series24 

in a discussion of pair correlations for the isotropic 
antiferromagnetic triangular lattice. The calculation 
there is general enough so that it can be taken over to 
the present case with the notational changes v -+ Va 

and (J -+ Oa. The asymptotic form of the correlation is 
[quoting the leading term only from Eq. 0.31) of Ref. 
24] 

w 2(k, k) ""' (l7T sin (3)-iv~k-i 

X cos (kOa + lOs - 17T - cPa), (4.18) 
where 

cPa = -t arg (1 - v: cos 20a + iv: sin 20a) (4.19) 

28 J. S. Marsh, Phys. Rev. 145, 251 (1966). 
"J. Stephenson, J. Math. Phys.ll, 413 (1969) (preceding article). 

and Os is the real angle lying between ° and 7T deter
mined by 

(4.20) 

The exponential decay with oscillatory envelope of the 
pair correlation is characteristic of the triangular 
lattice above its T D point. Figure 3 displays graphs of 
Oa vs a temperature variable k B T/IJ2 1 for various fixed 
values of J3/J2 in the special case when J1 = J2 • Now 
cos 03 = cosh 2K;t* = coth 2K;t, so at T D, OS = 7T. 
Then, as T increases from T D to 00, Oa decreases from 
7T to 0, achieving the value t7T at a temperature 2T D' 

Notice that the nearest-neighbor pair correlation 
vanishes at 2T D, and is positive for lower tempera
tures. 

B. Pair Correlation along Row (1) Axis 

While discussing correlations in the (1) direction 
with the strongest interaction J1 , we shall refer to 
formulas in Sec. 2 and make the appropriate cyclic 
permutation of subscripts 3 -+ 1, 2 -+ 3, 1 -+ 2, in 
them. For the (1) direction 

e-4K1+ = (V2 + VaVl)(Va + V2Vl) (4.21) 
(1 + V1V2Va)(VI + V2Va) 

When T> T D, the factor (va + V 2V 1) is negative, so 
e-4K1+ is negative, and case (c) in Sec. 2 holds because 
the cyclic permutation of the lower inequality in (2.15) 
is satisfied: 

(V2 + V3V1)(V3 + V2Vl) 

> ° > (1 + V1V2Va)(VI + v 2v a). (4.22) 

When T < T D, the cyclic permutation of the lower 
inequality in (2.12) is satisfied: 

(1 + V1V2Va)(Vl + v 2v a) 

< (V2 + VaVl)(Vs + V2V1) < 0, (4.23) 
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and we refer to case (a) in Sec. 2, where Kt* and Kt 
are real and positive. With notational abbreviations 
analogous to those of Eq. (3.1), 

and 

(4.24) 

we have - 00 < Al < 0 and -1 < Bl < O. The Neel 
point TN is determined by Al = -1, or 

2Kl+* 1 vIe = - . (4.25) 

In rearranged form 

e-2K1
+ == tanh Kt* = (1 + vI)/(1 - VI) == e+2Kr, 

(4.26) 

which is equivalent to Kt = - K1 • Now using the 
defining equation (4.21) for Kt, we can write (4.26) as 

(1 + VI + VzVa + v1vzVa)2 

= (-V2 + Va - V3V1 + VIV2)2, (4.27) 
or 

[(I + Vl)(1 + V2VS)]2 = [(1 - vJ(va - V2)]2. (4.28) 

Taking the (numerically) positive square root, we 
re-obtain the Neel-point equation (4.8). This checks 
the consistency of determining the Neel point from 

IKil = IKzl, 1= 1,2,3. (4.29) 

Now let us determine the asymptotic form of the pair 
correlation in the three temperature ranges 0 < T < 
TN, TN < T< Tn, Tn < T< 00, and at the two 
special points TN and Tn. It turns out that corre
lations in the (1) direction, with the strongest inter
action J1 , have the expected antiferromagnetic form 
below T D • 

Case 1: 0 < T < TN' Using the variables Al and 
Bl defined in Eq. (4.24), we observe, when 0 < T < 
TN, that -1 < Al < BI < O. The generating function 
in (2.7), with subscript 3 replaced by 1, now has the 
same form as that in Eq. (3.9), which was derived in 
Sec. 3 for a ferromagnet below its Curie point, except 
that Al and BI are now negative. There is antiferro
magnetic long-range order below TN, and the long
range order parameter 

(4.30) 
k .... oo 

is given by Eq. (3.10) again, since 

( -1) sinh 2Kt = (-1) sinh 2Kt = sinh 2Kt = J(, 

sinh 2KI sinh 2K2 sinh 2Ka ' 

(4.31) 
where J(, is the positive root of Eq. (3.11). 

Case 2: T = TN' Now Al = -I and -1 < BI < 0 
so that Eqs. (3.15) and (3.16) determine the behavior 
of the correlation. If the Neel point is "low," then the 
decay amplitude of the critical point correlation in the 
(1) direction will be "small." 

Case 3 : TN < T < T D. In this temperature range, 
- 00 < Al < 1 and -1 < BI < O. From Eqs. (3.13) 
and (3.14), we deduce that there is antiferromagnetic 
short-range order. Note that, below T D, the pair 
correlations along the (1) axis alternate in sign (_)k 
and decrease monotonically in magnitude with in
creasing spin separation. As T --+ T D from below, 
Kt--+ 00. 

Case 4: T = T D' At T D the generating function 
for the (1) direction now simplifies to 

_e-iro ( 1 - VIeiro), 
1 - vie-tro 

and the exact formula for the correlation is 

(4.32) 

(4.33) 

Case 5: T > T D' Above T D, the factor (va + V1V2) 

is negative, r 4K1+ is negative, and the inequality (4.22) 
holds. Set Kt* = i!81 , where 81 is real and positive. 
The generating function now has the same form as 
Eq. (4.17), with subscript 3 replaced by 1. Accordingly, 
the asymptotic form of the pair correlation is given by 
(4.18) and (4.19) with subscript 3 replaced by 1, and 
81 is the real angle lying between 0 and TT determined by 

(4.34) 

Figure 4 displays graphs of 81 vs the temperature 
variable kBT/IJ2I for various fixed values of JS/J2 in 
the special case when J1 = J2 • Now cos 81 = 
cosh 2Kt* = coth 2Kt, so at T D, 81 = O. Then, as T 
increases from T D to 00, 81 increases to some maximum 
value, which must be less than iTT, since e-4K1+ is finite, 
and subsequently decreases to zero again at T = 00. 

FIG. 4. Graphs of 'If 

£lr vs kBT//I./ for T 
various fixed values 
of 1./1. in the special 
case/1 = I. < O. Or
dering the graphs 
from the lowest, the 
values of 1./1. for 
each graph are: 0.5, 
0.7,0.8,0.9,0.95, 1.0, u.J....l...J,~-L..~_~_~_~O 
1.05, 1.1, 1.2, 1.5, 2.0. 0 3 4 5 

keY'J2' 
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Correlations in the (2) direction with intermediate 
strength interaction J2 have the same qualitative 
features as those in the (1) direction. Formulas for 
this case may be obtained by an appropriate cyclic 
permutation of subscripts. At T D, the correlations 
decay exponentially along the lattice axes, in a form 
suggesting that the spins along the lattice axes behave 
like "linear chains." 23 

5. SPECIAL CASES OF ANISOTROPIC 
ANTIFERROMAGNETIC LATTICES 

In special limiting cases, the three-region lattice, 
with finite TN and T D points, may lose one or two of 
its regions. So far we have retained J1 < J2 < J3 < O. 
In the trivial special case J3 = 0, we regain the 
anisotropic antiferromagnetic quadratic lattice (T D = 
(0) which has two phases. Now suppose we fix J1 and 
J2 , and increase the strength of Ja. While J2 < Ja < 0, 
the lattice exhibits three regions. When Ja --+ J2 + <0, 
T D --+ o. The antiferromagnetic ordered and disordered 
regions below T D are eliminated, and only the single 
triangular lattice type disordered region remains. 
Trivially TN = T D = 0, as is shown by Eqs. (4.9) and 
(4.12). Once Ja < J2 < 0, the J2 interaction becomes 
weakest and the (2) and (3) directions interchange 
roles. The three region lattice system returns, and 
TN and T D rise again from T = o. Increasing IJal 
further, past IJ11 for example, does not alter the situa
tion in a qualitative manner. In the more special case 
when J1 = J2 < 0, a three-region system is obtained 
when J1 < Ja < O. The lattice obtained when Ja < 
J1 = J2 < 0 has one phase of triangular lattice type 
disorder with TN = T D = 0, and is considered in 
more detail in the next section. For details in the case 
of the completely isotropic lattice, see Ref. 24. 

Another case of some interest is when J1 > J2 > 0 
and Ja < 0, which we may regard as that of a 
ferromagnetic quadratic lattice with a single second
neighbor antiferromagnetic interaction Ja• The for
mulas of Sec. 4 show that the (3) direction correlation 
is unaltered by changing the signs of J1 and J2 • The 
modification to the discussion of correlations in the (1) 
and (2) directions consists in deleting the "anti" from 
antiferromagnetic, which is equivalent to using the 
transformation properties expressed in Eq. (1.6). 

6. CLASS-B ANTIFERROMAGNETIC LATTICE 
WITH Ja < J1 = J 2 < 0 

The distinguishing feature of this special case is that 
the two weakest interactions J1 and J2 are equal. From 
Eqs. (4.9) and (4.12), the Neel point TN and disorder 
point T D are at zero temperature, and the lattice 
exhibits one phase of triangular-lattice-type disorder. 

The asymptotic behavior of the pair correlations along 
a lattice axis I, 1 = 1,2,3, is determined over the whole 
temperature range 0 < T < 00 by 

w2(r),....., (t17 sin 8!)-tv~k-t cos (k8, + t81 - t17 - CPI)' 

(6.1) 

obtained by generalizing Eq. (4.18) to an arbitrary 
lattice axis I, where 

CPI = - t arg (1 - v~ cos 28! + iv~ sin 28!), (6.2) 

and 8! are real angles for T > Tn defined by 

cos 8a = (C1C2Sa + SIS2Ca)/Sa, and cyclic. (6.3) 

In the special case under consideration here, Ja < 
J1 = J2 < 0, so 

cos ()a = 1 + S~e2K3/S3 (6.4) 
and 

cos ()1 = cos ()2 = C1e
2K3

• (6.5) 

The formula (6.1) was derived in Sec. 4 (see Ref. 24) 
under the assumption that 0 < Iv!1 < I for T> 0, 
and is invalid at T = O. The remainder of this section 
is devoted to obtaining the exact values of the pair 
correlations along the lattice axes at T = o. The (1) 
and (2) axes are equivalent since J1 = J2 , but the (3) 
axis must be treated separately. 

First we need the properties of 83 and 81 = 82 , 

which are displayed in Figs. 3 and 4, where graphs of 
()a and 81 as functions of a temperature variable 
t = kBT/lJ2 1 are sketched for various fixed values of 
Ja/J2 with J1 = J2 • For the isotropic lattice, set 
81 = 82 = 8a = (). () has the zero-point value 117, and 
the curve of 8 vs t for the isotropic lattice divides the 
curves of ()a and ()1 vs t into two classes accordingly 
as Ja ~ J2 = J1 • The zero-point values of 8a and 
()I = ()2 when Ja < J2 = JI < 0 are 

lim ()3 = 0 (6.6) 
T .... O 

and 

lim 81 = t17. (6.7) 
T .... O 

It is important to note that limiting processes T --+ 0 
and Ja --+ J2 = J1 are not interchangeable, and from 
the results of this section we cannot deduce any 
corresponding results for the isotropic lattice.24 

A. (3) Direction at T = 0 

Let 8a = 0 and V3 = -1 in Eq. (4.17) for the ele
ments of the Toeplitz determinant representing the 
pair correlation. Then 

ao = -1, an = 0, n "'" 0, (6.8) 
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so the exact zero-point value of the correlation along In detail, 
the (3) axis is 1 -1 -t __ t 

5 

(6.9) 

corresponding to a rigid arrangement of spins in 
regular antiferromagnetic order, alternately up and 
down [compare Eq. (4.16) for the correlation at T D, 

and note that the present result (6.9) is not obtained 
by setting T D = 0 in (4.16)]. This arrangement is to be 
expected at T = 0 because, when la < 12 = 11 < 0, 
13 is the strongest interaction, and the ground state of 
a triangle of spins has energy - 1131. That is, all rows 
of spins in the (3) direction achieve antiferromagnetic 
order like a set of linear chains. For a lattice of N 
spins, there will be O(N!) chains of spins in the (3) 

direction, which may be arranged in 20CY }) ways 
compatible with the ground state, so there is no zero
point entropy per site for an infinite lattice. 

B. (1) Direction at T = 0 

Spins along the (1) and (2) axes have similar prop
erties since 11 = 12, Set 01 = t?T and VI = -1 in the 
generating function for the (1) direction obtained by 
making the appropriate modification of Eq. (4.17); 
replace the subscript 3 by 1. Then 

an = (-1)!(n-l)[-2/(?Tn)], n odd, 

= 0, n even. (6.10) 

Since a1J •Q = aq- 1J = 0 when p and q are both odd or 
both even, 

w2(k,0) = det (aM)kXk = 0 for odd k. (6.11) 

In particular, the nearest-neighbor correlation is zero 
in the (1) direction. For even spin separation, set 
k = 2m. The k X k Toeplitz determinant can be re
arranged by m2 row and column transpositions to the 
form 

(-I)mdet (B~ 0) = (-I)m(det Bm)2, (6.12) 
o Bm 

where Bm is an m X m matrix whose (i,j) element 
bij is equal to a(2i.2i-l)' Explicitly, 

2 (_l)i-i-l 
bi • i = - -; [2U _ i) _ 1]' i,j = 1,"', m. (6.13) 

Now multiply the even numbered rows and columns 
of Bm by -1, and extract a factor - 2/?T from each 
element to obtain a new matrix Cm whose determinant 
det em = (_t?T)m det Bm , and whose elements are 

Ci .1 = [2(i - j) + 1]-1, i,j = 1, ... ,m. (6.14) 

t -1 -i 
1 t -I 5 

1 1 .1 (6.15) "f -5 3 

mxm 

But Cm is precisely the Cauchy matrix which appears 
in the calculation of the pair correlation in the diagonal 
direction of a ferromagnetic square lattice at its Curie 
point.5.1o.21.22 lts determinant may be calculated ex
actlyas 

d C = TIm r(s)r(s) 
ct m , 

s~1 res - t)r(s + t) 
(6.16) 

and asymptotically for large m as 

')mE( 1 ) det em ""-' (~ - 1 - -- + ... , (6.17) 
2 mf 64m 2 

where E = 0.645002448 is given by Eq. (3.16). For 
even spin separation k = 2m, we therefore have 

w2(2m,0) = (_I)m[ (~r det Cm r 
E2 [ 1 ] ",,-,(-I)mm! 1-

32m2
+···· ( 6.18) 

Finally, combining the results for odd and even spin 
separation k, we have 

w2(k,0) = cos (t?Tk)[(~)!k ii r(s)r(.~) J2 
?T 8=1 res - t)r(s + t) 

""-'2~E2k-~cos(t?Tk)[1 - (8k2)-1 + ... ], 
(6.19) 

where 
2!£2 = 0.588352663 . . . . (6.20) 

The above results are exact. Qualitatively, they are 
just what one gets by setting 01 = t?T in (6.1) and 
letting VI -+ -1, an invalid procedure! There is a 
curious similarity ofform between Eq. (6.20), obtained 
here for pair correlations along the (1) direction when 
13 < 11 = 12 < 0, and that for pair correlations at 
T = 0 on the isotropic antiferromagnetic triangular 
lattice24 : 

w 2(k, 0) ""-' Eok-! cos (i?Tk). (6.21) 

The exact value of EO is plausibly conjectured to be 

EO = 2i(Eifl = 0.632226080' .. , (6.22) 

where Ei[ is the decay amplitude of the pair correlation 
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at the Curie point of an isotropic ferromagnetic tri
angular lattice, as in Sec. 3, Eqs. (3.17) and (3.18). In 
particular, note the appearance in (6.20) and (6.21) of 
a decay amplitude related to the square of a ferro
magnetic critical point decay amplitude. This gives 
one additional confidence in the conjectured value of 
EO in (6.22). 

7. CONCLUDING REMARKS 

The most important and interesting results obtained 
in this paper are those for the asymptotic behavior of 
pair correlations along the axes of a two-dimensional, 
antiferromagnetic, anisotropic, triangular, Ising lattice. 

The italicized words indicate five features which in 
conjunction determine the correlation properties we 
have derived here. It would be interesting to know 
whether the results we have obtained can be generalized 
to other antiferromagnetic lattices. The occurrence of 
a disorder point Tn, as we have defined it (4.2), is 
related to the existence of triangles in an anisotropic 
lattice. For this reason we may expect some of the 
present considerations to carryover to an antiferro
magnetic Kagome lattice, for example, and possibly 
also to some three-dimensional lattices, such as the 
hyper-Kagome, hypertriangular, and face-centered 
cubic. 
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An abstract definition of a general hidden-variables theory is given, and it is shown that such a theory 
is always possible in the present framework of quantum mechanics and is, in fact, unique in a certain 
sense. It is noted that the Bohm-Bub hidden-variables example is contained in this theory and an attempt 
is made to clarify the position of this theory with respect to hidden-variable impossibility proofs. The 
general definition is used in the consideration of quantum-mechanical ordering and the measurement 
process. 

1. INTRODUCTION 

The idea that there is a possibility of a hidden
variables (HV) theory in quantum mechanics is 
almost as old as quantum mechanics itself. The 
first mathematical refutation of even the possibility 
of an HV theory in quantum mechanics was given by 
von Neumann in 1932.1 However, the proponents of 
hidden variables dispensed with this refutation for 
various reasons and continued their insistence. 
Recently this has spurred a rash of new proofs con
cerning the impossibility of HV theories. 2- 6 Strangely 
enough, there have also appeared explicit examples of 
HV theories.7 Clearly there is something wrong here. 
One obviously cannot have an HV theory if it is 
impossible; yet the originators of these impossibility 

1 J. von Neumann, The Mathematical Foundations of Quantum 
Mechanics (Princeton University Press, Princeton, N.J., 1953). 

2 J. Jauch and C. Piron, Helv. Phys. Acta 36, 827 (1963); S. 
Gudder, Proc. Am. Math. Soc. 19, 319 (1968). 

3 See, for example, J. Turner, J. Math. Phys. 9, 1411 (1968). 
4 N. Zierler and M. Schlessinger, Duke J. 32, 251 (1965). 
• S. Kochen and E. Specker, J. Math. Mech. 17,59 (1967). 
• B. Misra, Nuovo Cimento 47, 843 (1967). 
7 D. Bohm, Phys. Rev. 85, 166, 180 (1952); D. Bohm and J. Bub, 

Rev. Mod. Phys. 38, 453 (1966). 

proofs have not explained the reason for this dis
crepency. The problem, in the author's opinion, is 
in the definition of an HV theory. The proponents of 
HV theories have an idea of what these theories 
should be and have given examples of such theories. 
The antagonists have a different idea of what an HV 
theory should be and have proved that such theories 
are impossible in the present general framework of 
quantum mechanics. These proofs are irrelevant 
since they do not refer to the HV theories as formu
lated by the advocates of these theories, and this point 
is stressed in a paper by Bub.8 These proofs put 
much more stringent requirements on the HV theories 
than the HV researchers need or want for their 
theories. The opponents seem to think that the HV 
researchers advocate a return to classical mechanics 
or at least an embedding of quantum mechanics into 
a classical mechanical framework. However, this is not 
so. As the author sees it, the HV advocates feel that 
it is within the realm of possibility for determinism 
to be introduced in quantum mechanics. As a result, 

8 J. Bub, Intern. J. Theoret. Phys. (to be published). 
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crepency. The problem, in the author's opinion, is 
in the definition of an HV theory. The proponents of 
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a classical mechanical framework. However, this is not 
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8 J. Bub, Intern. J. Theoret. Phys. (to be published). 
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it may be possible to construct a measurement 
process describing the "collapse of the wavefunction," 
and as a by-product make von Neumann's projection 
postulate unnecessary. In this paper the author gives a 
general definition of what he feels an HV theory 
should be and proves that, in the present framework 
of quantum mechanics, such a theory is always 
possible and is, in fact, unique in a certain sense. 
This strengthens the results of previous authors who 
have given examples of such theories in specific 
circumstances. It also has the advantage of placing 
HV theories into an abstract framework so that the 
general properti.es of all such theories can be con
sidered. 

2. IMPOSSIBILITY PROOFS 

Let us briefly consider some of the proofs of the 
impossibility of an HV theory. Some of these proofs 
have already been criticized,9 but the author feels that 
he has a slightly different approach; and, furthermore, 
there are a few points that should be emphasized to 
motivate the present HV construction. 

Von Neumann10 claims that an HV theory would 
imply the existence of dispersion-free states (we shall 
give precise definitions in the next section) on the 
system of quantum-mechanical propositions. These 
propositions were assumed to consist of the set of 
all closed subspaces LH of a Hilbert space H. (We 
shall not consider the technicality of superselection 
rules here.) Thus, he felt that an HV theory should 
imply that one can determine precisely the outcome 
of any experiment or measurement; hence, all 
dispersions must be zero and probabilistic con
siderations made to vanish. We contend that, al
though von Neumann's general idea is correct, his 
mathematical definition is too restrictive. We contend 
that the dispersion-free states need not be defined on 
the entire proposition system LH since HV theories 
only propose to allow predictions concerning single 
measurements. Bohmll has repeatedly emphasized 
that the hidden parameters vary according with the 
different mutually exclusive experimental arrange
ments of matter that must be used in making different 
kinds of measurements. For example, to make a 
position or momentum measurement, two different 
sets of hidden variables would have to be used. Thus, 
the dispersion-free states must only be defined on 
outcomes corresponding to single measurements. 

Similar criticisms can be made about the generali
zation of von Neumann's proof. 2 In these papers a 

• D. Bohm and J. Bub, Rev. Mod. Phys. 38, 470 (1966); J. Bell, 
ibid. 38, 447 (1966); 40, 228 (1968); see also Ref. 4. 

10 See Ref. 1, pp. 295-328. 
11 See Bohm, Ref. 7. 

more general structure is taken for the system of 
quantum-mechanical propositions. Although these 
papers fall short of the mark, what they are aiming 
for is the following theorem: 

Theorem 1: If there is a full set of dispersion-free 
states on a quantum proposition system L, then L 
is a Boolean algebra. 

However, even if this theorem were true, it would 
not make HV theories impossible. Again, this is 
because HV theories do not imply the existence of 
dispersion-free states defined on all of L but only 
those defined on Boolean sub-a-algebras of L, since 
they only determine outcomes of individual experi
ments. 

It is felt by some3 that the paper of Zierler and 
Schlessinger,4 which considers imbeddings of the 
quantum proposition system into Boolean algebras, 
gives a proof of the impossibility of HV theories. 
However, HV theories do not suggest that quantum 
mechanics be imbedded in a classical structure. 
Similarly, Kochen and Specker5 define an HV theory 
as an imbedding of the set of quantum observables 
into the set of dynamical variables on a phase space. 
Again, this is a claim that one can imbed quantum 
mechanics into a classical system, which is not what 
the HV proponents mean an HV theory to be. 
Finally, Misra's proof6 takes a different axiomatic 
structure for quantum mechanics, but also claims that 
hidden variables imply the existence of dispersion
free states, which are now taken as monotonic 
positive functionals on the system of quantum 
observables. 

3. GENERAL HIDDEN-VARIABLE THEORIES 

We first give an English-language version of what 
we feel the HV researchers mean by an HV theory. 

"The state m of a quantum-mechanical system is 
not complete in the sense that another variable ~ can 
be adjoined to m so that the pair (m, ~) completely 
determines the system. That is, a knowledge of (m, ~) 
enables one to predict precisely the outcome of any 
single measurement. Furthermore, an average over 
the values of ~ gives the usual quantum state m." 

We shall now attempt to translate this version of 
an HV theory into a mathematical-language version. 
We use the general proposition system formulation 
of quantum mechanics.12 A proposition system is 

12 J. Jauch, Foundations of Quantum Mechanics (Addison
Wesley Publ. Co., Reading, Mass., 1968); V. Varadarajan, Geometry 
of Quantum Theory (D. Van Nostrand, Princeton, N.J., 1968); 
G. Mackey, Mathematical Foundations of Quantum Mechanics 
(W. A. Benjamin, New York, 1963). 
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a partially ordered set L = {a, b, c, ... } with first 
and last elements zero and one, respectively, an 
orthocomplementation a ~ a' satisfying an = a, a ~ b 
implies b' ~ a', and a V a' = I; furthermore, if ai 

is a sequence of disjoint (ai ~ a;, i:F j) elements, 
then V ai exists in L. A state m is a map m: L ~ [0, 1] 
such that m(l) = 1 and m(V ai) = L m(ai) if ai is a 
disjoint sequence. A set of states M on L is full if for 
any a :F ° there is an m E M such that mea) = 1 and 
if a :F b there is an mE M such that mea) :F m(b). 
A quantum proposition system is a pair (L, M) where 
L is a proposition system and M is a full set of states 
on L. Notice that (L, M) generalizes the standard 
quantum-structure (LlJ' M). A dispersionjree state 
son L is a map s: L ~ {O, I} such that s(l) = 1 and 

sC~ a;) = i~ m(a i ) 

if ai is a finite disjoint set of propositions. Now single 
measurements correspond to Boolean sub-a-algebras 
of L. To say that the results of a measurement 
(corresponding to a Boolean sub-a-algebra B S L) 
are completely determined means that one has a 
dispersion-free state s on B. We denote the set of 
dispersion-free states on B by M B' We are now 
ready to formulate our definition of an HY theory. 

Definition: A quantum proposition system (L, M) 
admits an HY theory if there is a probability space 
(0, F, 1') with the property that, for any maximal 
Boolean sub-a-algebra B S L, there is a map HB 
from M x ° onto M B such that: 

(i) W ~ HB(m, w)(a) is measurable for every mE 

M,aEB; 
(ii) So HB(m, w)(a) dfJ(w) = mea) for every mE M, 

aEB. 
Denote the set of maximal Boolean sub-a-algebras 

of L by $. We call «0, F,fJ), {HB: B E $}) an HY 
theory for (L, M). An HY theory «0, F, 1'), {HB : 

BE $}) is minimal if HB(m, WI) = HB(m, w2), for 
all m E M and B E $, implies WI = W2' 

We consider only maximal Boolean sub-a-algebras 
so that the theory does not get too cumbersome. 
This is really only a technicality since any Boolean 
sub-a-algebra is contained in a maximal one. The 
probability space (0, F, 1') may be thought of as the 
space of hidden variables. If an HY theory is minimal, 
there is a minimal number of hidden variables
just enough to give all the dispersion-free states. 
Notice that the Bohm-Bub theoryl3 gives part of an 

13 See Bohm and Bub, Ref. 7. 

HY theory as defined above. Bohm and Bub only 
consider one measurement such as a spin measurement 
and hence their theory gives the map HB : M x ° ~ 
M B for one single Boolean a-algebra B. The Bohm
Bub example is not minimal since many hidden 
variables correspond to each dispersion-free state. 
The nonminimal hidden-variable theories are prob
ably the more interesting ones. In the literature,a two
valued homomorphisms are often considered instead 
of dispersion-free states. However, we now show that 
these two concepts are equivalent. But first we need 
some definitions. 

Two propositions a, bEL are compatible (written 
a ~ b) if there exist mutually disjoint propositions 
ai' bl , c such that a = al V c, b = bi V c. Let B2 
denote the Boolean algebra with two elements zero 
and one. A two-valued homomorphism f on L is a map 
f: L ~ B2 such that f(a') = f(a)'; and if a ~ b, then 
f(a V b) = f(a) V feb) andf(a A b) = f(a) Af(b). We 
identify B2 with the pair of real numbers {O, I} in the 
natural way. 

Lemma: m is a dispersion-free state on L if and 
only if m is a two-valued homomorphism on L. 

Proof: Suppose m is a two-valued homomorphism 
on L. Notice first that there is an a E L such that 
mea) = 1 since if m(b) = 0, then m(b') = I. Now, for 
aEL, 

m(l) = m(1 Va) = (m(1) V mea) ~ mea). 

Hence m(1) = 1. Next we notice that m preserves 
order since if a ~ b, then m(b) = mea V b) = mea) V 
m(b) ~ mea). It follows that if a and b are disjoint, 
so are mea) and m(b). Let ai' i = 1, ... ,n, be 
mutually disjoint. If m(V ai ) = I, then V m(ai) = 1. 
It follows that there is an a; such that mea;) = I and 
mea;) = 0, i :F j. Hence, 

n 

! m(ai ) = 1 = m(V ai ). 
i=1 

If m(V a;) = 0, then V m(ai) = ° and m(ai) = 0, 
i = I, ... , n. Hence, 

n 

! mea;) = 0= m(V ai ) 
i=1 

and m is a dispersion-free state. Conversely, suppose 
m is a dispersion-free state on L. Then 

1 = mea va') = mea) + mea') 

and, hence, 
mea') = 1 - mea) = mea)'. 

14 See, for example. Refs. 4 and 5. 
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If a ~ b, we can write 

a V b = [a A b] V [b A (a A b)'] V [a A (a A b)')' 

where the terms in square brackets are mutually 
disjoint. It then follows that 

mea V b) = mea) + m(b) - mea A b). 

If mea V b) = 1, then either mea) = 1 or m(b) = 1, so 

mea) V m(b) = I = mea V b). 

If mea V b) = 0, then both mea) = 0 and m(b) = 0, 
so 

mea) V m(b) = ° = mea V b). 

It now follows that mea A b) = mea) A m(b) and, 
thus, m is a two-valued homomorphism. 

We are now ready to prove our main theorem. 

Theorem 2: Any quantum proposition system (L,M) 
admits a minimal HV theory «0, F, It), {HB : BE $}). 
Furthermore, «0, F, It), {HB: BE $}) is the unique 
minimal HV theory in the sense that if «0', F', It'), 
{H'e: BE $}) is another HV theory, there is a measur
able map 7" from 0' onto 0 such that 

HB(m, Tw')(a) = Hs(m, w')(a) 

for every BE $, £0' EO', m EM, and a E B, 

1t'(7"-1(A» = It(A) 

for every A E F, and if «0', F', It'), {H'e: B E $}) is 
minimal, then 7" is one-to-one. 

Proof' If B is a maximal Boolean sub-a-algebra, 
it is in particular a Boolean algebra and, hence, by 
Stone's representation theorem,15 there is an iso
morphism hB from B onto a Boolean algebra GB of 
open and closed subsets of a compact space Os. If 
mE M, define mo on GB by mo(A) = m(h1l(A». We 
now show mo is countably additive on GB . Let Ai E 

GB , i = 1, 2, ... , be disjoint and suppose U Ai E 

GB • Because of the compactness of 0 B , all but finitely 
many A/s are empty. We thus have 

mo(U Ai) = m(h"B\U Ai» = m(V h"B1(Ai» 

= L m(h"B1(Ai» = L mO(Ai)' 

Hence, mo is countably additive on GB and so, by 
the Hahn extension theorem ,16 mo has a unique 
extension to a measure m on the a-field HB generated 
by GB . Notice that KB is contained in the Borel field 

16 M. Stone, Trans. Am. Math. Soc. 40, 37 (1936). 
18 P. Halmos, Measure Theory (D. Van Nostrand, Princeton, 

N.J., 1950), p. 54. 

of Os. Thus, (Os, K B , m) is a probability space. We 
now form the product probability space (OB' FB , ItH)' 
where 

0 11 = 11 Om, F 11 = 11 K m, Itu = 11 nl, 
me~:l meM meM 

where Om = Os and Km = KB for all mE M. That is, 
OB is the Cartesian product of O'e with itself to the 
cardinality of M, FB is the a-field generated by the 
cylinder sets according to Kolmogorov's construction, 17 
and ItB is the product measure defined by 

ItB(Sm1 x Sm2 X •.• X Sm
n 

X 11' Om) 

= m1(Sm)n12(Sm2) ... mn(Sm), 

where 11' Om = 11 {Om: m ¥= m1 , ••• , mn }. The space 
(OB, FB , ItB) exists by Kolmogorov's theoremY 
By TychonofI's theorem, note that 0B is compact and 
FB is contained in the Borel field. We can then use 
Kolmogorov's theorem again to form the product 
probability space (0, F, It), where 

0=11 0 B' F=I1Fll' and 1t=11,uJ]' 
Be9!, Be9!, ne9!, 

Now BE $ defines the map Hn: M X ° --+ Mn by 
Hn(m, w)(a) = ], if w(B)(m) E hB(a), and 

Hn(m, w)(a) = 0, 

otherwise. We now show that HB(m, (0)0 is a 
dispersion-free state. Certainly HR(m, (0)(1) = 1. 
Suppose ai are mutually disjoint, i = 1, ... , n. If 

HB(m, w)(V ai ) = 0, 
then 

Thus, 

i = I, ... , n, and 
n 

0= HB(m, w)(V ai) = L HB(m, w)(ai). 
i=1 

If HB(m, w)(V ai) = I, then 

w(B)(m) E h1iV ai) = U hR(a;). 

Since hll(ai ), i = 1, ... , n, are mutually disjoint, 
there is a 1 ~ j ~ n such that w(B)(m) E aj, w(B)(m) ¢ 
ai' and i ¥= j. Hence, 

Hn(m, w)(ai ) = {Jii 
and 

n 

1 = HR(m, w)(V ai ) = 1 HB(m, w)(a i), 
i=1 

and HB(m, (0)(') is a dispersion-free state. Now 
£0 --+ HB(m, w)(a) is measurable since it has the value 

17 A. Kolmogorov, Foundations of Probability (Chelsea Pub1. Co., 
New York, 1950), p. 29. 
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one on the cylinder set 

A = {w E 0: weB) E h(a) 

x II {Om': Om' = OB' m' ¥= m}} 

= {h(a) X II {Om': Om' = OB' m ¥= m'} 

X II {OB': B' ¥= B}}, 

and the value zero otherwise. Also, 

In HB(m, w)(a) dp(w) 

= ldp(w) = p(A) 

= /-t(hB(a) x II {Om': O,n' = 0li' m' ¥= m}) 

= m(hB(a» = mea), 

for all m E M, a E B. Now the map w -- w(B)(m) is 
onto O~ by definition. It can be shown18 that the 
Stone space OR is isomorphic to the set of two-valued 
homomorphisms on B. By the lemma this latter set is 
the same as MB and, hence, HB is surjective. Now 
suppose «0' , F', pi), {H~: BE $}) is another hidden 
variable theory. Define T: 0 ' -- 0 by T(w')(B)(m) = 
H~(m, Wi). T is surjective since H'n is. The measura
bility of T follows from the measurability of Wi -
H'n(m, Wi), and H B(m, Tw')(a) = H'n(m, w')(a) by 
definition. The rest of the proof is left to the reader. 

4. REMARKS 

As was mentioned in Sec. 2, Kochen and Specker 
define an HY theory as an imbedding of the partial 
algebra of observables into an algebra of dynamical 
variables on a phase space. Their main claim is that 
it is not enough to preserve the statistics in this 
imbedding but also functional relationships between 
observables must be preserved. They give a simple 
example in which the statistics are preserved but in 
which the random variables corresponding to different 
observables are independent. Although their example 
has a primitive similarity to our construction, this 
type of behavior does not occur here. In this theory, 
observables are a-homomorphisms from the Borel 
subsets of the real line B(R) into L. There is a one
to-one correspondence between observables and 
Boolean sub-a-algebras of L in the sense that the 
range R(x) of an observable x is a Boolean sub-a
algebra and every (separable) Boolean sub-a-algebra 
is the range of an observable.19 

Let x be an observable with range R(x) and let B 
be a maximal Boolean sub-a-algebra containing R(x). 

~8 P. Halmos, Lectures on Boolean Algebras (D. Van Nostrand, 
Pnnceton, N.J., \963), p. 78. 

19 V. Varadarajan, Commun. Pure Appl. Math. 15, 129 (1962). 

Now, of course, R(x) may be contained in many 
different maximal Boolean sub-a-algebras and these 
correspond to different experimental arrangements 
used to measure x. In our construction we have 
represented B (via an isomorphism hB ) by a Boolean 
algebra of subsets of a set O~. One would say that a 
function 

represents x if 

x(E) = h'i/U-1(E» for all E E B(R). 

Now there is, in general, no function/representing x, 
although there would be if hll were a a-homomorph
ism.19 However, such functions would exist in special 
cases (e.g., if x had only a finite number of values), 
so let us suppose there is one, say f Now if an 
observable y is a function of x, say y = g(x) [this 
means y(E) = x(g-l(E» for all E E B(R)), then 
R(y) ~ R(x) ~ B. If y is represented by a function 
p: O~ -- R, then one can show that p = g 0/, and 
thus functions of observables are preserved in this 
theory. More generally, suppose that x and yare 
compatible observables [i.e., x(E) ~ y(F) for all E, 
FE B(R»). If we are to think of these observables 
as being measured at the same time, then we must 
find a Boolean sub-a-algebra B containing R(x) U 
R(y). Such a B always exists.19 It can be shown that 
there exists an observable z and Borel functions u 
and v such that R(z) ~ B, x = u(z), and y = V(Z).19 
Now if we can represent x, y, and z by functionsj, g, 
and h, respectively, then it can be shown that j = 
u 0 hand g = v 0 h. So, again, functions of compatible 
observables are preserved. One would get independ
ence of the representing functions / and g if one 
considered different maximal Boolean sub-a-algebras 
Bl and B2 containing R(x) and R(y) , respectively; 
but this would physically involve one measurement 
for x and a separate measurement for y, and one 
would then expect to obtain independent values. 

Turner20 defines an HV theory in terms of an 
imbedding a of the propositions L (and states) into 
a Boolean algebra L' of subsets of a phase space, 
although he only requires a statistics-preserving 
imbedding. He then discusses the quantum ordering 
of the propositions. He makes the claim that if a 
preserves the quantum order, then, according to the 
work of Zierler and Schlessinger,21 the imbedding 
would be trivial and hence impossible. This claim 
seems incorrect. In fact, Zierier and Schlessinger 
have shown that an order-preserving imbedding is 
always possible. What they do show is that there may 

20 See Ref. 3. 
21 See Ref. 4. 
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be no order-preserving imbedding a that also satisfies 
O'(a V b) = O'(a) V a(b) when a +-t b. Next, Turner 
claims that the HV theory of Bohm-Bub induces an 
imbedding of the propositions of the 3-dimensional 
Hilbert space I'll') = "1'1 lSI) + "I'21 s2) + "Paisa) that is 
not order preserving. This is incorrect for two reasons. 
First, the Bohm-Bub theory implies no such imbedding. 
The theory concerns only one measurement, that of 
spin, which corresponds only to a Boolean algebra B 
with eight elements. Of course, this Boolean algebra 
has an imbedding hB of the strongest kind, but none 
is implied fCOlr the set of all propositions. Secondly, 
this imbedding hB preserves quantum order, as does 
any HV theory.22 We make this precise in the next 
paragraph. 

We say that an HV theory «.0, F, f.l), {HB: BE .'8}) 
for (L, M) preserves quantum order if a ~ b if and 
only if, for every BE .'8 satisfying a, b E B, we have 

HB(m, w)(a) ~ HB(m, w)(b) for all mE M, WEn. 

Using Theorem 2, one can now prove the following: 

Theorem 3: Any HV theory preserves quantum 
order. 

There is an unusual kind of phenomenon that 
occurs in HV theories that does not appear in the 
quantum theory, however. In quantum mechanics 
the distribution for the values of an observable is 
independent of the type of measurement used to find 
these values. This is not, in general, true for HV 
theories. For example, suppose we are interested in 
a particular outcome represented by the proposition 
a E L. Suppose the "completed" state of the system is 

22 For more details and a slightly different viewpoint see the 
forthcoming paper by J. Tutsch, "Measurement in Quantum 
Mechanics," Phys. Rev. (to be published). 

(m, w). If we make a measurement corresponding to 
a Boolean sub-a-algebra Bl E .'8 with a E B1 , then the 
outcome occurs if HB/m, w)(a) = I. Now if we 
make a measurement corresponding to a Boolean 
sub-a-algebra B2 E.'8 with a E B2, it is entirely 
possible that HBI(m, w) ~ HB1(m, w)(a). This is 
easily seen to occur in specific examples. 22 Thus, 
although a is seen to occur in one measurement, it 
does not occur in a different type of measurement 
even if the completed state (m, w) is the same. It is 
possible that this kind of phenomena can be shown 
experimentally, giving empirical evidence that an 
HV theory is necessary for a finer understanding of 
nature than that given by quantum mechanics. 

This general HV theory can also be used to describe 
a model for the measurement process. When the 
system is not being measured, then the states will 
evolve according to some dynamical law Vt : M - M. 
However, when a measuring instrument (correspond
ing to some Boolean sub-a-algebra B) is introduced 
into the system's environment, the hidden-variable 
space (.oB , FB , f.lB) enters and the completed states 
M X .oB evolve according to a new law Ut : M X 

.oB - M X .oB' After a certain time (which, in 
practice, would be short) the completed states will 
approach a certain point (mo, wo) E M x DB, where 
mo is the "wavefunction collapsed to" in the usual 
quantum theory, and mo restricted to B gives the 
resulting dispersion-free state s. In this case, we 
would have HB(m, w) = s, if (m, w) is the initial 
completed state. 
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The various ro rties of the domain of dependence (Cauchy develop~ent) w~ich have been fo~nd 
particularly useful in the study of gravitational fields are reviewed. The basIc techntques for co~struct~ng 

roofs and counterexamples are described. A new tool-the past and ~uture volume functlo~s- or 
freating certain global properties of space-times is introduced. These. functions are used to estab.hs~ tw~ 
new theorems: (1) a necessary and sufficient condition that a space-t.lme have a Cauchy surface IS t. at It 
be globally hyperbolic; and (2) the existence of a Cauchy surface IS a stable property of space-times. 

1. INTRODUCTION 

The concept of the domain of dependence, or 
Cauchy development, of a spacelike 3-s~rfa~e has 
recently found a number of important applicatIons to 
global problems in general relativity, e.g., in the 
proofs (and often in the statements) of theorems about 
singularitiesl - 6 in the initial-val~e p~oblem for 
gravitational and other fields7 and 10. vano~s ~elated 
questions. Roughly speaking, a polO~ ~ .I~ 10 the 
domain of dependence of a surface S If InItIal data, 
given on S, completely and uniquely determine the 
state of any system at p. The domain of dependence 
and causal structure4 •8•9 must be ranked as the two 
most important tools presently available for the study 
of global properties of space-times. .. 

Global hyperbolicity was invented for dealmg WIth 
hyperbolic differential equations on a ma?i~old .. lO.ll 

A space-time is said to be globally hyperbolIc If, gIven 
any two of its points, the collection of all timelike ~r 
null (causal) curves joining these points is compact (10 
a suitable topology). This condition requires, intuit
ively, that there be no "asymptotic regions," "holes," 
or "singularities" in the region between the points. 
Global hyperbolicity is the natural condition to impose, 

* Present address: Department of Physics, Syracuse University, 
Syracuse, New York. 

1 R. Penrose, Phys. Rev. Letters 14, 57 (1965). 
• S. W. Hawking, Proc. Roy. Soc. (London) 294A, 511 (1966). 
3 S. W. Hawking, Proc. Roy. Soc. (London) 295A, 490 (1966). 
t S. W. Hawking, Proc. Roy. Soc. (London) 300A, 18? (1967). 
• R. Geroch, "Singularities," in Proceedings of the Midwestern 

Relativity Conference, L. Witten, Ed. (to be pu.blished). 
• R. Penrose, Battelle Recontres, C. M. DeWitt and J. A. Wheeler, 

Eds. (W. A. Benjamin, Inc., New York, 1968), Chap. VII. 
7 Y. Choquet-Bruhat and R. Geroch, "Global Aspects of the 

Cauchy Problem in General Relativity" Comm. Math. Phys. (to be 
published). . . 

8 E. H. Kronheimer and R. Penrose, Proc. Cambridge PhIl. Soc. 
63,481 (I967). . ." 

• R. Geroch, "Space-Time Structure from a GI~bal VI~wpomt,. 
in Proceedings of The International School of PhYSICS Ennco Fermi, 
1969 (Academic Press Inc., to be published). . 

10 J. Leray, "Hyperbolic Partial Differential Equations" (mImeo
graphed notes, Princeton, 1952). 

11 Y. Choquet-Bruhat, Battelle Recontres, C. M. DeWitt and J. 
A. Wheeler. Eds. (W. A. Benjamin, Inc., New York, 1968), Chap. 
IV. 

for example, to ensure the existence and uniqueness of 
solutions-in particular, Green's-function solutions
of hyperbolic equations. lo.n This condition has also 
been used in the study of gravitational fields, e.g., in 
the initial-value problem.12 

The goals of the present paper are, firstly, to 
summarize those properties of the domain of depend
ence which have been found useful in the study of 
gravitational fields and, secondly, to obtain some new 
results concerning the domain of dependence and its 
relation to global hyperbolicity. 

In Sec. 2 we introduce the three basic definitions: 
the domain of dependence, the Cauchy horizon, and a 
Cauchy surface. (The Cauchy horizon consists of certain 
boundary points of the domain of dependence. A 
surface is a Cauchy surface ifits domain of dependence 
is the entire space-time.) We illustrate these definitions 
with seven examples, intended to suggest a number of 
basic features of the domain of dependence, the 
Cauchy horizon, and a Cauchy surface and-what 
appears to be of at least equal importance in this 
subject-a number of properties that these objects do 
not possess. In Sec. 3 we prove a selection of results. 
Using the constructions and counterexamples of Sees. 
2 and 3, the reader should have little trouble in 
deciding, from the almost infinite number of plausible
sounding conjectures, which are true and which are 
false. Since there are such a large number of useful 
but comparatively minor properties of the domain of 
dependence, it is almost impossible to try to remember 
them all; for this reason the examples and construc
tions are as important as the statements of theorems. 
Sections 2 and 3 are a review in the sense that all of the 
material, if not published before, is known. 

In Sec. 4 we define global hyperbolicity and intro
duce a topology on certain sets of curves. 

Global hyperbolicity and the existence of a Cauchy 
surface-two properties of space-times each widely 

11 Y. Choquet-Bruhat, Gravitation: An Introduction to Current 
Research, L. Witten, Ed. (John Wiley & Sons, Inc., New York, 
1962), Chap. 4. 
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used in its own area of relativity theory-are equiv
alent: a necessary and sufficient condition that a 
space-time have a Cauchy surface is that it be globally 
hyperbolic. The proof, given in Sec. 5, involves the 
past and future volumes. Because these volume 
functions appear to be a useful technique for 'dealing 
with global properties of space-times, their properties 
are summarized. 

Finally, in Sec. 6 we show that the existence of a 
Cauchy surface is a stable property of space-times. 
That is, arbitrary sufficiently small variations in the 
metric (in a suitable topology) do not destroy the 
existence of a Cauchy surface. 

2. DEFINITIONS AND EXAMPLES 

By a space-time M we understand a4-dimensional 
manifold with a smooth metric gab of signature (+, 
-, -, -). We shall also assume that M is time
oriented, that is, that the light cones of M are divided 
into two systems, past and future.13 

The fundamental notion is that of the domain of 
dependence, or Cauchy development, of an achronal 
set Sin M. (A set is said to be achronal9 if no two of 
its points may be joined by a timelike curve.) It will 
be convenient to think of S as some spacelike or null 
3-surface; in fact, as we shall see later, the domain 
of dependence is uninteresting except in this case. 
Roughly speaking, a point p is in the domain of 
dependence of S if the state of any system at p can be 
completely specified by initial conditions given on S. 
Because signals must travel along timelike or null 
curves, we should expect that the initial data on S 
would completely determine the situation at p if and 
only if every such curve from p strikes S. More pre
cisely, the future domain of dependence of S, ])+(S) , 
consists of those points p such that every past-directed 
time like curve from p without a past endpoint14 inter
sects S.1.2.6.9.15 The past domain of dependence, D-(S), 
is defined in a similar way by interchanging the roles of 
past and future. Finally, the (total) domain of depend
ence is the set D(S) = D+(S) U D-(S). 

The following remarks will serve to clarify these 
definitions. It was necessary, first of all, to include the 
condition "without a past endpoint" in the definition 
of the domain of dependence, since otherwise D+(S) 

13 If M were not time-orientable, then we could always find a 
covering space of M-representing exactly the same physical 
universe-which is. Many of the results can be applied directly to the 
non-time-orientable case, but the statements and proofs become 
somewhat more complicated. 

14 A point q is said to be an endpoint of a curve y if Y enters a?d 
remains in every neighborhood of q. Note that q need not necessarIly 
be a point of y. 

16 R. Courant and D. Hilbert, Methods of Mathematical Physics 
(Interscience Publishers, Inc., New York, 1965), Vol. II. 

would always coincide with S itself: If q is any point 
not in S, then one can always find a past-directed 
timelike curve from q (with a past endpoint) which 
does not intersect S. Secondly, although it might 
appear to be more appropriate to define the domain 
of dependence using timelike and null curves rather 
than just timelike curves, the only effect of such a 
change, as it turns out, is to eliminate certain boundary 
points from D+(S). It will later be seen to be more 
convenient to have ~uch boundary points included in 
D+(S). Finally, the definition of the domain of 
dependence could be applied equally well when S is 
not achronal, but, once again, the consequence is to 
introduce additional complications without adding 
anything really new. 

Note that the domain of dependence involves only 
the conformal structure of the space-time.16 That is 
to say, if we replace the metric gab by Q2gab' where Q 

is any strictly positive scalar field, then each D+(S) is 
unchanged. 

Fortunately, it turns out that a handful of counter
examples is sufficient to dispose of many plausible
sounding conjectures concerning the domain of 
dependence. Thus one of the easiest ways to develop 
an intuitive feeling for the properties of D+(S), as well 
as to check and discover new properties, is through 
examples. We shall give seven examples here. (In all 
examples involving Minkowski space, we adopt the 
usual coordinates t, x, y, and z.) 

Example 1: Let M be Minkowski space, and let S be 
the x axis, i.e., the curve given by t = Y = z = O. 
From any point not on S, we may always find a past
directed timelike curve, without a past endpoint, which 
fails to intersect S. Thus D+(S) = D-(S) = D(S) = 
S. This property would, of course, continue to hold 
were S any spacelike curve or 2-surface. We shall see 
in Sec. 3 that, at least locally, S must be a spacelike or 
null 3-surface if D+(S) is to contain any points other 
than those of S. 

Example 2: Let M be Minkowski space, and let S be 
the hyperboloid of revolution given by 

S = {(t, x, y, z) I t 2 - 1 = x 2 + y2 + Z2, t < O}. 

It will be seen from Fig. 1 that 

D+(S) = {(t, x, y, z) I t 2 

~ x 2 + y2 + Z2 ~ t 2 - 1, t ~ O}, 

D-(S) = {(t, x,y, z) I t 2 - 1 

~ x 2 + y2 + Z2, t < O}. 

18 In fact, the notion of the domain of dependence can be general
ized to certain casual spaces. See R. Geroch, E. H. Kronheimer, 
and R. Penrose, "Ideal Points in Space-Time" (to be published). 



                                                                                                                                    

DOMAIN OF DEPENDENCE 439 

FIG. 1. The domains 
of dependence of a 
hyperboloid of revolu
tion in Minkowski 
space (two spatial di
mensions suppressed). 
Null geodesics in this 
figure are straight lines 
inclined at 45° to the 
vertical. The point p is 
not in D+(S) because 
the past-directed time
like curve y from p has 
no past endpoint and 
does not intersect S. 

[From the point p = (1,0,0,0), for example, there is 
a past-directed timelike curve, y in the figure, which 
fails to intersect S, and so p rf= D+(S).] The only 
achronal set in M which contains S is S itself, and so 
we cannot further extend S while keeping it achronal. 
That is to say, S is a spacelike surface in Minkowski 
space such that D(S) 0/= M, and such that S is not 
included in any achronal set whose domain of de
pendence is M. However, there are other surfaces in 
Minkowski space-for example, the plane S' given by 
t = O-such that D(S') = M. 

Consider, in the above example, the "future 
boundary" of D+(S), that is, the past light cone 

H = {(t, x, y, z) I t 2 = X2 + y2 + Z2, t ~ O} 

of the origin. It is easily verified that His achronal, 
and that D+(H) = H, D-(H) = D(S). [Note that if, 
in our original Minkowski space, the point at the 
origin had been removed from the manifold, then we 
should have had D-(H) = H.] More generally, let 
H be any achronal subset of D+(S). If P is a point of 
D+(H), then every past-directed timelike curve y, 
without a past endpoint, from p intersects H. But 
H c D+(S), and so y intersects S. Thus D+(H) c 

D+(S), and, by a similar argument, D-(H) c D(S). 

Example 3: Let M be Minkowski space with the 
single point at the origin, 0 = (0,0,0,0), removed, 
and let S be the closed, spacelike 3-disk 

S = {(t, x,y, z) I x 2 + y2 + Z2 S 4, t = -I} 

FIG. 2. The domains 
of dependence of a disk 
in Minkowski space with 
the single point 0 
removed (one spatial 
dimension suppressed). 
Points to the future of 0 
are not in D+(S). The 
set D+(S) [respectively, 
D-(S)] includes its future 
(respectively, past) boun
dary whether or not 
the boundary circle C is 
included in S. 

(see Fig. 2). Then, evidently, 

D-(S) = ret, x, y, z) I -3 

S t S -1, x 2 + y2 + Z2 S (t + 3)2}. 

Were it not for the fact that the point 0 has been 
removed from Minkowski space to form M, D+(S) 
would be just the time-reverse of D-(S). However, 
in the example as given, no point p inside the "future 
light cone" of 0 can be in D+(S), for a past-directed 
timelike curve from p to 0 has no past endpoint and 
does not intersect S. (Of course, 0 cannot be an end
point of a curve, for 0 is not a point of the manifold 
M.) Thus 

D+(S) = {(t, x, y, z) I (t - 1)2 

~ x 2 + y2 + Z2 ~ 12, 1> 0, or 

(t - 1)2 ~ x2 + y2 + Z2, 0 ~ t ~ -I}. 

Suppose now we replace the set S by S', consisting 
of S with its bounding 2-sphere, 

C = {( t, x, y, z) I t = -1, X2 + y2 + Z2 = 4}, 

removed. Then 

D±(S') = D±(S) - C. 

That is to say, the domain of dependence of S' differs 
from that of S only in that the boundary region C is 
absent. Note that the rest of the boundaries of D+ and 
D- are the same for S as for S'. This example illus
trates a characteristic feature of the domain of depend
ence: D+ (D-) always contains its entire future (past) 
boundary. (These boundaries will later be defined 
more precisely.) 

Example 4: Let M be the (extended) Schwarzschild 
solution, and let S be the 3-surface given, in the usual 
coordinates, by t = 0 (see Fig. 3). Then D+(S) con
sists of all points on S or to the future of S, and D-(S) 
consists of all points on S or to the past of S. Thus 

FIG. 3. The domains of 
dependence of a surface S in 
the Schwarzschild solution. 
Each point in the figure 
(except those on the "sing
ularity," r = 0) represents 
a single "r = const" 2-sphere S 
in the full 4-dimensional -':..-.---¥ ____ _ 
space-time. (Thus, for ex
ample, the topology of S is 
SI X R.) A curve in the full 
space-time is represented in 
the figure by the set of points 
corresponding to the 2-
spheres that curve intersects. 
Radial null geodesics are 
represented in the figure by straight lines at an angle of 45° to the 
vertical, while nonradial null geodesics are curved Jines whose 
angles with the vertical are always less than 45°. 
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FIG. 4. The future 
domain of depend
ence of a surface S 
in the Reissner
Nordstrom solution. 
Each point in the 
figure (except at the 
"singularity" r = 0 
and at "infinity," r = 
<Xl) represents one of 
the r = const 2-
spheres in the four
dimensional space
time. A conformal 
transformation has 
been applied to bring 
the asymptotic re
gions (near r = (0) 
into the figure. (The 
same transformation, 
applied to the 
Schwarzschild solu
tion, produces a 
hexagonal·shaped fig
ure.) Radial null geo
desics are again 
straight lines at 45° 
to the vertical. 

D(S) = M and D+(S) n D-(S) = S. [It is always 
true that D+(S) n D-(S) = S.] 

Example 5: Let M be the (extended) Reissner
Nordstrom solution, and let S be the 3-surface given, 
in the usual coordinates,. by t = 0 (see Fig. 4). The 
set D+(S) is shown in the figure. Points which are 
sufficiently far up the "throat" between the two 
asymptotically flat regions, such as p in the ij.gure, are 
not in D+(S), for there exists a past-directed timelike 
curve y from p which "reaches the singularity at r = 
0," and so fails to intersect S. In this example, 
D(S) :F M. In fact, in Examples 3 and 5 there exists 
no achronal set whose domain of dependence is the 
whole space-time. 

Examples 4 and 5 illustrate two ways in which the 

~ "infinity"-<--

., null 
tlmehke geodesics 
geodesicy': p) 

\\.,.>:.. , \r ~ , , 
/ , 

/ , 
/'/ '" , , 

" ", 

FIG. 5. The domains of dependence of 
a surface in anti-de Sitter space (two 
spatial dimensions suppressed). Here 
"infinity" is represented by a tirnelike 
surface, and so certain timelike curves 
(from p, for example) can reach infinity 
without first intersecting S. However, 
every past-directed timelike geodesic from 
p intersects S. 

Closed 
timelike 

NUT _ curve 

space _---------------l.----. 
.x __ 

,------ ----••. ( Misner 

Taub 
space 

Typical- --
light ----.l.~-
cones-~ 

VI 

boundary 

FIG. 6. The future 
domain of dependence 
of a surface in Taub
NUT space (two spa
tial dimensions sup
pressed: the circles in 
the figure would be 3-
spheres in the full 
space-time). The metric 
is invarient under rota
tions of the cylinder 
about its axis. Through 
each point p to the 
future of the Misner 
boundary there passes 
a closed timelike curve, 
and so no such point 
may b(in D+(S). 

presence of singularities can influence the domain of 
dependence. 

Example 6: Let M be anti-de Sitter space (a space
time, topologically Euclidean, of constant negative 
curvature), and let S be one of the homogeneous 
spacelike sections. The sets D+(S) and D-(S), as well 
as a number of typical timelike and null geodesics, 
are shown in Fig. 5. Note that in this example there 
exist points, such as p in the figure, such that every 
past-directed timelike geodesic from preaches S, but 
such that p i D+(S). Intuitively, information can come 
in from "timelike infinity" and affect p without its 
being registered on S. This example illustrates the 
point that "timelike curve" cannot be replaced by 
"timelike geodesic" in the definition of the domain 
of dependence. (Note also that the null geodesics 
from p fail to intersect S.) 

Example 7: Our final example illustrates the be
havior of the domain of dependence in the presence 
of closed timelike curves. Let M be Taub-NUT 
space ,17 and let S be one of the compact, homo
geneous, nonisotropic spacelike sections in the "Taub 
part" of the space (Fig. 6). Those points which lie on 
or below the Misner boundary between Taub and 
NUT space and on or above S are in D+(S). Through 
any point p which lies in the "NUT part" of the 
space (i.e., above the Misner boundary), there passes 
a closed timelike curve. The curve which begins at p 
and which continually describes this closed timelike 
curve does not strike S and does not have a past 
endpoint. Thus, no point of NUT space can lie in 
D+(S). The above property, evidently, holds in general 
for any achronal S in any space-time: If p lies on a 
closed timelike curve, then p i D(S). (In the Godel 

17 E. T. Newman, L. Tamburino, and T. Unti, 1. Math. Phys. 4, 
915 (1963); C. W. Misner, J. Math. Phys. 4,924 (1963). 
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universe, to take a more extreme example, any two 
points may be joined by a timelike curve. Thus, there 
does not even exist a nonempty achronal set in the 
GOdel universe.) 

In several of the examples above-e.g., in the 
Schwarzschild solution and in Minkowski space-we 
have found an achronal set S such that D(S) = M. 
When this is the case, S is said to be a Cauchy sur
face.1.2 To say that S is a Cauchy surface for M is a 
statement about both Sand M. Thus, in Example 2, 
we exhibited an achronal set S in Minkowski space 
such that D(S) ¢ M, and such that S is not con
tained in any Cauchy surface. However, Minkowski 
space certainly has a Cauchy surface. On the other 
hand, neither the Reissner-Nordstrom solution, anti
de Sitter space, nor Taub-NUT space have any 
Cauchy surface. 

Intuitively, that S be a Cauchy surface for M means 
that initial data on S determines the entire evolution of 
M, past and future. 7 In general, it is not possible to 
tell, by examining only a neighborhood of S, whether 
or not S will be a Cauchy surface. Thus, a space-time 
M (for example, the Reissner-Nordstrom solution) in 
which it appears, during the early stages of evolution 
(i.e., near S), that S will be a Cauchy surface may, at 
some much later time, develop so as to have no 
Cauchy surface9• It is for this reason that the assump
tion of the existence of a Cauchy surface is a rather 
unpleasant condition to impose, e.g., in theorems 
about singularities. 

Another useful concept is that of the Cauchy 
horizon, or "future boundary" of D+(S). More 
precisely, the future Cauchy horizon H+(S) of S is 
definedu as the collection of all points p of D+(S) 
such that no future-directed timelike curve from p 
intersects D+(S) other than, of course, at p itself. The 
past Cauchy horizon H-(S) and (total) Cauchy horizon 
H(S) are defined in analogy with D-(S) and D(S). We 
see from Examples I and 3 that S may intersect, or 
even coincide with, its Cauchy horizons. 

It follows immediately from this definition that 
H+(S) is achronal, and so sets such as D+(H+(S» , 
H+(H+(S» , and D-(H+(S» are defined. From the 
discussion of Example 2, we see that the first two are 
always identical to H+(S), while the third must be at 
least as large as H+(S) and no larger than D(S). 

3. PROPERTIES OF mE DOMAIN OF 
DEPENDENCE 

In this section we shall establish a number of 
standard results concerning the domain of dependence, 
Cauchy surfaces, and Cauchy horizons. As most of 
these results are known and many are fairly easy to 

prove, we shall not attempt to give the proofs in great 
detail. It is possible to construct quite a long list of 
properties of the domain of dependence, and for this 
reason it is perhaps more feasible to keep in mind a 
few constructions and counterexamples rather than to 
try to remember the various properties themselves. 
Therefore we present here a small selection of results, 
designed to illustrate certain of the observations of 
Sec. 2 and to exhibit some of the more important 
techniques for constructing proofs. 

It is convenient to define the past 8•9 of a point p, 
I-(p), as the collection of points (p excluded) which 
may be reached from p by a past-directed timelike 
curve. The future of p, I+(p) , is defined in a similar 
way by interchanging past and future. Note that J±(p) 
are always open sets. The past (future) of a set is 
defined as the union of the pasts (futures) of the points 
of that set. For example, in this notation the definition 
of the Cauchy horizon takes the form 

H+(S) = D+(S) - /-[D+(S)]. 

We saw in Example 1 that, when S is a region of 
dimensionality less than three in Minkowski space, 
D(S) = S. This property holds in a general space
time: 

Property J: Let p be a point of D+(S). Then 
/-(p) (") /+[S] is contained in D+(S). Furthermore, 
/-(p) (") S is a 3-surface. 

Proof: Let q E /-(p) (") /+[S], and let y be a past
directed timelike curve from q without a past end
point. We must show that y intersects S. Since 
q E [-(p) , y can be extended into the future to p. It 
follows from the fact that p E D+(S) that the resulting 
curve y' must intersect S. But q E /+(S), and so, since 
Sis achronal, y' must intersect S at a point to the past 
of q. Thus, y intersects S. 

To prove the second part of the theorem, choose a 
nowhere-vanishing vector field ta on M.D.18 A trajectory 
of t a is defined as a curve, maximally extended, which 
is everywhere tangent to tao There is precisely one 
trajectory through each point of M, and no trajectory 
has an endpoint. Since /-(p) (") /+[S] c D+(S), any 
trajectory which enters the region [-(p) n /+[Sl must 
continue into the past to intersect S. Furthermore, 
any point of [-(p) n S must lie on a trajectory which 
enters the region I-(P) n [+[S]. Let s be a point of 
S n [-(P), and choose a small neighborhood 0 of s 
such that every trajectory which enters 0 intersects S 
in O. Since Sis achronal, every such trajectory inter
sects S in the region 0 - /+(s) - /-(s). Therefore, 

18 L. Markus. Ann. Math. 62, 411 (1955). 
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the neighborhood 0 of s intersects S in an achronal 
3-surface. 

In the examples of Sec. 2 (especially in Example 3), 
D+(S) appears to contain all points which could 
reasonably be considered as in its "future boundary." 
This property is necessary to ensure that H+(S), which 
is defined as a subset of D+(S), can be interpreted as 
this future boundary. Our precise statement asserts 
that, while D+(S) itself need not be closed, D+(S) 
differs from its closure only in points of the closure 
of S. 

Property 2: D+(S) = D+(S) uS. In particular, if 
S is closed, so is D+(S). 

Proof: Since D+(S) :::> S, D+(S) :::> D+(S) U S. Let 
p~ be a sequence of points of D+(S), and let p be an 
accumulation point of this sequence. We must show 
that p E D+(S) or pES. Suppose that p ~ S, so that 
there is some neighborhood 0 of p which does not 
intersect S. Let I' be any past-directed timelike curve 
from p, without a past endpoint. Since the Pi accu
mulate at p, there is some pj and some timelike curve 
1" from pj into the past such that 1" joins I' in 0 and 
thereafter coincides with y. But Pi E D+(S), and so 1" 
must intersect S. The intersection cannot occur in 0, 
and so must take place after 1" and I' coincide. Conse
quently, I' intersects S, and so p E D+(S). 

Note, however, that it is not true in general that 
D+(S) = D+(S). For example, let S be the surface 
t = 0, x2 + y2 + Z2 > ° in Minkowski space. 

There are, in fact, a number of relations between 
the operations of closure, D+, and H+. For example, 
either all or none of the following five sets are c1bsed: 
S, D+(S), D(S), H+(S), and H(S). The proof is along 
the lines of Property 2, but incorporates the fact that, 
whenever Sis achronal, so is S, and points of S - S 
can never appear in D(S). One normally considers the 
domain of dependence only in the case when S is 
closed. If we think of S as a surface on which to give 
initial data, then this restriction is not a very severe 
one, for initial data on S automatically determine, by 
continuity, the data on S. 

In order that a point p be in D+(S), we require that 
every past-directed timelike curve from p, without a 
past endpoint, intersect S. It might be asked, therefore, 
what is the effect on D+(S) if "timelike curve" is 
replaced by "timelike or null curve." We certainly 
expect that the domain of dependence, defined in this 
alternative way, would be no larger than D+(S). It 
turns out that neither is D+(S) made significantly 

smaller. The only effect of including null curves in the 
definition of the domain of dependence is to eliminate 
certain points of the Cauchy horizon from D+(S). 

A continuous curve I' is said to be a causal curve if, 
given any two points p and q of I' and any neighbor
hood 0 c M of the closed interval [p, q] of 1', there is 
a smooth curve from p to q in 0 whose tangent vector 
is everywhere timelike or nul 1. 19 

Property 3: Let p E D+(S) - H+(S). Then every 
past-directed causal curve from p, without past end
point, intersects S. 

Proof: Let yet) be a past-directed causal curve from 
p, without past endpoint, where t has range [0, (0) 
and 1'(0) = p. Let d denote the distance function 
between pairs of points of M with respect to some 
positive-definite metric on M. Since p E D+(S) -
H+(S) , we may choose a point q E D+(S) (1 [+(p) 
such that d(p, q) < 1. Since 1'(1) E [-(q), we may find 
a past-directed timelike curve y'(t), defined for 
t E [0, 1], from q such that 

yet) E [-(1" (t», d(y(t), 1" (t» < (1 + t)-1 (1) 

for all t E [0, I]. Since 1'(2) E [-(1"(1», we may extend 
the curve 1" so that y'(t) is timelike and subject to (I) 
for t E [0,2]. Continuing in this way, we obtain a 
past-directed timelike curve y'(t), defined and subject 
to (1) for aU t E [0, (0). The curve 1" cannot have a 
past endpoint, for if there were such an endpoint it 
would [by (1)] also be an endpoint of y. Therefore, 
since q E D+(S), 1" intersects S. It now follows from 
(1) that some points of I' are to the past of S, and 
hence not in D+(S). Let s be the first point at which 
I' leaves D+(S). Since D+(S) = D+(S) uS, s is either 
inS or in D+(S). But s cannot lie to the future of S, 
for in this case s E [-(q) (1 [+[S] C interior D+(S). 
Therefore, s is in S. Finally, s must be in S itself, for 
otherwise a timelike curve, drawn from q and passing 
through s, would violate the fact that q E D+(S). 

Example 3 shows that, when p E H+(S), the question 
of whether or not causal curves from preach S be
comes more complicated. For some p E H+(S) it may 
happen that every past-directed causal curve from p 
intersects S, while this property need not necessarily 
hold for all points of H+(S). 

We have seen in Sec. 2 that, in many examples in 
which there is a Cauchy horizon, H+(S) is a null 
surface. This property does not hold in general: If, 
for example, S consists of those points of the plane 

19 In particular, a smooth curve is a causal curve if and only if its 
tangent vector is everywhere timelike or null. The above definition is 
rather awkward because it is necessary, for the purposes of Sec. 4, 
to admit causal curves which are not smooth. 
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t = 0 in Minkowski space for which x, y, and z are 
rational, then S = D+(S) = H+(S), and H+(S) is 
neither a surface nor null. However, H+(S) always 
contains null geodesics through its points not included 
in S. This important property of the Cauchy horizon 
has been used in theorems about singularities. 4-6 

Property 44,7.9: Let p E H+(S) - S. Then there 
exists a segment r of a past-directed null geodesic 
from P which remains entirely in H+(S) , and which 
either has no past endpoint or else has a past end
point contained in S. 

Proof: Choose a sequence of points Pi which lie to 
the future of P and approach P as a limit. Since 
P E H+(S), none of the Pi lie in D+(S). Therefore, 
through each Pi we may draw a past-directed timelike 
curve Yi' without past endpoint, such that the Yi do 
not intersect S and, in particular, do not enter D+(S). 

Define a partial limit of the Yi to be a segment 
r' c [+[S] of a past-directed null geodesic from P 
such that, given any point q E r' and any neighbor
hoods U and V of f' and q, respectively, an infinite 
number of Yi remain in U, at least until they reach V. 
We first show that each partial limit is contained in the 
Cauchy horizon. Let q E r'. Then each past-directed 
timelike curve from q enters [-(P) ('\ [+[S] c D+(S), 
and so intersects S. Furthermore, no point of [+(q) is 
in D+(S) , for otherwise at least one Yi would enter 
D+(S). Thus q E H+(S). 

Let f' be a partial limit, and suppose that r' has a 
past endpoint q E [+[S]. Choose a small compact 
neighborhood V of q. The sequence of points at which 
the Yi first leave V must, by compactness, have an 
accumulation point r. Since the Yi cannot enter 
D+(S), r ¢ [-(q). Since the Yi are timelike and pass 
arbitrarily close to q, [+(r) :::;) [+(q). Therefore, there 
is a segment rtf c V of a null geodesic joining q to r. 
The tangent vectors to r' and rtf must agree at q, 
for otherwise r", and hence the Yi' would enter 
[-(P) ('\ [+[S] c D+(S).9 Therefore, f' U f" is a 
partial limit of the Yi' We have shown that any 
partial limit which has a past endpoint in [+[S] may be 
extended, as a partial limit, beyond that endpoint. 

It follows that there exists a partial limit r which 
either has no past endpoint or else has a past endpoint 
s ¢ [+[S]. In the latter case, since r c D+(S), we must 
have S E D+(S) = D+(S) u S, and so S E S. 

Examples 2 and 3 show that there may be more than 
one null geodesic r from p. These same two examples 
also illustrate the fact that each of the three possibilities 

admitted by Property 4 (f has no past endpoint, f 
has a past endpoint in S, and r has a past endpoint 
in S - S) can occur. 

We next consider some results involving Cauchy 
surfaces. It is an immediate consequence of the 
definitions that S is always a Cauchy surface for the 
space-time given by the interior of D(S), provided 
that set contains S. Thus all results about Cauchy 
surfaces apply equally well to the interior of the do
main of dependence. We first show that, as expected, 
the condition that S be a Cauchy surface is precisely 
the condition that H(S) be empty. 

Property 5: Let S be nonempty and M connected. 
Then a necessary and sufficient condition that S be a 
Cauchy surface is that H(S) be empty. 

Proof: If S is a Cauchy surface, then D(S) = M, 
and so H(S) is empty. Suppose, conversely, that 
H(S) is empty. In particular, H(S) is closed, and so, 
therefore, is D(S). We show that D(S) is also open. 
Let p E D(S). Since p ¢ H+(S), there is a point r to 
the future of p in D(S); since p ¢ H-(S), there is a 
point S to the past of p in D(S). We conclude from 
Property 1 that the open neighborhood [-(r) ('\ [+(s) 
of P is in D(S). Since D(S) is both open and closed, 
D(S) = M. 

One often uses Properties 4 and 5 together to estab
lish the existence of a Cauchy surface. By assuming 
some condition (such as an energy condition) which 
implies that null geodesics of the type required for 
Property 4 cannot exist, it follows that H(S) is empty 
and, therefore, that S is a Cauchy surface. 

The following result, using this type of argument, 
gives a characterization of a Cauchy surface in terms 
of the behavior of null geodesics. 

Property 66 : A necessary and sufficient condition 
that an achronal set S be a Cauchy surface is that S be 
closed and every null geodesic in M intersect and then 
re-emerge from S. 

Proof' If S is a Cauchy surface, then D(S) is closed 
and so, therefore, is S. By Property 3, every null 
geodesic intersects S. In the proof of Property 3, it was 
shown in addition that every causal curve-and, in 
particular, every null geodesic-re-emerges from S. 

Suppose, conversely, that S is closed and that every 
null geodesic intersects and then re-emerges from S. 
Since Sis achronal, it follows that, for each point r 
of M, either rES, or every past-directed null geodesic 
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from r intersects S (Le., rE[+[SJ), or every future
directed null geodesic from r intersects S (i.e., r E [-[S]). 
Therefore, since S is closed, any timelike curve which 
passes from I+[S] into [-[S] must intersect S. 

The theorem follows from Properties 4 and 5 if we 
can show that H+(S) n S is empty. Suppose, on the 
contrary, that there were some point p E H+(S) n S. 
Every past-directed null geodesic from p emerges from 
S, and therefore from H+(S). Consequently, since 
H+(S) is achronal, we may, without loss of generality, 
assume that no point on a past-directed null geodesic 
from p intersect~ H+(S) except, of course, at p itself. 
[If there were such a geodesic, replace p by the last 
point in H+(S) on that geodesic.] Choose a spacelike 
2-surface C, topologically a 2-sphere, in a small 
neighborhood of p such that every past-directed null 
geodesic from p intersects C, and such that each point 
of C lies on such a null geodesic. (C is a cross section 
of the null cone ofp.) Each pointq E C is not in H+(S) , 
and so there exists a q' which is to the future of q and 
which is in either I-[S] or D+(S). Letting C' denote the 
union of the q', it follows that [-[C'] is open and 
contains C. Consequently, there exists a point r E 

[+(p) such that every past-directed timelike curve from 
renters I-[C']. But [-[C') c [-[S] U D+(S), and so 
every such curve mustintersect S. Therefore r E D+(S), 
which contradicts the fact that p E H+(S). 

The condition "s be closed" is actually necessary in 
Property 6, as the following example will show. Let S 
be the surface in Minkowski space given by 

S = {(t, x, y, z) I t = 1, X2 + y2 + Z2 ~ 1, or 

o < t < 1, X2 + y2 + Z2 = t 2} 

(see Fig. 7). Then every null geodesic intersects and 
re-emerges from S; but, since S is not closed, it cannot 
be a Cauchy surface. If, in the above example, we 
remove from the space-time the set of points with 
t ::::;; 0, then S is closed. (The point at the origin, which 
was previously in the closure of S, is now no longer a 
point of the manifold.) However, S is still not a 

~s 
,----.:.~:---- --- ' ... _------

1<0 

FIG. 7. An achro
nal set S in Min
kowski space (one 
spatial dimension 
suppressed). The 
point marked "ori
gin" is not in S, and 
so D+(S) cannot 
include any point to 
the future of this 
point. However, it 

will be observed that every null geodesic intersects and then re
emerges from S. If, in this space-time, we remove the points on and 
to the past of the plane 1= 0, then S is closed. However, certain null 
geodesics (namely, those which would have passed through the 
origin) do not now re-emerge from S. 

Cauchy surface: Now it does not satisfy the other 
condition of Property 6-namely, that every null 
geodesic re-emerge from S. 

Geodesics are not a very useful way to characterize 
the domain of dependence. Despite Property 6, it is 
possible that every past-directed null geodesic from a 
point p intersects and then re-emerges from S, even 
though p ¢ D+(S). (Let S be the surface t = 0, 
X2 + y2 + Z2 ~ 1 in Minkowski space.) In Example 6, 
every timelike geodesic intersects and re-emerges from 
S, but S is not a Cauchy surface. If, however, every 
timelike and every null geodesic intersects S, then S 
is necessarily a Cauchy surface. In fact, if the point 
p is such that every past-directed timelike and null 
geodesic from p intersects S, then p E D+(S). The 
converse is false, e.g., Examples 3 and 6. 

Our next property of the domain of dependence 
asserts that nothing very interesting from a topological 
viewpoint can take place in D+(S). Suppose, for 
example, that we have two universes which, at some 
time, join together to form a single universe. We 
might wish to give initial data for this system by 
specifying a Cauchy surface S consisting of two dis
joint pieces, one in each universe. The idea would then 
be that the initial data on S would predict the separate 
evolution of the two universes, and also their ultimate 
confluence. Property 7 asserts, among other things, 
that such a specification is impossible. 

Property 76 •9 : Let S be a Cauchy surface for the 
space-time M. Then M is topologically S x R. In 
particular, if M is connected, so is S. 

Proof: Choose a nowhere-vanishing timelike vector 
field t a on M. Exactly one trajectory of ta passes 
through each point of M. Since S is a Cauchy surface, 
each trajectory intersects S at just one point. We may 
therefore define a scalar field g;, a "time parameter," 
by imposing the two conditionstaVag; = 1 and g; = 0 on 
S. It is always possible to rescale t a so that g; assumes 
arbitrarily large and arbitrarily small values along 
each trajectory.20 Now consider the one-parameter 
family of surfaces S., given by g; = con st. Exactly one 
of these 3-surfaces passes through each point of M. 
Furthermore, any two of these surfaces, S., and S.", 
are homeomorphic: The mapping from S., ontoS.,' is 
obtained by following along the trajectories of tao 
Hence, M = S x R. 

20 This rescaling may be accomplished as follows: The total 
length of a trajectory is a lower semicontinuous function on S. 
Therefore, this function is the limit of some monotonically in
creasing sequence 'Pi (i = 1, 2, ... ) of functions on S. Rescale ". 
so that 'P = i on the surface whose proper distance from S along 
the trajectories is 'Pi' 
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Examples 5, 6, and 7 show that the converse of 
Property 7 is false: M may be a topological product 
without its having a Cauchy surface. In Sec. 5 we shall 
obtain a stronger version of Property 7: The one
parameter family of 3-surfaces can be so chosen that 
each is a Cauchy surface. 

Our last two properties of the domain of dependence 
are proved most easily using a topology on sets of 
curves to be introduced in Sec. 4. The proofs will be 
given at the end of that section. 

Property 82 : Let p E D+(S) - H+(S). Then the 
closure of the set [-(F) n [+[S] is compact. 

Note in addition that when p E D+(S) - H+(S), 

then [-(P) ('\ S, a closed subset of [-(p) ('\ [+[S], is 
also compact. The converse of Property 8 is false. In 

fact, it is possible for [-(P) n [+[S] to be compact for 
every p E M even though S is not a Cauchy surface. 
(If, however, we assume in addition that M has no 
closed causal curves, then the converse, as stated 
above, is true.) 

Property 9, which has been used in theorems about 
singularities, will be required for Sec. 6. 

Property 92•9: Let p E D+(S) - H+(S). Then there is 
a timelike geodesic from p to S whose length is at least 
as large as that of every other smooth causal curve 
fromp to S. 

4. GLOBAL HYPERBOLICITY 

The notion of global hyperbolicity was introduced 
by Leraylo in order to deal with questions of existence 
and uniqueness of solutions of hyperbolic differential 
equations on a manifold. It has been used, in partic
ular, in the study of the Cauchy problem in general 
relativity. 12 

In order to define global hyperbolicity, it is neces
sary to introduce a topology on certain collections of 
curves in the space-time M. Let p and q be two points 
of M, and let C(p, q) denote the collection of all 
causal curves from p to q. The set of all curves in 
C(p, q) which lie in 0, and 0 ranges over all open sets 
in M, defines a basis for a topology on C(p, q). Thus, 
for example, a s~quence Yi of curves approaches a 
curve Y if the Yi are eventually contained in any open 
set in M containing y, which corresponds to the 
intuitive notion of curves "approaching" another 
curve. It should be pointed out, however, that our 
topology is not very useful in the presence of closed 
causal curves. [In particular, C(p, q) is not necessarily 
Hausdorff in this case.] Fortunately, it is possible to 

arrange matters so that the topology need only be used 
in the absence of closed causal curves.21 

If M has no closed causal curves, then the topo
logical space C(p, q) has a countable basis. 22 

A space-time M is said to be globally hyperbolic1o •11 if 
M has no closed causal curves and if C(p, q) is 
compact for every p and q. We shall not derive any 
consequences of global hyperbolicity, since, in the 
following section, we prove that this condition is 
equivalent to the existence of a Cauchy surface. 

For problems involving Cauchy surfaces, it is con
venient to work with a slightly different set of curves. 
Let p be a point and S a subset of M, and let C(p, S) 
denote the collection of all causal curves with future 
endpoint p and past endpoint in S. The set of curves in 
C(p, S) which lie in 0 and have past endpoint in 0', 
as 0 and 0' range over all open sets in M, is a basis for 
a topology on C(p, S). When S is a single point g, the 
topologies on C(p, q) and C(p, S) coincide. 

The interest in C(p, S) stems primarily from the 
following lemma: 

Lemma 10: If S is a Cauchy surface, then C(p, S) is 
compact. 

Proof: Let Yi be a sequence of curves in C(p, S). 
Define a partial limit of the Yi to be a past-directed 
causal curve r from p such that, given neighborhoods 
U and V of r and a point q E r, respectively, an 
infinite number of Yi remain in U at least until they 
reach V. Suppose a partial limit r has a past endpoint 
q such that, for some neighborhoods U and V of rand 
q, with V compact, only a finite number of the Yi 
which remain in U until they reach V have a past 
endpoint in V. The points at which these Yi leave V 
must, by compactness, have an accumulation point 
q' E V. In this case we may extend r to a partial limit 
with past endpoint g' (see the proof of Property 4). 
Thus, every partial limit may be extended to a partial 
limit which either has no past endpoint or else is an 
accumulation curve of the Yi' But S is a Cauchy sur
face, and so any causal curve without past endpoint 

21 Leray's topology is "reasonable" even in space-times with 
closed causal curves because it refers directly to the mappings which 
define a curve. Our topology, by referring only to the images of such 
mappings, is considerably easier to state and visualize, but suffers 
from the more limited range of applicability described above. In the 
absence of closed causal curves, the mapping is determined (up to 
monotonic changes in the parameter) by the image; then Leray's 
topology and our topology coincide. 

2. This follows from the fact that C(p, q) is a separable metric 
space. To construct a countable dense set in C(p, q), choose a 
countable dense set Pi' including the points P and q, in M [see R. 
Ge~och, J. Math. Phy •. 9, 1739 (1968)]. Consider curves Y E C(p, q) 
whIch consIst of geodesic segments, each of which lies in a normal 
neighborhood and joins two Pi' A metric on C(p, q) is obtained using 
the "maximal distance" between curves with respect to a positive
definite metric on M. 
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must intersect and re-emerge from S. Such a curve 
cannot be a partial limit of the Yi' Thus, every se
quence in C(p, S) has an accumulation curve, and so 
C(p, S) is compact. 

Lemma 10 has a number of useful consequences. 
In particular, it provides us with easy proofs of 
Properties 8 and 9 of Sec. 3. 

To prove Property 8, consider a sequence of points 
Pi E [-(P) (l [+[S]. For each Pi draw a timelike curve 
from P to Pi to S. This sequence has a limit curve r 
with future endpoint P and past endpoint in S. There
fore, r is a compact set. An infinite number of Pi are 
contained in any neighborhood of r, and so the Pi 
have an accumulation point. [Note that we have 
actually proved slightly more than Property 8-

namely, that any point of [-(f) (l1+[S] lies on a 
curve in C(p, S).] 

To prove Property 9, consider the distance func
tion23 on causal curves from P to S. This function is 
upper semicontinuous, and so, since C(p, S) is 
compact, it assumes its maximal value. The curve on 
which the distance function is a maximum is the 
required geodesic. (Similarly, any two points which 
may be connected by a timelike curve in a globally 
hyperbolic space-time may also be connected by a 
timelike geodesic.) 

5. GLOBAL HYPERBOLICITY IS EQUIVALENT 
TO THE EXISTENCE OF A CAUCHY SURFACE 

In this section we shall prove our main theorem, 
the equivalence of global hyperbolicity and the exist
ence of a Cauchy surface. The proof is based on the 
notion of the past volume and future volume of a point. 
Select an arbitrary positive volume element dV on M 
such that the total volume of M is equal to unity24: 

J dV = 1. 
ill 

The past volume of a point P, V-(p), is defined as the 
volume of the past of p: 

V-(p) =J dV > 0, 
r(p) 

and similarly for the future. As these volume functions 
appear to be useful tools for treating certain global 
aspects of space-times,25 we first derive some of their 
elementary properties. 

23 A. Avez, Grenoble Universite Institut Fourier 13, 105 (1963). 
24 Such a volume element always exists. Since M has a metric, 

it is paracompact [see R. Geroch. J. Math. Phys. 9, 1739 (1968)) and, 
therefore, triangulable [see J. H. C. Whitehead, Ann. Math. 41, 809 
(1940)). Choose a volume element on each of the 4-simpJices of M 
such that the volume of the first simplex is !, that of the second 1, 
etc. (No assumption of orientability is necessary.) 

•• S. W. Hawking, Proc. Roy. Soc. (London) 308A, 433 (1969). 

An important property of the volume functions is 
that, in the absence of closed timelike curves, 
V- (respectively V+) is strictly increasing along 
each future-directed (respectively, past-directed) 
timelike curve. [Proof: If there are no closed timelike 
curves, and if p E [-(q), then [-(p) is a proper subset 
of [-(q). Therefore, V-(p) < V-(q).] In fact, that 
V- be increasing along timelike curves is nec
essary and sufficient for the absence of closed timelike 
curves.26 [Proof: If P and q lie on a closed time
like curve, then [-(p) = [-(q), and so V-(p) = 
V-(q).] 

In general, V+ and V- will not be continuous. For 
example, let M be Minkowski space with the space
like half-plane t = 0, x ~ ° removed. Then V- is 
discontinuous on the null half-plane 0 < t = -x, and 
V+ is discontinuous on the null half-plane ° > t = x. 
(There are similar examples in which only one of the 
volume functions is discontinuous.) 

However, when M is globally hyperbolic, then both 
V+ and V- are continuous everywhere. To prove this 
result, let Pi be a sequence of points of M, and let P 
be the limit point of this sequence. We must show that 
lim V-(Pi) = V-(p). Let L\V be a subset of M such 
that L\ V c [-(q) for some q E [-(P). Then, since the Pi 
approach P, there is some j such that q E [-(Pi) when
ever i > j. That is, the [-(Pi) eventually contain L\ V. 
Since [-(p) can be written as a union of such L\ V's, we 
conclude that 1im V-(Pi) ~ V(P). 

We use global hyperbolicity to obtain an upper 
limit for the V-(Pi)' Let L\ V be a subset of M such that 
L\ V c [+(q) for some q such that q cannot be joined to 
P by a future-directed causal curve. We show that L\V 
eventually lies outside of the [-(Pi)' Suppose, on the 
contrary, that there were an infinite number of Pi such 
that L\ V c [-(Pi)' Then q E [-(Pi) for an infinite 
number of Pi' Choose any point q' to the future of p. 
Since the Pi approach p, the Pi are eventually in [-(q'). 
For each i such that Pi E [-(q') (l [+(q), draw a 
timelike curve Yi from q' to Pi to q. Since M is globally 
hyperbolic, this sequence of timelike curves from q' to 
q has a limit curve r. Since the Pi approach p, this 
limit curve passes through P, thus contradicting our 
assumption that q and P could not be joined by a 
causal curve. Therefore, L\ V is eventually outside the 
[-(Pi)' But the interior of M - [-(p) may be written 

2. The situation is somewhat more complicated in the case of 
causal curves. If V- is strictly increasing along causal curves, then 
there cannot be closed causal curves. However, it is necessary to 
impose a condition stronger than the absence of closed causal 
curves-for example, the strong causality condition (see Ref. 4)-in 
order to insure that V- be strictly increasing along causal curves. 
That is to say, strong causality implies V- increasing along causal 
curves which, in turn, implies no closed causal curves. For neither 
of these implications is the converse true . 
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as the union of such ~V's, and so lim V-(Pi) ~ V-(p). 
We conclude that V- is continuous on M. 

The converse of this result is false: The continuity 
of both V- and V+ is not sufficient for global hyper
bolicity (Examples 5 and 6). 

Note that the continuity of V± at each point is 
independent of the choice of volume element. Thus 
we have an invariant separation of the points of any 
space-time M into four classes: points at which both 
V+ and V-, V+ but not V-, V- but not V+, or neither 
are continuous. We have proven that the collection of 
space-times for which all points are in the first class 
includes the globally hyperbolic space-times. It might 
be interesting to study this collection in more detail. 

We now prove our theorem. 

Theorem 11: A space-time M is globally hyperbolic 
if and only if it has a Cauchy surface. 

Proof: Suppose first that M has a Cauchy surface 
S, so that, in particular, M has no closed causal 
curves. Let P and q be two points of M, and let Yi be a 
sequence of past-directed causal curves from P to q. 

We consider two cases. If both P and q are in D+(S), 
then each curve Yi may be extended to a curve which 
intersects S. By Lemma 10, the resulting sequence of 
causal curves has an accumulation curve r. But since 
each of the Yi contains q, so must r. The portion of r 
between P and q is an accumulation curve of the Yi' 
If, on the other hand, P E D+(S) and q E [-[S], then 
each of the Yi must intersect S. Thus, by Lemma 10, 
the curves Yi () D+(S) have an accumulation curve, 
say r, with past endpoint S E S. Choose a subsequence 
of the Yi whose intersection points with S approach 
s. Then the curves Yi () D-(S), for Yi in this sub
sequence, have an accumulation curve f'. The curve 
r (respectively, r') has a past (respectively, future) 
endpoint s, and so r u r' is an accumulation curve of 
the Yi' We have shown that, for every P and q, 
C(p, q) is compact, and therefore that M is globally 
hyperbolic. 

To prove the converse, suppose that M is globally 
hyperbolic, whence V+ and V- are continuous. The 
function A = V-I V+ is also continuous and strictly 
decreasing along each past-directed timelike curve. 
Let S be the set of points at which A = 1. Since A is 
strictly decreasing along timelike curves, Sis achronal. 
We shall show that S is also a Cauchy surface. Let p 
be a point of M with ).(p) > 1, and let Y be any past
directed timelike curve, without a past endpoint, from 
p. Since A is continuous, Y must intersect S, provided 
we can show that A assumes arbitrarily small positive 
values on y. Let q be a point of M, and ~ V a subset of 

Min [+(q). We first show that ~V cannot be in [-(f) 
for every point r of y. Suppose, on the contrary, that 
q E nrEy [-(r). Choose a sequence of points Pi on Y such 
that PH1 E [-(Pi) and such that every point of Y lies to 
the past of at least one Pi' For each i, draw a timelike 
curve which begins at p, coincides with Y to pi' and 
then continues to q. Since M is globally hyperbolic, 
this sequence has a limit curve, r. The limit curve 
evidently contains y. But this is impossible, for Y, if it 
were contained in a (compact) casual curve from P to 
q, would then have a past endpoint. Therefore, there 
must be some point r of Y such that ~ V ¢ [-(r). Since 
M may be covered by such ~V's, we conclude that 
V-(r) approaches zero as r continues into the past 
on Y, and, therefore, that Y intersects S. We have 
shown that every past-directed timelike curve from 
P intersects S, i.e., that P E D+(S). Similarly, if 
A(p) < 1, then P E D-(S). Therefore, S is a Cauchy 
surface. 

The proof of Theorem 11 also provides us with a 
somewhat stronger version of Property 7 (Sec. 3). 
Consider the one-parameter family of surfaces S;. in 
M, given by A = const. Then the S;. are achronal, and 
exactly one S;. passes through each point of M. 
Furthermore, by the argument used in the theorem, 
each S;. is a Cauchy surface. Thus, if a space-time M 
has a single Cauchy surface, then M may be covered 
by a one-parameter family of nonintersecting Cauchy 
surfaces. The argument of Property 7 shows that these 
Cauchy surfaces all have the same topology. 

6. GLOBAL HYPERBOLICITY IS STABLE 

In this section we shall prove that global hyper
bolicity is a stable property of space-times, i.e., that 
arbitrary, sufficiently small variations in the metric 
will not destroy global hyperbolicity. This result is 
useful both conceptually and as a lemma for simplify
ing the proofs of various other properties of space
times.' 

In order to make clear what "sufficiently small" 
means, we must introduce a topology on the collection 
~ of all metrics on M of signature (+, -, -, -). 
Let hab , h~b E~. We write hab < h~b if every vector Which 
is timelike or null with respect to the metric hab is 
strictly time1ike with respect to the metric h~b' In
tuitively, hab < h~b means that the light cones of h~b 
are more "opened out" than those of hab . The set of 
gab E ~ such that hab < gab < h~b' as hab and h~b range 
over ~, forms a basis for a topology on ~. This topol
ogy does not distinguish between conformally related 
metrics: i.e., two metrics which differ only by a con
formal factor are always contained in the same open 
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sets in ~,27 This feature is perhaps an advantage in 
discussing properties of space-times-such as global 
hyperbolicity-which are conformally invariant. Two 
metrics which are not conformally equivalent may 
always be separated by disjoint open neighborhoods. 

The characteristic feature of our topology on ~ is 
that, compared with alternative topologies,5 it con
tains a great many open sets. That is to say, it is very 
difficult in this topology to have a sequence of metrics 
approach a given metric as a limit. For example, the 
sequence 

where 
gab(n) = diag ({tn' -1, -1, -I), 

{tn = [1 + n-2(x2 + y2 + Z2 + t2)]-I, 

n = 1,2,"', 

does not approach Minkowski space as a limit. 
However, the topology is perhaps the most appro
priate one for discussing questions of stability.28 

Using our topology, we define stability as follows: 
A property of space-times is said to be stable if, given 
any 4-manifold M, the collection of metrics on M 
which have the given property forms an open set in ~. 

Theorem 12: Global hyperbolicity is stable. 

Proof: Let M, gab be a globally hyperbolic space
time. Choose a normalized volume element on M, 
and let S denote the Cauchy surface given by V+ = 
V-. For each value of the parameter 'T, set 

ST = {p EM I 'T = V+(P) ~ V-(P)} 

(see Fig. 8). Each ST is an achronal set in D+(S), and 
exactly one of the ST passes through each point of 
D+(S). 

We first show that, for each value of'T, the closed 

region CT = [-[ST] () [+[S] between ST and S is com
pact. Let Pi be a sequence of points in CT' If, for every 
q E M, there were only a finite number of Pi E [-(q) , 
then we should have lim V+(Pi) = 0, which contra
dicts the fact that V+(Pi) ~ 'T for all Pi E CT' Therefore, 
there exists a q such that [-(q) contains an infinite 
number of Pi' But [-(q) (") [+[S] is compact, and so, 
since it contains an infinite number of Pi' the Pi have 
an accumulation point. Consequently, C

T 
and also 

ST' a closed subset of CT , are compact sets. 

17 It is not difficult to construct a similar, but somewhat more 
complicated, topology which does distinguish between conformally 
related metrics. The idea of applying this alternative topology to 
problems in relativity theory was suggested by S. W. Hawking. For 
a discussion of such topologies, see Ref. 5. 

18 There is another topology on ~ which, because it contains very 
few open sets, is more suitable for questions involving limits [see R. 
Geroch, Commun. Math. Phys. 13, 180 (1969).]. It also differs 
from the topology above in that the manifold need not be given a 
priori. 

5., 
J 
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FIG. 8. The Cauchy 
surface S with the 
surfaces ST in D+(S) . 
We see that the ST form 
the future boundaries 
of a nested family of 
(compact) "bubbles" 
residing on S. (It may 
happen that some ST 
are disconnected. Then, 
as T decreases, new 
independent bubbles 

spring up in other regions of S. Later, as T decreases further, these 
bubbles coalesce.) 

We say that the family of surfaces S, ST are strictly 
spacelike, with respect to a metric hab' at a point P if 
there exists an open neighborhood 0 of P and a metric 
h~b > hab , defined in 0, such that no two points of a 
single surface Sf or S may be joined by a curve, time
like with respect to h~b and contained in O. The 
construction described at the end of the proof shows 
that S, ST may be replaced by surfaces which are 
strictly spacelike with respect to gab' (In fact, ex
amples suggest that these surfaces are already strictly 
spacelike, but no proof is known.) With S, ST strictly 
spacelike with respect to gab' then, since M is para
compact,29 there exists a metric hab > gab such that S, 
ST are strictly spacelike with respect to hab . 

Let PEST.' and let y be a curve from P, past
directed and timelike with respect to hab' and without 
a past endpoint. We shall show that y must intersect 
S. Since the ST are strictly spacelike with respect to 
hab' the parameter 'T is strictly increasing into the past 
along y. Consequently, since CT is compact and since . . 
y has no past endpoint, y must re-emerge from CT.' 
The boundary of CT. consists of ST. and certain points 
of S. The point of emergence of y cannot be in STo' for 
'T is strictly increasing along y. Therefore, y intersects 
s. 

Using a similar construction for D-(S), we obtain 
a metric hab > gab' defined on M, with respect to 
which S is a Cauchy surface. Therefore, S is a Cauchy 
surface with respect to any metric < hab' an open set 
in ~ which includes gab' We conclude that global 
hyperbolicity is stable. 

Finally, we outline the construction, required for 
Theorem 12, which replaces achronal surfaces by 
strictly spacelike surfaces. Consider two Cauchy 
surfaces S and Sf in a space-time M, and suppose that 
Sf c D+(S). From Property 9 we see that, for each 
point P, there is a timelike geodesic from P to S whose 
length is at least as large as that of every other geodesic 
from P to S. Let d(p, S) denote this length, whence 

20 R. Geroch, J. Math. Phys. 9,1739 (1968). 
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d(p, S) is continuous in p. Define the Cauchy surface 

L (S, S') = {p E M I d(p, S) = d(p, S'), 

p E D+(S) n D-(S')}. 

strictly spacelike surfaces. We replace S by the Cauchy 
surface S = L (S, S'), where Sand S' are the Cauchy 
surfaces v+ = V- and V+ = tv-, respectively. For 
the Sr' we first note that for each T, Wr = (Sr U ~) -

[-[Sr U .5] is a Cauchy surface (see Fig. 8). Replace 

Let p be a point of L with d(p, S) = do > 0, y a 
timelike geodesic from p to S of length do, and q a 
point on y such that d(q, S) = do - E. Then, for E 

sufficiently small, q lies in a normal neighborhood 0 
of p. The set A consists of points in 0 whose geodesic 
distance from q is E is a regular, spacelike 3-surface 
through p. For each point a E A, d(a, S) ;;::: do. It 
follows that L is strictly space\ike at all points not 
included in S or S'. 

lt is necessary for Theorem 12 to replace S, Sr by 
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each Sr by L (Wr2' Wr) - S. 
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In this paper a rigorous description of a system consisting of identical particles is given for which the 
particle number is a superselection rule. A state of such a system is described by a sequence of density 
operators D = (DO, D" ... , Dn, ... ), where Dn acts in n-particle space and the asymptotic behavior 
is determined by the requirement 

00 

L k n jDnl < 00 for all k = 1,2, ... , 
n=O 

where I I denotes the trace norm. The (bounded) observables in turn are described by sequences of 
bounded self-adjoint operators: B = (8', B" ... ,Bn, ... ) such that 

sup k-n IiBnl1 < 00 for some k = 1,2, .... 
n 

The expectation value of the observable B in the state D can be expressed as 

where 
(B)D = (r(B) I D) = (B I L(D», 

00 

(B I D) = ITr (BnDn); 
n=O 

r denotes the expansion operator, whereas L stands for its adjoint, the contraction operator. The analog 
to the n-representability problem, i.e., the so-called representability problem, is put forward and its 
solution is connected with the solutions of the n-representability problem for different n. Finally, a 
possible mathematical foundation of the BCS theory is given. 

1. INTRODUCTION 

In a recent paper (Kummer,1 subsequently denoted 
by NRP) the n-representability problem for density 
operators was considered. The problem can be 
formulated in the following manner: Let HI be the 
Hilbert space of one particle, H" the n-fold tensor 

1 H. Kummer, J. Math. Phys. 8, 2063 (1967). 

product of HI, and HnA the physically relevant 
subspace (antisymmetric for fermions, symmetric for 
bosons) of Hn. Given a p-particle density operator 
DP, i.e., a positive linear operator in HP of trace 1, 
whose range is contained in HPA, under what cir
cumstances does there exist an n-particle density oper
ator Dn, such that DP is the (n, p) contraction of Dn? 
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The (n, p) contraction L~ maps an n-particle density 
operator Dn onto the p-particle density operator DP 
defined by the requirement that its matrix representa
tion with respect to the complete orthonormal set 
(CONS) {ei } in RP is given by 

(ek I DVei) = Tr «Pi ® r-V)Dn), (Ll) 

where P~ denotes the operator defined by 

P~u = (ek I u)e;, U E H P
, (1.2) 

and r-p stands for the identity in Rn-p. 
If DP is the (n, p) contraction of some n-particle 

density operator, we called DP n-representable and the 
set of all n-representable p-particle density operators 
we denoted by ~~. We proved that the knowledge of 
the exposed points of ~~ is sufficient to characterize 
the closure of ~~ in some suitable topology (NRP, 
Theorem 9). Moreover, we were able to give a 
characterization of the exposed points of ~f~ . 

Let us call the adjoint mapping r~ of the (n, p) 
contraction operator V:. the (p, n) expansion operator. 
r~ maps a bounded p-particle operator BP (i.e., a 
bounded self-adjoint operator in RP whose range is 
contained in RPA) onto the following operator in n

particle space: 

An stands for the projector of Rn onto the physically 
relevant subspace RnA. An operator in n-particle 
space of the form (3) we called a p-partic/e observable 
of the system of n particles. 

A p-subspace of RnA is any subspace of RnA which 
occurs as the null space of some positive p-particle 
observable. The set [V(RnA) of all p-subspaces of RnA 

forms a lower sublattice of the set [(RnA) of all 
subspaces of RnA containing the subspace [0]. A 
minimal element of the partially ordered set [p(RnA) -
[0] is called a minimal p-subspace. 

The full pre-image of an exposed point of ~~ with 
respect to the (n, p) contraction L~ consists of all n
particle density operators whose range is contained in 
some minimal p-subspace (NRP, Theorem 8). 

In this paper we wish to investigate the analogous 
problem for a system consisting of an indefinite but 
conserved number of particles. 

A state of such a system can be described by a 
sequence, 

D = (DO, Dl, ... ), (1.4) 

of density operators, where the nth component 
operates in n-particle space R"A and the following 

normalization condition is satisfied: 

0') 

~Tr(Dn) = 1. (1.5) 
n~O 

We introduce the symbol ~ to represent the set of 
all sequences D which satisfy Eq. (5) and, in addition, 
fulfill certain conditions restricting the behavior of the 
sequence for n - 00. . 

On the other hand, a (bounded) observable can be 
represented by a sequence, 

B = (BO, Bl, B2, ... ), 

of bounded self-adjoint operators, where the range of 
the nth component is contained in RnA. 

If we introduce the bilinear product 

00 

(B I D) = ~Tr(BnDn), (1.6) 
n~O 

we can express the expectation value of the observable 
B in the state D by 

(B)D = (r(B) I D) = (B I L(D». 

r stands for the expansion operator defined com
ponentwise by 

r(Bf = i (n)r~(BV), 
V~O p 

and L denotes the contraction operator which can be 
considered as the adjoint operator of r with respect to 
the bilinear product (6). It has the following com
ponentwise representation: 

Let us introduce the projection TIP which maps B 
and D onto their respective "initial segments of 
length p." Thus, e.g., 

TIP(B)fl = Bn, n ~p, 

= 0, n > p. 

A p-particle observable of our system can be defined 
as a bounded observable for which TIV(B) = B. Its 
expectation value in the state D is given by 

(r(B) I D) = (TIP(B) I L(D» = (B I TIv • L(D» 

= (B I U(D». 

Here we have introduced the symbol LV for the p 
contraction operator defined by 

LP = TIP 0 L. 

It replaces the (p, n) contraction operator L~ in the 
case of a fixed number (n) of particles. 
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The image ~f[p] == U(3') is a subset of the set 

'TO - {D' D - (1 Dl ... DP 0 ... )} • (1') = , - , , , " 

of sequences of density operators whose zeroth com
ponent equals I and whose components of higher 
order than p vanish. 

An analogous problem as in the case of a definite 
particle number arises: Give a characterization of 
:f[p] as a subset of3'1p)' One could call this problem the 
representability problem. Since 3' is convex and LP is a 
linear mapping, 3'[p] is a convex subset of 3'?p)' We 
shall call an element of ~>?p) a potential p state and an 

element of 3'[p] an actual p state. (The bar refers to the 
closure in a suitable topology.) We shall prove that 

the closure 3'[1'] can be described as the closed convex 
hull of certain special points of 3'[1'] which will turn 
out to be related to the exposed points of 3'~ for some 
n ~ p and the exposed points of 3'n for some n ~ p 
(Theorem 6). 

In the special case where p = 1 we obtain the well
known result that in the case of fermions a potential 
one-state is actual if and only if the one-component 
Dl has eigenvalues not greater than one, whereas in 
the case of bosons every potential one-state is also 
actual-a statement which represents some weak form 
of the Pauli principle (cf. Theorem 7). 

Finally, we are able to build up a rigorous theory of 
the BCS ensemble (Sec. 4). An ordinary BCS ensemble 
is associated with a "geminal," i.e., a two-particle 
function. The set of all BCS ensembles constitutes a 
connected subset of the set of all states of the many
body system. By addition of some adherence points 
we can extend this set to the set of all generalized 
BCS ensembles. Such a generalized BCS ensemble is 
derived from a generalized AGP function (antisym
metrized geminal power) introduced by Coleman.2 

This is a function of the formg A ••• A g A [U], where 
g stands for a geminal and [U] for a Slater determinant 
associated with the (finite-dimensional) subspace U of 
the one-particle Hilbert space. In Theorem 8 we give 
the result of a calculation of the one- and the two
density operator of such a function, a task which 
already has been accomplished by Coleman3 in the case 
of U = 0 and of finite rank of the geminal g. However, 
since the extension to the case of infinite rank is 
nontrivial, we feel that it is in the interest of the reader 
of this paper if we repeat the calculation. 

Theorem 9 presents an explicit form of the one- and 
the two-density operator of a generalized BCS en-

• A. J. Coleman, "Lectures on Superconductivity," given at 
Queen's University, Kingston, Ontario, Canada, 1965-66. 

• A. J. Coleman, J. Math. Phys. 6, 1425 (1965). 

semble, and Theorem 10 confirms a conjecture by 
Coleman4 that everyone-state whose one-component 
possesses evenly degenerate eigenvalues is the one
contraction of a generalized BCS ensemble. 

2. MATHEMATICAL PRELIMINARIES 

In NRP we have shown that the fundamental 
mathematical object that describes a quantum
mechanical system is a dual pair of topological real 
linear spaces, rather than a Hilbert space. 

In conventional quantum mechanics this pair is 
constructed with the help of a Hilbert space, but, as 
we wish to demonstrate in this paper, it is not always 
desirable to stick to this method of construction. 

We intend to give a mathematically rigorous de
scription of a system consisting of an indefinite number 
of identical particles for which the particle number is 
an integral of motion. In this case both members of 
the fundamental dual pair «('), rp) «(') = set of observ
ables, rp = linear space generated by the states) have 
to be chosen as certain linear subspaces of the direct 
prod uct space: 

X sn = {B; B = (BO, Bl, ... ), Bn E sn}, (2.1) 
n=O 

where sn is defined (as in NRP) as the set of all 
bounded self-adjoint operators in Hn whose range is 
contained in HnA. (We introduce the definition 
HOA == C == field of complex numbers.) 

We define here the members of the dual pair, which 
we consider to be relevant for the physical system 
under consideration without further justification. 

Later on, in the course of the development of our 
scheme, we shall have the opportunity to point to the 
different reasons which lead us to this particular 
choice. 

First we give the definition of the component 
(describing the set of observables) of the dual pair. 
Let (')k be the following subspace of the product space 

X:=o s": 

Ok = {B E.8 sn; s~p k-n IIBnl1 < <X+ 
k = 1,2,3 .. '. (2.2) 

(We adopt the convention kO = 1.) It is a consequence 
of Lemma Al of the Appendix that (')k, equipped with 
the norm 

(2.3) 
n 

is a Banach space. It is clear that qk+1(B) ~ qk(B), and 
hence (')k s; (')k+I. (') is defined as the union of all the 
spaces (')k: 

00 

(') = U Ok. (2.4) 
k=l 

• A. J. Coleman, private communication. 
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A natural topology to introduce in I.') is the so-called Since 
inductive limit topology, i.e., the strongest topology (2.12) 

(2.13) 
such that all the imbeddings and 

(2.5) 

are continuous. A basis of neighborhoods of 0 is 
obtained by taking the neighborhoods in each of the 
I.')k'S. Since this topology is only of minor importance 
in the present cohtext, we shall refrain from comment
ing further on it. 

Next, we give the definition of the other component 
(space spanned by the states) of the dual pair. ffJ is 
defined as the intersection of all real linear spaces: 

cpk == {D; D = (DO, D I 
..• ), D n E S;, 2, k n IDnl < ex)}, 

n 

k = 1,2' . '. (2.6) 

Lemma Al provides us with the result that cp", 
equipped with the norm 

cc 
Pk(D) = 2, kn IDnl, k = 1,2,3 ... , (2.7) 

n=O 

it follows that the restrictions of into ST and pr n to ffJ 
are continuous maps. 

For the image in(sn) c 1.'), we choose the notation 
I.')(n), whereas I.')(n) will designate the initial segment of 
length n of I.') defined by 

I.')(n) == {B EI.');prm(B) = 0, Vm > n}. 

In a similar way we denote by ffJ(n) the image in(ST)' 
and by CP(n) the initial segment of length n defined by 

CP(n) == {D E cp;prm(D) = 0, Vm > n}. 

From (12) it follows that cp(n) and CP(n) are closed 
subspaces of cp. 

Lemma 1: (I.'), ffJ) is a dual pair of real linear spaces 
with respect to the bilinear form: 

(BID) = i Tr (BnDn), BEl.'), D E ffJ (2.14) 
n=O is a Banach space. Since obviously 

piD) :s;; pk+l(D) (2.8) (cf. definition Al of the Appendix). 

for all D E X :=0 ST' it follows that 

ffJk+l S ffJk. 
It is easy to see that 

(2.9) 

is a complete locally convex linear space under the 
topology generated by the sequence {h(D)} of norms. 
Such a space is metrizable (cf. Robertson5) and is 
called a Frechet space (F-space). 

The topology in ffJ can also be described as the 
weakest topology such that the imbedding mappings 

jk:ffJ- ffJk 
are continuous. 

The following injections are of some importance for 
the sequel: 

defined by 

in:Bn t--+ (0, 0,' .. ,Bn, 0, ... ), Bn E S", (2.10) 

and the projections 
prn:1.') - sn 

defined by 
pr n : B t--+ Bn , BEl.') . (2.11) 

Proof: First of all, we show that the series on the 
right side converges absolutely. From NRP (Lemma 4) 
we know that 

Tr (BnDn) :s;; IIBnIlIDnl. 

It follows that 
cc cc 

I(B I D)I :s;; 2, ITr (BnDn)1 :s;; 2, IIBnlllDnl 
n=O n=O 
cc 

= 2, k-n IIBnll k n IDnl :s;; qk(B)piD). 
n=O 

The last expression is finite if k is chosen to be 
sufficiently large. 

Now let 
(B I D) = 0, VB EI.'). 

In particular, this expression has to vanish for 
BE s(n). This leads to 

Tr (BnDn) = 0, V Bn E sn. (2.l5) 

But since (sn, S'7,) represents a dual pair with respect 
to the bilinear expression (14) (namely, the fundamen
tal dual pair associated with a system of n identical 
particles), it follows that Dn = O. Since n was chosen 
arbitrarily, it is immediate that D = O. In a similar 
way one shows that 

• A. P. Robertson and W. J. Robertson, "Topological Vector (B I D) = 0, VD E ffJ, 
Spaces," Cambridge Tracts in Mathematics and Mathematical 
Physics, No. S3 (1964). implies B = O. Q.E.D. 
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Remark: From this proof it is obvious that for any 
natural number p, (O(p) , fP(p» constitutes a dual pair 
of real linear spaces. 

Lemma 2: The topology induced by the seminorms 
{Pk(D)} on fP is compatible with the dual pair (0, fP)· 

Proof: Let f be a continuous linear functional on rp. 
Since for k = 1,2, ... , 

limPk(D - i i,,(DP») = lim i: kn IDnl = 0, 
n-+ 00 1)=0 n-+ 00 l=n+l 

it follows that 
n 00 

f(D) = lim L f(i,,(DP» = L fiDP), 
n .... oo p=o P=O 

where 
fp = f 0 ip. 

Since ip and f are both continuous, f1' is a continuous 
linear functional on S~,. From the results contained 
in the excellent book of Schatten's6 (which we have 
mentioned in NRP), it follows thatfp can be written as 

f1'(DP) = Tr (BP DP) 

for some operator BP ESP. 
Hence f has the form 

00 

f(D) = L Tr (BP DP). 
p=o 

It remains to be shown that the sequence B = 
(EO, Bi, B2,"') belongs to 0, i.e., that 

sup k-P II BPII < 00 for some k. 
p 

Let us assume the contrary. Then to every natural 
number k there exists an integer n(k) such that 

k-n(k) IIBn(k)II > k. 

Since 
IIBnll = sup ITr (BnDn)l, 

ID"I=l 

we can find D~(k) with ID~(k)1 = 1, such that 

k-n(k) Tr (Bn(k) D~(k» > k. 

Let us define 

Then 
lim f(D

k
} = lim Tr (Bn(k) D~(k»k-n(k) = 00, 

k- co k-+ 00 

because of the above inequality. 
On the other hand, it follows from 

lim PI(Dk ) = lim (//k)n(k) = 0, I = 1,2, ... , 
k-+ 00 k-oo 

• R. Schatten, Norm Ideals of Completely Continuous Operators 
(Springer-Verlag, Berlin, 1960). 

that the sequence {Dk } converges to O. In other words, 
it follows that f is not continuous contrary to our 
assumption. Q.E.D. 

Lemma 1 allows us to introduce natural topologies 
into 0 and fP, namely, the so-called weak topologies 
associated with the dual pair (cf. Appendix, definition 
A3). From Lemma 2 it follows that the weak topology 
in fP is not stronger than the topology induced by the 
norms {Pk(D)}. 

Since 

and 

(inCBn) I D) = Tr (Bnprn(D», VD E fP, Bn E Sn, 

(2.17) 

it follows from Theorem A4 of the Appendix that the 
mappings in and pr n and their restrictions to S;; and fP 
are continuous if we think of all four members of the 
two dual pairs (0, fP) and (sn, Sj,) as being equipped 
with their respective weak topology. Moreover, we 
easily recognize that the topologies induced by the 
weak topology of fP onto fP(n) and by the weak topol
ogy onto (9(n) coincide with the weak topologies 
associated with the dual pair: (O(n) , fP(n»' 

In accordance with the conventional description of 
a quantum-mechanical system, we have to make the 
following identifications: l') is the set of all observables 
of the system; :r is the set of all possible mixed states of 
the system, where 

:r == {D E fP; 'In' Dn ~ O'~oTr (Dn) = I}. (2.18) 

The projection cone of :r from the center 0 in fP is 
denoted by fP+: 

fP+ == {D; "In. Dn ~ O}. 

fP+ can be considered as the cone of positive elements 
of an order relation ~ with respect to which fP forms 
a partially ordered vector space. 

In a similar way we define the set 0+ by 

0+ == {B EO; '111' Bn ~ O} 

and call an observable B E (9+ hyper positive. The 
reason for this choice of rather a sophisticated name 
lies in our intention to introduce later on another 
(weaker) order relation into O. It will be of greater 
physical significance than the one induced by 0+. 
We want to reserve the name "positive observable" 
to designate an element of 0 which is positive with 
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respect to this second physically more important order 
relation. 

In the sequel we adopt from NRP the notation NA 
for the null space of a linear operator A and SA for the 
closure of its range. The following theorem describes 
the cones C)+ and rp+ geometrically. (The reader should 
compare it with Theorem 2 of NRP.) 

Theorem 1: (i) The sets C)+ and rp+ are the polar 
cones of each other (cf. definition AS of the Appendix) 
and therefore weakly closed. (ii) A subset of C)+ is 
exposed (cf. definition A13 of the Appendix) if and 
only if it is of the form 

(2.19) 

where V stands for a sequence V = (Vo, VI' V2 •• -) 

of closed subs paces Vn S HnA. The exposed rays are 
therefore of the form {pin(P); P ~ O}, where P denotes 
a one-dimensional projector in Hn A for some n. The 
statement remains valid after replacing C)+ by rp+. 
(iii) C)+ is the convex closure of its exposed rays and 
every extreme ray is exposed. This statement is also 
true for rp+. 

Proof' The theorem is an almost trivial consequence 
of NRP Theorem 2. 

(i) Let us determine the polar cone of rp+ defined by 

cp+ == {B EC):(B I D) ~ 0, VD E rp+}. 

In order that B E cp+, it is necessary that,for all natural 
numbers n and all Dn E SJ[.+ ::::: J(,J[., 

From NRP Theorem 2 it follows that Bn E sn+ == 
J(,n for all n, so that B E C)+. 

On the other hand, if BE C)+, then obviously 

(B I D) = ITr (BnDn) ~ 0 
n=O 

for all DE rp+. 
(ii) First let c)+(V) be a subset of C)+ of the indicated 

type. Choose operators Dn E J(,T such that D = 
(DO, Dl, D2, . .. ) belongs to rp and the null space of 
Dn coincides with V n: N D" = V n' Now apply NRP 
Lemma 3 to get 

{D}l. () C)+ = c)+(V). 

[The formation of the orthogonal complement ..l is 
understood with respect to the bilinear form (B I D).] 
Conversely, let {D}-L () C)+, DE rp+, be an exposed 
subset ofc)+ and let Vn be the null space of Dn. Then it 
is again an immediate consequence of NRP Lemma 3 

that 

{D}.L () C)+ = {B E C)+; RJ]" S Vn} = O+(V). 

A similar proof holds in the case of rp+. 
(iii) Let us denote by E the set of all elements of the 

form inCpt'), where P" is a one-dimensional projector 
if! HT/A for some n. Since E c C)+, it follows that E ::::> 

rp+, where the tilde symbolizes polarization (cf. defini
tion All of the Appendix). Let DEE. Then 

(D I in(P") = Tr (pnnn) ~ 0 

for all n and all one-dimensional projectors pn. Hence 
D E rp+ and E = rp+. From the bipolar theorem 
(Theorem A6 of the Appendix), it now follows that the 
smallest closed convex cone containing E coincides 
with C)+: 

E = cp+ = t')+. 

An analogous argument holds in the rp+ case. Q.E.D. 

As in places in NRP, we denote by W a finite
dimensional subspace of HI and by wnA the subspace 

wnA = @ Wei) (l RnA (2.20) 
;=1 

of the n-particle space HnA. Furthermore, we intro
duce the notation sn[w] for the set 

S"[W] == {B E sn; RB C wnA} 
and 

rp[W] = {B E rp; Bn E S"[W], Vn}. 

Other sets which are of interest in the sequel are 

nW] = :f (l rp[W] 
and 

Theorem 2: Let WI c W2 C ... Wk C .. ·Hl be an 
increasing sequence of finite-dimensional subspaces 
of HI with the property that 

U Wk = HI. 
le 

Then we have for n = 0, 1,2, ... 

(i) :fCn) = U :fCn)[~.]' 

(ii) 

and hence 

(iii) 

k 

:f=Ua'Cn), 
n 

a' = U U :fCn)[Wk ]. 

n k 

The bar in (i)-(iii) denotes the closure in any topology 
compatible with the dual pair (t>, rp). 
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Remark: This theorem should be compared with 
Proposition 1 in NRP. 

Proof: Let D = (DO, Dl, D2, ... , Dn, O· .. ) E a'(n) 

and put for m ~ 1 b m = DmjTr (Dm) whenever 
Din ~ O. Then b m E ~m, and it follows from NRP 
Proposition 1 that there exists a sequence 

br E U ~m[Wk] 
Ie 

such that 

lim Ib;" - bml = O. 
I .... 00 

Now put 

D~ = DO, VI, 

Dr;' = Tr (Dm)b'(', if Dm =;l: 0, 

= 0, if Dffl = 0, 
and 

Then clearly 

and 

Hence 

n 

piDl - D) = ~ km ID'(' - Dml 
m=l 

n 

= L km Tr (Dm) I b;n - bml. 
m=l 

lim piDl - D) = o. 
I .... 00 

This proves part (i) of Theorem 2. To prove part (ii), 
let D E ~ and define 

n 

ct." == L Tr (Dm). 
m=O 

Then 

n-+ 00 

Let TIn be the projection of Tonto T(n) defined by 

TIn(D)m = Dm for m ~ n, 

TI"(D)m = 0 for m > n. (2.21) 

(It is clear that TIn is continuous with respect to both 
topologies introduced in rp.) Let no be the smallest 
integer for which Dn ~ 0 and for all n ~ no put 

Dn = ct.-;lTIn(D). 

Then Dn E :I(n) and for n 2 no it follows that 

Pk(Dn - D) 

= (:n - 1) 10kffl IDml + m~+lkm IDml 

= (1. _ 1) Pk(D) + (2 - 1.) I km IDml. 
ct." IXn k=n+l 

For n ~ 00, both summands on the right side con
verge towards zero. Q.E.D. 

3. EXPANSION AND CONTRACTION 
OPERATORS 

We define an operator r in 0 which is the analog of 
the (p, n) expansion operator defined in NRP. 

Definition 3.1: The expansion operator is defined by 
the formulas 

r(B)" = i (~)r~(Bi), n = 0, 1, .. " (3.1) 
j=O J 

where Bi == pr,(B) and r~ stands for the (p, n) 
expansion operator in NRP defined by 

(3.2) 

That r carries an element B EO again into an 
element of 0 is stated in the following lemma: 

Lemma 4: If B E Ok, then reB) belongs to Ok+!. 

Proof: Let BE Ok. Then 

I\I'(B)" II ~ i (~) IIBjl1 = i (~)ki IIBjl1 k-
j 

1=0 J 1=0 J 

~ qiB) 'j~oG)kj = (k + 1)nQk(B). 

Hence 

[II r(B)"llj(k + l)n] ~ qk(B), n = 0, 1,2, .... 

Q.E.D. 

Remark: It is clear that Lemma 4 is a consequence 
of our particular choice of the dual pair. For assume 
that 

k 
with 

Ok = {B En~ Sn; s~p [IIBnll/g(n, k)] < oo} 

for some function g(n, k). Assume that B E 0 '<. Then, 
by the same argument as in the proof of Lemma 4, 

III'(B)"I1 ::;;sup~ i(~)g(n,j). 
n g(n, k) i=O J 

Thus we have certainly reB) E Ok+l if 

g(n, k + 1) =j~G)g(n,j). (3.3) 

Together with the assumptiong(n, 1) == 1, recursion 
formula (3) leads automatically to g(n, k) == kn. 
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Proposition 1: The expansion operator r is the ad
joint mapping of the contraction operator L: rp ---+ rp 
defined by the equations 

L(D)m = nt(~)L;:'(Dn), (3.4) 

where Lr;: stands for the (n, m) contraction operator 
defined in NRP (Theorem 3). 

Proof" First of all, we show that the series (3.4) is 
convergent inside S:;. For this purpose it is sufficient 
to prove that the series 

nt (~) /L;:'(Dn)/ 

is convergent. But this is shown by the following 
sequence of inequalities: 

nt(~) /L;:'(Dn)/ =nt(~) /D
n
/ 

= nt(m + lrn(~)(m + l)n /D
n
/ 

~ s~p [em + 1)-n( ~) ] . Pm+l(D) 

1 
~ --;; Pm+l(D). 

m 

Herein we made use of the equality 

/L;:'(Dn)/ = Tr (L;:'(Dn» = Tr (Dn) = /Dn/. 

Moreover, we prove that L(D) E rp. Indeed we have 

Pk(L(D» = m~okm I nt (:)L;.'(D
n
) I 

= ~o nt
km

(:) /D
n

/ 

= r~o/Dn/,~okm(,:) 
00 

= ~ (k + l)n /D n
/ == Pk+l(D). 

n=O 

Another consequence of this equality is that L is 
continuous with respect to the topology generated by 
the norms h(D). 

Since the mapping r~ is adjoint to L~ (NRP 
Theorem 4), we obtain 

00 

(r(B) I D) = ~ Tr (r(B)n Dn) 
n=O 

=! i (~) Tr (~) Tr (r~(B;)Dn) 
n=O ;=0 } } 

=! J;G) Tr (BiUn(Dn» = (B I L(D». 

Q.E.D. 

Theorem 3: The mappings Land r have the follow
ing properties: 

(i) They are linear and order preserving (i.e., they 
leave the respective cones (')+ and rp+ invariant). 

(ii) They are bijective. The inverse mapping of r 
can be represented as 

r-l(B)n = i ( _1)n-i (~) r~(Bi), (3.5) 
j=O } 

whereas the inverse mapping of L can be defined by 

L-\D)m = nt (-It-m(:)L;:'(Dn). (3.6) 

(iii) Land L-l are continuous with respect to the 
topology generated by the seminorms {Pk(D)}. 

(iv) They are topological mappings with respect to 
the weak topologies. 

(v) They are operator automorphisms with respect 
to the group of unitary automorphisms of the one 
particle Hilbert space HI. 

Proof: 
(i) This statement is an immediate consequence of 

the definition of the mappings Land r and the 
corresponding properties of the (n, p) contraction and 
(p, n) expansion operator as expressed in NRP 
Theorem 5(i). 

(ii) That the mappings r-1 and L-l as defined by 
(3.5) and (3.6) may be considered as operators in (') 
and rp can be proved by analogy with the case of rand 
L. That they are inverse operators of rand L is an 
easy consequence of the formula 

.i(_I),n-n(p)(m) =bpn , (3.7) 
m=n m n 

where b
pn 

is the Kronecker 15 symbol. The validity of 
(3.7) can be shown in the following way: Applying 
twice the binomial theorem to x1> = (x - 1 + 1)1>, 
one obtains 

xp = (x - 1 + I)P = io(~)(X - l)m 

= i I (P) (m)( _l)m-nxn 
m=O n=O m n 

= .i ( i (P) (m)( _1)m-n)xn. 
n=O m=n m n 

Comparing the coefficients of xn (n = 0, 1, ... ,p) on 
both sides of this equation leads to the desired result. 

(iii) This has already been proved for the mapping 
L. The prooffor L-l is completely analogous. 

(iv) This statement is a consequence of Theorem 
A4 of the Appendix. 
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(v) Let 'U,l be the group of unitary automorphisms 
of HI and An(u), u E 'U,l, its representation in Hnll. 
Then, by 

we define a representation of'lV in ('). Here u restricted 
to ({Y defines a homeomorphism with respect to the 
{Pk} topology. Now Theorem A4 of the Appendix 
implies that u defines homeomorphisms with respect to 
the weak topologies in (') and in ({Y. 

The mappings rand L commute with this repre
sentation. This can be deduced immediately from their 
definitions and also from the fact stated in NRP 
[Theorem 5(v)] that the (p, n) expansion operator and 
the (n, p) contraction operator are operator homeo
morphisms with respect to 'U,l. Q.E.D. 

Now we are ready to indicate how the expectation 
value of the observable B in the state D can be calcu
lated. It is given by the expression 

(B)n = (r(B) I D) = (B I L(D». (3.9) 

We introduce a second-order relation in (') by calling 
an observable B positive iff r(B) is hyperpositive. 

The set of all positive observables we denote by (') + . 

Since r leaves the set of hyperpositive elements in
variant [Theorem 3(i»), the new order relation is not 
stronger than the old one: (')+ ~ (')+. In fact, in 
general, it is strictly weaker, as is demonstrated by the 
following example. 

Assume we are dealing with a system of fermions 
and consider the observable B = (P, B, 0, ... ), where 
P is a strictly positive real number and B is a one
particle operator (B E 81) with a discrete spectrum 
having the additional property that the sum over any 
subset of eigenvalues exceeds -p. If B has any 
negative eigenvalues at all, then B is not hyperpositive, 
but it is positive since r(B) is hyperpositive. 

Equation (3.9) suggests that the states of a system of 
particles should be identified with the set ~ = L(:I'), 
rather than with :1'. 

Proposition 2: ~ coincides with the intersection of 
the polar cone of all positive observables and the 
closed hyperplane of those sequences D whose zeroth 
component equals one. In symbols, 

(3.10) 

equivalent statements: 

BE~<::>(BIA)~O, VAE~, 
<::> (B I L(D» ~ 0, VD E:I', 

<::> (r(B) I D) ~ 0, VD E:I', 

<::> r(B) E (')+, 

<::>BE(')+. 

Now the assertion of Proposition 2 is an immediate 
consequence of the bipolar theorem (Theorem A6 of 
the Appendix). Q.E.D. 

Since L is a linear homeomorphism, it follows from 
Theorem I that ~ is the closed convex hull of the set of 
its exposed points which are the images of the exposed 
points of:l' under L. 

Let us summarize our insight in a theorem: 

Theorem 4: 
(i) The observables of a system consisting of an 

indefinite but conserved number of particles can be 
identified with the set ('). 

(ii) The set of all states of the system can be identi
fied with the intersection ~ of the polar cone & + of the 
set of all positive observables with the closed hyper
plane 

cpO = {D E cp; pro(D) = I} ~ cp. (3.11 ) 

The exposed points of ~ have the form 

A = (1, nL!(P"),···, (:)L;:,(pn), ... , pn,O·· .), 

(3.12) 

where n is any nonnegative integer and pn stands for 
anyone-dimensional projector in Hn". These corre
spond to the pure states of the system. 

-(iii) The expectation value of the observable B in 
the state A is given by 

<Xl 

(B I A) = ITr (Bn~n). (3.13) 
n=O 

Remark: Since L is a bijection, the amount of in
formation carried by A = LCD) is equivalent to the 
amount of information carried by D. In particular, it 
is sufficient to predict the time development of the 
system. 

Definition 3.2: An observable belonging to (,)(p) is 
Proof" We have the following chain of logically called a p-particle observable. 
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Examples: The particle number N defined by 

N = (0, I, 0, ... ), I = identity in HI, (3.14a) 

is a (hyperpositive) one-particle observable. J.ts square 

N2 = (0, I, 2A 2 , 0' .. ) (3.14b) 

is a two-particle observable. 

Let B be a p-particle observable. Let Ll E ~ be a 
state. Then the expectation value of B in the state Ll is 
given by 

(B ILl) = (B I TIP(Ll», (3.15) 

where TIP denotes the projection of q; onto q;(p) 
defined by (2.21). 

In other words, to calculate the expectation value 
of a p-particle observable in the state Ll, we need only 
the first p components of the state. We denote by 
~[pl the set 

and call an element of ~[pl an actual p-state. 
Furthermore let us call a system of particles p

reducible if all the experimentally accessible observ
abies of the system belong to l'> (p) • 

In the case of a p-reducible system of particles, we 
are never in the position to know its state fully (not 
even in the sense of conventional quantum statistics), 
but only its p-state. But, according to the conventional 
scheme of quantum mechanics, the information con
tained in the p-state of a system is not sufficient to 
predict its future. Therefore we need a method to 
complete a p-state of a system to a full state in an 
unambiguous way. 

In the present paper we assume the existence of such 
a method in order to be able to identify the set of 

states of a p-reducible system with ~[pl. 
Giles, 7 in a paper about classical statistical me

chanics, has proposed such a method whose funda
mental idea is indicated briefly as follows: The 
remaining components should be chosen in such a 
way as to minimize the amount of information about 
the system, i.e., to maximize the functional 

SeD) = - ! 1. Tr (Dn In Dn) 
n=O n! 

(3.16) 

under the constraints 

I!'(D)m = 6.;;',. m = 0, 1, ... ,p (6.g = 1). (3.17) 

Without going into the details of this method, the 
only fact we wish to utilize here is that there does 

, R. Giles, unpublished. 

exist such a method which enables us to identify the 
states of a p-reducible system of particles with the set 
~rpl. 

At this point a similar question arises as in the case 
of a definite number n of particles, where it takes the 
form of the n-representability problem. Let us denote 
by ~?p) the set 

(3.18) 

and let us call an element of ~?p) a potential p-state. 
~?p) is a convex closed subset of ~?p) and 

(3.19) 

Now the analogous problem to the n-representability 
problem takes the following form: Characterize ~[Pl 

or, equivalently, its closure ~[pl as a subset of ~?p) . 
Or, in another formulation, give a general criterion to 
decide if a given potential p-state is an actual p-state or 
not. We call this problem the representability problem. 

Theorem 5: 
(i) The observables of a p-reducible system of 

particles whose number is indeterminate but conserved 
in time can be identified with the set (!}(p) • 

(ii) The set of all states of the system ~[Pl can be 
represented as the intersection of the polar cone 
6(p)+ of the set l'>(p)+ == l'>(p) (\ l'>+ of all positive p
particle observables with the hyperplane 

cpO == {D E q;;pro(D) = I}. 

The exposed points of ~[pl are either of the form 

I!' oip(DP) 

== (1, nL!(DP),"', (,:) L7,'(DP),"', G) DP, 0,"')' 
(3.20) 

where DP is exposed in ~~ for some n ~ p, or of the 
form 

LP 0 i n(pn) == (I, nL~ (pn), ... , 

(;:')L,;:(pn), ... ,pn, 0, ... ) (3.21) 

for some n ~ p, where pn denotes a one-dimensional 
projector in HnA. 

(iii) The expectation value of the observable B in 
the state Ll is given by 

P 

(B Ill) = ! Tr (Bm6.m). 
m=O 

Before we state the proof of this theorem, let us intro
duce the notion of a special point. 
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Definition 3.3: A point of :1'[PJ of type (3.20) or 
(3.21) is called a special point. The integer n occurring 
in Eqs. (3.20) and (3.21) is called the order of the special 
point. (Thus every special point of order m ~ p is 

exposed in :1'.) 

Proof of Theorem 5,' 

(i) This is a mere repetition of the definition of a 
p-reducible system of particles. 

(ii) Let us determine the polar cone of ~[PJ with 
respect to the dual pair (O(p), f{!(p». We have the 
following chain of equivalent statements: 

B E 5'[PJ <;::;> (B I A) ~ 0, VA E ~[PJ, 

<=> (B I £p(D» ~ 0, VD E:1', 

<=> (r pCB) I D) ~ 0, VD E ~T, 

<=> r pCB) ~ 0. 

£P stands for TIp 0 L, where TIp is the projection 
defined by Eq. (2.21), and r P denotes the restriction of 
r onto O(p). Thus the following equality holds: 

.1>(P) _ ,(\ = .(\ r'\,(\, 
<J - ~'(pH - V(p) I I V+, 

is of type (20) with DP == L~(Dn). Since in this case 

rp(Bt = r~(Jo(~)r~(Bk»), 
Vn is ap-subspace of Hn", and, from NRP Proposition 
4, it follows that DP is an exposed point of ~~ . 

(b) n < p. In this case let pn be the projector onto 
a one-dimensional subspace of Vn . Then 

A = IT 0 in(pn) 

is indeed of type (2I). Q.E.D. 

Similar remarks as in NRP can be made at this 
stage. Thus, for instance, Theorem 5(ii) describes the 

projection cone of ~[PJ from the center ° as the inter
section of an infinity of closed half-spaces. Notice that 
in the fermion case B = (1, I - 2pt, 0, ... ) belongs 
to :fm , where pi stands for anyone-dimensional 
projector in HI. Indeed we have 

Therefore, as a necessary condition for represent
ability in this case, we get 

2 - 2 Tr (p
i
D

1
) ~ ° 

and the first part of the assertion is a consequence of or 
the bipolar theorem (Theorem A6). IID!II = sup Tr (piDi

) ~ 1. 
plEE' 

Assume A E ~[PJ to be exposed. Then the full pre
image of A in :1' with respect to LP is an exposed set of 
:1'. Indeed if 

{A} = {B}l. (\ :r[P] 

for some BE O(pH' then 

as one may easily confirm. 
I\(B) defines a sequence of subspaces of the many

particle spaces Hm,,: 

where V m denotes the null space of r p(B)m in Hm". 
The pre-image (£P)-t(A) of A consists of all states 
D E ~ with the property that V m' Rnm ~ V m (cf. 
NRP Lemma 3). 

Now let n be the smallest number m such that 
Vm ~ {O}: 

n == min {m I V m ~ {O}}. 
m 

We have to distinguish two cases: 
(a) n > p. Choose Dn E ~n such that Rnn ~ Vn. 

Then 

(The notation £1 for the set of all one-dimensional 
projectors in Hi is adopted as in NRP.) Thus a 
necessary condition that in the case of fermions a given 
potential one-state (l, Dt, 0, ... ) is actual can be 
expressed as II Dill ~ 1. Later on (Theorem 7) we 
shall prove that this condition is also sufficient. 

Finally, let us state the corresponding theorem to 
Proposition 2 of NRP: 

Proposition 3 (Garrod and PercusS): 
(i) Let p be an arbitrary complex number and B a 

bounded one-particle operator. Then the observable 

C == (JPI 2, PB* + fJ*B + BB*, 

A2(B ® B* + B* 0 B), 0, ... ) 

belongs to the dual cone of ~[2]. 
(ii) A necessary condition that D = (I, Dl, D2, 

0, ... ) is representable is that the sesquilinear form 

HD(A, B) == Tr (AB* Dl) + 2 Tr (A ® B*)D2) 

- Tr (AD!) Tr (B* Dl) (3.23) 

defined on the space B(Hl) of all bounded operators in 
one-particle space HI is positive semidefinite. 

8 C. Garrod and J. K. Percus, J. Math. Phys. S, 1756 (1964). 
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Proof" 
(i) 

prn(r2(C) = 1,q12 An + nr~(,q*,q + ,qB* + BB*) 

+ G)r~{A2(B ® B* + B* ® B» 

= An~ + i~B(i») (,q* + i~B*(i») ~ O. 

(ii) From (i) it follows that, for any complex 
number ,q, the expression 

IP.12 + P* Tr (DIB) + P Tr (DIB*) + Tr (DIBB*) 

+ 2 Tr «B 0 B*)D2) 

= IP + Tr (BDI)12 - ITr (BDI)12 + Tr (BB* DI) 

+ 2 Tr «B ® B*)D2) 

is nonnegative. Choose p = - Tr (BDI) to get the 
desired result. Q.E.D. 

Remark: Theorem 5 states that every exposed point 
of;r[ p] is of special type. One could ask jf, conversely, 
every special point of ;rEP] is exposed. The examples 
for p = I show that, in general, this is not the case. 
While in the fermion case every special point is also 
exposed (as we shall prove), in the boson case none of 
the special points with the exception of the point 
(1, 0, ... ) is exposed. In fact, in the case of bosons, 
;r[1] is a convex cone with (1,0, ... ) as its vertex (cf. 
Definition A 7 and Theorem 7). 

However, the question is not of great relevance 
since what we really are looking for is not the set of all 
exposed points of ;rEP] but rather a subset of points of 
;rEP] which is first of all as "small" as possible and 
secondly has the property that its convex closure is all 
of ;rEP]. The following theorem, which is the analog of 
NRP Theorem 9, shows that the special points satisfy 
this last requirement. 

Theorem 6: Let WI C W2 C ••• C HI be an in
creasing sequence of finite-dimensional subspaces of 
HI such that 

U~=H\ 
i=I 

and for any finite-dimensional subspace W of HI and 
any natural number n, let Ern) [W] denote the set of all 
special points whose 0rder is not greater than nand 
which belong to ;rIp) [W]. Then 

:J'[p] = conv U U EP [W,] In) ". (3.24) 
n Ie 

If an element DP E :T(p) is said to be ofjinite one-rank 

iff DP E ;rIp) [W] for some finite-dimensional subspace 
W of HI, we can also formulate Theorem 6 as follows: 

Corollary to Theorem 6: ;rEP] is the closed convex 
hull of all special points of finite one-rank. 

Proof: First of all, it follows from NRP Theorem 
2(ii) and the continuity of U that 

:J'[p] = L'P(:J') = U U L'P(:J'(rr>[Wk )), 

n k 

Since :J'(n) [Wk ] is a compact subset of qJ(n) fWd == 
qJ[Wk ] (l qJln) , the continuity of U implies that 
U(:T (n) [WkD is a compact subset of qJ(p) [Wk ]. Accord
ing to the theorem of Klee (cf. Theorem AS), 
U(:J'(n) [Wk ]) is the convex hull of its exposed points. 

To complete the proof we have to show that every 
exposed point of U(:J'(n)[W]) is of special type. 
Arguments similar to those used in the proof of 
Theorem 5 show that for any closed subspace W 
of HI the exposed points of U(;r(n)[W]) are either of 
type U 0 im(Dm) P < m ~ n, where L!,(Dm) is an 
exposed point of;r!,[W], or oftype U 0 im(pm), m ~ p, 
where pm is a projector onto a one-dimensional 
subspace of Wm". Since (cf. proof of Theorem 9 of 
NRP) any point which is exposed in ;r~[W] is also 
exposed in ;r~, we conclude that every exposed point 
of U(;r(p)[W]) is either of type (20) or (21), i.e., 
special. Q.E.D. 

Finally, let us make an application of this theorem 
to the case p = I and fermions. In this case the special 
points are of the form A = (I, Pu , 0, ... ), where U 
is a finite-dimensional subspace of HI and Pu the 
corresponding projector. 

We first show that A is exposed at ;r[I]. Indeed, let 
B be the observable 

B = (1, 1-(1 + (l/n»Pu , 0," '). 
Then 

r(B)m = (m + l)Am - (m/n)(n + l)r;."(Pu)' 

The smallest eigenvalue Am of r(B)m is nonde
generate and it is given by 

A =n-m ~or < m ,1' m _ n, 
n 

= m - n, for m ~ n. 

Hence r(B) ~ O. Moreover, for m 7'= n, r(B)m is 
positive definite. On the other hand, r(B)n possesses 
the space generated by the "Slater determinant": 

[U] = (n!)tAn(e1 0 ... 0 en), 
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({ei}~=1 = CONS in U) as its nullspace. (Notice that 
the Slater determinant I U] is determined by the 
subspaces [U] only up to a phase factor.) It follows 
that 

(B I a) = 0, a E fj'[l), 

if and only if a = v 0 in(P[U) = (1, Pu , 0, ... ). 
In the case of bosons, the special points consist of 

integer multiples nP of one-dimensional projectors. 
These results together with Theorem 6 immediately 

imply the following: 

Theorem 7: 
(i) Fermions: A potential one-state (1, D, 0, ... ) is 

an actual one-state ifand only if II DII s 1. Or, in other 
terms, 

(3.25) 

(ii) Bosons: Every potential one-state is also actual, 
i.e., 

<1'[1] _ .1'0 
'-' - '-'(0' (3.26) 

Proof: 
(ii) is an obvious consequence of Theorem 6 and 

some subsequent remarks. 
(i) We denote by l' the set 

l' == {D E J\,~; II DII s I}, (3.27) 

where similarly, as in NRP J\,~, stands for the set S~+ 
of all positive trace operators in one-particle space. 
Since l' is a closed convex set and contains all the 
finite-dimensional projectors, it follows from Theorem 
6 that 

fj'[lJ S; {aET1i);pr1(a)ET}==T. (3.28) 

Now for any finite-dimensional subspace W C HI, we 
define 

T[W] == l' n SI[W] and T[W] == Tn T(l)[W]. 

Then T[W] is a compact subset of SI[W]. What are 
the extreme points of T[W]? We assert that they 
coincide with the projectors onto subspaces of W. 
Indeed, let Us; W be such a subspace and Pu the 
corresponding projector. Assume that Pu = 11.A + 
(1 - 11.)B, ° < 11. < 1, and A, B E T[W]. Since U = 
{RA.' RB}, where { } = linear hull, it follows that 
RA.' RB S; U. Furthermore, for any x E U with 
Ilxll = 1 we have 

1 = 11.(x I Ax) + (l - 11.)(x I Bx) 

and hence 
(x I Ax) = (x I Bx) = 1. 

From this result one easily deduces A = B = Pu , 
which means that Pu is extreme in T[W]. 

Conversely, let A E T[W]; let 

r 

A = L AiPi , 1 ~ Al ~ A2 ... ~ Ar-l ~ Ar > 0, 
i=1 

be its spectral decomposition, and assume AT < 1. 
Furthermore, define 

r-l 
P=='1 Pi 

i=1 
and let 

If we define 

B == -- L(A; - E)P; + ArPr , 1 [r-l ] 
1 - E i=1 

then BET [W] and we obtain 

A = eP + (l - e)B, 

an equation indicating that A is not extreme. Thus the 
extreme points of T[W] coincide with certain (exposed) 
points of fj'[I) and the theorem of Krein-Milman 
(Theorem A9) (which in this special case can be 
regarded as a consequence of the theorem of Klee) 
implies that, for every finite-dimensional subspace 
Ws; HI, 

T[W] S; fj'[l]. 

Now let a = (1, D, 0, ... ) E T. Then, according to 
the spectral theorem, there exists a sequence Dn E l' 

such that 

lim IDn - DI = ° 
and Wn == RDn defines an increasing sequence of 
finite-dimensional subspaces of HI such that 

U Wn = RD' 
n 

Ifwe put 
an = (1, Dn , 0," .), 

it follows that 

and 

n-'oo n-'OO 

Hence 

n 

It follows that T S; ~[ll, and, combining this with the 
result expressed in Eq. (3.28), we finally obtain 
T =~[ll. Q.E.D. 

4. THE BeS ENSEMBLE 

In this section we give a description of the BCS 
ensemble inside the mathematical framework presented 
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so far. First of all we turn the set 

into a commutative monoid (cf. Chevalley9) by intro
ducing the product 

x A Y = A2(m+n)(X 2l y), x E H2mA, y E H2nA. 

(4.1) 

If CJ.Ho == C, then, by the usual convention, CJ. ® Y = 
CJ. • y and hence rx Ay = rx . y. So that the number I 
(identity in C) becomes the identity in :It. It is easy to 
recognize :R as a commutative monoid when equipped 
with the product (1). Moreover, the norms in the 
different spaces H2mA induce on:lt a positive submulti
plicative functional: 

Ily A zll :::;; lIyll IIzlI· (4.2) 

In a similar fashion one can turn the set 

00 

:It' == US~' 
m=O 

into a commutative monoid by introducing the prod
uct 

CAD = A2(m+n)(C ® D)A2(m+n) ' 

C E s~mA, D E s~nA. (4.3) 

Again a similar inequality 

IC A DI :::;; ICIIDI (4.4) 

holds, so that the norms on the different spaces s~m 
induce a submultiplicative functional on :R'. The map 
which attaches to every element of :R(:R') its order m 
is a homomorphism of :J1(:R') into the monoid con
sisting of the set of all natural numbers extended by 
0, with the addition as the law of composition. 

For every integer m we introduce a mapping 

D is defined by the equation 

D(x, y)z = H(x I z)y + (y I z)x], x, y, Z E H2mA. 

(4.5) 

D(x, y) has a rank of at most two, and hence it 
certainly belongs to s~m. For D(x, x) we write D(x). 
D(x, y) has essentially the same properties as a real
valued symmetric bilinear form. Let us enumerate 

• C. ChevalIey, Fundamental Concepts of Algebra (Academic 
Press Inc., New York, 1956), p. 3. 

some of them: 

Proposition 4: 
(i) D(x,y) = D(y, x), x,yEH2mA; 

(ii) ID(x, y)1 = [lIxll 2l1yll2 - 1m (x I y)2]t 
:::;; IIxlillyll; 

(iii) D(x, ix) = 0; 
(iv) D(rx, [J) = Re (oc[J), rx, [J E HO == C; 
(v) D(rxx) = rx2D(x); 

(vi) D(rxx,y.) = D(x, rxy) 
= rxD(x,y), rxER, x,yEH2mA; 

(vii) D(x + y, z) = D(x, z) + D(y, z); 
(viii) D(x, y) A D(t, z) = t[D(x A t, Y A z) 

+ D(x A z, Y At)], 
x Y E H2mA t Z E H 2m'A. 

(ix) D(x) A D(y) = D(x Ay); , , 
(x) D(x) = IIxll 2 P", (P", = projector onto the 

ray generated by x). 

Remarks: 
(i) Physically, D(x, y) has the meaning of the real 

part of the transition density operator between the 
states x and y. 

(ii) Statement (ii) of Proposition 4 expresses the 
fact that D(x, y) depends continuously on both 
arguments. 

(iii) Statements (iv) and (ix) of Proposition 4 show 
that the map x -+ D(x) is a homomorphism of the 
monoid :ii into the monoid :It'. However, it is not an 
isomorphism since D(x) = D(y) if and only if x = 
ei6y for some real e. 

Proof of Proposition 4: The only statements which 
are not immediately obvious are statements (ii) and 
(viii). Statement (ix) is an easy consequence of state
ment (viii). To prove statement (ii) we have to find the 
eigenvalues of the matrix 

(
y I x) IIxll2 ). 
lIyll2 (xly) 

These are given by the expression 

ftI,2 = [Re (x I y)]2 ± (11x1l 2 lIyll2 - [1m (x I y»)2)l, 

which is of the general form 

ft1 ,2 = a ± b with b ~ Iat. 
Hence 

ID(x,y)1 = Hiftil + Ift21) = b 

= (lIxll 2 IIyll2 - [1m (x 1 y)]2)! :::;; IIxlillyli. 
For (viii) let M == 2(m + m'). Then, for any vector in . 
HlI1 of the form 

U == VI ® ... ® V J1 , 
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we have 

[D(x, y) " D(t, z)]u 

= L (-1)",(s)A M (D(x, y) (3) D(t, Z»V~1 (3)'" (3) V~J1I 
serI,ll 

= t L (-1 ),,(s)[(x I V~l (3) ••• (3) v~2m)Y 
.'erIM 

+ (y I val (3) ••• (3) va.m)x] 

X [(t I V~2m~1 (3) ••• (3) VM)Z 

+ (z I V
a2m

+
1 

(3) ••• (3) V,1f)t] 

== t L (-l),,(s)[(x (3) t I Val (3) ••• (3) Va,]{)Y " Z 
SEnM 

+ (X (3) z I Val @ .•. @ VaM)Y " t 

+ (y (3) t I Val @ ... @ V~M)X " t 

+ (y (3) z I Val @ ... (3) VaM)X " t] 

= t(D(x " t I y " Z) + D(x " z I y " t»U. 

In this sequence of equations n 111 denotes the sym
metric group of M objects, s == (~~:: J;M) represents a 
particular element of n 111, and O'(s) stands for its 
signature. Since the set of all elements of the form (6) 
(i.e., the set of all "M vectors") contains a CONS of 
HJ1 , the asserted statement (viii) follows. 

fn the sequel we shall often use shorthand notations 
like 

m 

xy == x " y, 
and 

Dm(x, y) == D(x, y) " ... " D(x, y). 
..... .... 

m 

Proposition 5 (cf. Coleman10 , Theorem 10.2; 
Zuminoll and BlattI2): Let g E H2A and Dl(g) == 
L~(D(g»; then there exists a decomposition of the 
closure W of the range of Dl(g) into a direct sum of 
mutually orthogonal, two-dimensional subspaces: 

W = EEl W", dim W" = 2, (4.6) 
aeJ 

such that W" is an eigenspace of Dl(g) (to the eigen
value J.,,) and g can be represented as 

g = 2! L A![a], (4.7) 
"EJ 

where J should be identified with the (well-ordered) 
set of pairs of successive natural numbers: 

J == {(12), (34), ... , (2k - 1, 2k) ... } (4.8) 

10 A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963). 
11 B. Zumino, J. Math. Phys. 3, 1055 (1962). 
12 J. M. Blatt, Theory of Superconductivity (Academic Press Inc., 

New York, 1964). 

and [0'] stands for the normalized Slater determinant 
generated by a particular orthonormal basis e2k- 1 , 

e2k of W,,: 
[0'] == 2!(e2k_ 1 " e2k). 

(The superscript ! on a positive number denotes the 
positive square root throughout this paper.) 

F or the proof of this proposition we need the notion 
of a conjugation in a Hilbert space. 

Definition 4.1: A conjugation x -4- X in a (complex) 
Hilbert space H is an antilinear, anti unitary involution, 
i.e., a mapping satisfying the axioms 

(i) x + y = x + ji, x,y E H, 
(ii) ax = a*x, a E C, x E H, 

(iii) (x I ji) = (x Iy), anti unitary character, 
(iv) x = x, involutionary character. 

To see that every Hilbert space allows a conjugation, 
let {eJ be a CONS (complete orthonormal set) in H 
and define 

whenever 
(fJ 

x = Lrxiei . 
i=1 

Let H be a Hilbert space with conjugation and 
A E B(H) [B(H) = set of all bounded linear operators 
in H]. Define 

Ax=Ax, XEH. 

Then obviously A E B(H) and 

(i) 
(ii) 

(iii) 

(iv) 
(v) 

A + B = 1'+ E, 
rxA = rx*1', 
AB = A E, 

1'=A, 
111'11 = IIAII. 

Thus a conjugation in H induces an antilinear, in
volutionary isometry on B(H). Now we are ready to 
prove Proposition 5. 

ProofofProposition 5: Let x -4- X be a conjugation in 
HI. Then for every y E HI the expression (g I ji @ x) 
represents a continuous linear functional in HI and, 
according to the Riesz representation theorem, there 
exists y in Hi such that 

(g I ji (3) x) = (P i x), 'Ix E W. 

It is easy to verify that the map 

G:y---+y (4.9) 
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is a linear operator of Hilbert-Schmidt class [G E 

Je(W)]. Indeed for any CONS {e;} and {fk} in HI, we 
have 

00 

[[G[[2 = Tr (G*G) = I (Gei / Gei ) 
i=l 

= f (Gei Ifk)(Jk I Gei ) = f ~(g lei ®fk) 
i=l i=l k=l 

= (ei ®fk I g) = IIg[[2. (4.10) 

Thus g -- G defines a linear isometry from H2A into 
Je(H1). Since 

(Gxly)=(gli®y)= -(gly®i)= -(Gjili) 

= (x lOy), Vx, y E HI, 

Let 

(4.17) 

be the decomposition of W into a direct sum of eigen
spaces of Dl(g) corresponding to different eigenvalues 
Ai' Since Dl(g) is completely continuous, the dimen
sions of the eigenspaces Wi are finite. Wi is invariant 
under the operation x -+ Vi. Indeed, let x E Wi' 
Then 

Dl(g)VX = D1(g)OX = -IJl(g)V*x 
---

= _(Dl(g»!G*x = -V*GG*x = UDl(g)X 

= AiOX = Ai VX. 

it follows that 
G* = -G, 

Moreover, since Vx .l x and vm = -x, it follows 
(4,11) that Wi can be decomposed into a direct sum, 

Let {eJ be a CONS in HI, Then, using (4.21), we 
obtain 

(ei I GG*e j ) = (Ge; I Ge;) = (Ge; I Gei ) 

= I (Ge j I !k)(fk I Gei ) 
k 

= I (g Ie; ® !k)( ei ® fk I g) 
k 

= I(ei ®fk/ D(g)(e j ®fk» 
k 

= (ei I Dl(g)ej). 
Therefore 

D1(g) = GG* = -GG. (4.12) 

Moreover, the expression G*G can be written as 

G*G = -GG = D1(g). 

It follows that the polar decompositions of G and 
G* (cf. Schatten,6 p. 4) take the form 

G = U(D1 (g»! , 

G* = V*(Dl(g»!, 

(4.13) 

(4.14) 

where V is an isometry of the closure W of the range of 
D1(g) onto itself. Substituting (4.13) and (4.14) into 
(4.11), we obtain 

V*[Dl(g)]! = _U[D1(g)]!, 

an equation which implies 

V* = -0. (4.15) 

Hence, if x E W, [[xII = I, then IIUxll = 1 and 

(Vx I x) = -(x lOx) = -(Ux I x), 

(4.18) 
tJEJi 

of mutually orthogonal two-dimensional subspaces, 
each of which is invariant under the operation 
x -- Vx, a property which we express by the equation 

(4.19) 

Combining (4.17) and (4.18), we get a representation 
of Was a direct sum of two-dimensional eigenspaces 
of Dl(g): 

W = EEl W", J = U Ji , (4.20) 
<1EJ i 

each of which has the property expressed in Eq. (4.19). 
Now let us choose in each two-dimensional subspace 

W(2k-1,2k) , a normalized vector e2k- 1, and define 

(4.21) 

Then e2k E W(27<-1,2k) ' [[e2k [[ = I, e2k .l e2k-l, and, 
as a consequence of (4.12), 

Finally, using the polar decomposition (4.13) of G, 
we obtain 

and 

(ei ® ej I g) = (ej I Gei) = A!(e j I Vei ) = 0 
if i E (f, JET, (f ~ T, 

(e2k- 1 ® e2k I g) = -(e2k ® e2k-l I g) 

= (e2k I Ge2k-l) = A!. 

It follows that g can be written as 

g = 2! I A![O'], 
<1<J 

i.e., Vx .l x. Moreover, 

VUx = vOx = -uU*x = -x. 
where [0'] denotes the normalized Slater determinant 

(4.16) generated by the pair (e2k- 1, e2k) of vectors. Q.E.D. 
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Next we are going to define a Bes ensemble. For 
this purpose we shall consider a mapping 

{3:H2A -+ 'S. (4.22) 

However, let us first define a mapping 

(J,: H2A -+ Je(C), 

where Je(C) stands for the set of all holomorphic 
functions on the finite complex plane (cf. Sec. 3 of the 
Appendix). Let {Aa} denote the sequence of eigenvalues 
of Dl(g) , corresponding to the subspaces {W,,} 
occurring in the decomposition (4.7) of the closure W 
of the range of Dl(g). Then define 

(J,(g) == J(t) == IT (1 + Aat). (4.23) 
aeJ 

Since La IA"I < 00, the infinite product in the equation 
of definition of f is normally convergent on every 
compact subset of the complex plane (cf. definitions 
A15 and A13). Therefore f belongs indeed to Je(C). 
Put C == f(l) ~ 1 and let 

(4.24) 

be the representation of f as a power series with 
center O. 

For every g E H2A let Pgm be the projector generated 
by gm. (Throughout this paper we are keeping the 
convention that the projector onto the trivial subspace 
is identified with the zero operator.) Now the mapping 
{3 is defined by 

[3(g)O = C-1 , 

(3(g)2m = C-1amP,r, m = 1,2' .. , 

[3(g)2m-l = 0, m = 1,2' . '. (4.25) 

Since 

pi{3(g» = C-1 i emam = C-1f(e) < 00 (4.26) 
m=O 

and 
00 00 

L Tr ((3(g)n) = C-1 L am = 1, 
n=O m=O 

we have indeed [3(g) E 'S. 

Definition 4.2: The state [3(g) of the many-particle 
system corresponding to the "geminal" g (= point of 
H2A) is called the BCS ensemble associated with g. 

Proposition 5: 
(i) The mapping (J,: H2A -+ Je(C) is continuous. 

(ii) The mapping (3:H2A-+'S is continuous, and 
therefore the "BCS manifold" is connected. 

Proof' The proof makes' use of a series of lemmas. 

Lemma' 5: Let a:;' be the value of the elementary 
function of p variables and of order m at the point 
(A12 , ... , A(2P-l,2P»' Then 

iJ m = lima!:, == L )'"1''' Aam' (4.27) 
'P~OO al<- . 'am 

Proof of Lemma 5: Define 

JJ 

gp(t) == IT (1 + tA(2k-l,2k'»)' 
/,=1 

Then gp -+ fin Je(C) [cf. Theorem All (i)]. Since the 
mapping f -+ l' is continuous in Je(C) [cf. Theorem 
AlO (iii)], it follows that 

g~m) -+ J (m) in Je(C). 

In particular, we obtain 

lima:;' = -.llim g~m)(o) = _1_fm)(O) = am' Q.E.D. 
'p-+oo m!p-+oo m! 

Lemma 6: Let 

(4.28) 
Then 

(i) (32m(g) = C:;;.IC-1 Dm(g), m = 1, 2, ... , 

(ii) IDm(g)1 = cmam, 

(iii) 1 ~ em ~ 2m. 

Proof' From Proposition 4(ix) and 4(x) we obtain 
the result 

Dm(g) = D(gm) = IIgml12 Pgm. (4.29) 

But, on the other hand, we have 

gm = 2m LAt··· At[e2kl- 1 /\ e2kl ... e2k•n- 1 /\ e2km]. 
ai' . 'I1m 

Or, if we write [0'1 ... O'm] for the normalized Slater 
determinant generated by e2kl- 1 ••• e2k

m
, 

gm = 2mm! "" Ai ... ;..l [0' ... 0']. (4.30) t k 0'1 O'm 1 m 
(2m!) "1 < .. '''m 

Hence 
(4.31) 

with Cm defined in Eq. (4.28). Combination of (4.31) 
with (4.29) yields 

(4.32) 

an equation which immediately implies Lemma 6(i) 
and (ii). 

The result (iii) is easily proved by induction on m 
using the recursion formula 

em+! = (2m + 212m + l)cm· Q.E.D. 
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The following lemma generalizes and sharpens Lemma 
40fNRP. 

Lemma 7: Let H be a Hilbert space and let X,y E H. 
Let Dx and Dy be the operators in H defined by 

Dxz = (x I z)x, Z E H, 

Dyz = (y I z)y. 
Then 

IDx - Dyl ~ Ilx + yllllx - yll. 

Proof We have to find the eigenvalues of the matrix 

(
11X112 - (y I x»). 
(x I y) - lIyl12 

These are given by the expression 

#12 = Hllxll2 - lIy112) ± [Hllx11 2 - lIy112)2 
, + IIxl1211x\l2 - I(x IY)12)!, 

which is of the general form 

#1,2 = a ± b with b ~ lal. 
Hence 

IDx - D1/1 = 1#11 + 1#21 = 2b = [(IIxl1 2 + lIy\l2)2 
_ 41(x I y)12)! ~ [(llxI12 + lIy112)2 
- 4[Re (x I y»)2]! 

= [lIx11 2 + IIy\l2 - 2 Re (z I y)]l 

X [lIxll2 + lIyll2 + 2 Re (x I y)l~ 
= Ilx - yllllx + yll. Q.E.D. 

Now let g, gEH2A and let /== oc(g), J== oc(g). 
Then one can easily verify that 

m-l 
= L [D(m-1-i)(g) A (D(g) - D(g» A D(i)(g»). 

i=O 

It is a consequence of Lemma 6 that 

where 
In 

bm == .2 am-,iii 
i=1 

is the coefficient of tm in 
<X} 

f(t)J(t) = .2 bmtm. 
m=O 

Now let K £ C be a compact subset and 

r = sup !t!. 
IE" 

(4.34) 

Then, using Lemma 6 and Eq. (4.33), we obtain 
00 

sup 11 - JI ~ .2 lam - ami rm 
tEK m=l 

~ i c;.II1Dm(g)! - lD"'(g)1I rm 
m=1 

00 

~ L I Dm(g) - Dm(g)1 r'" 
m=1 

~. r' f(2r)J(2r) ID(g) - D(g)l. 

Finally, the application of Lemma 7 leads to the 
inequality 

sup 11 - JI ~ rl(2r)J(2r) Ilg + gllllg - gil, (4.35) 
k 

which expresses the asserted continuity of IX. Moreover, 
from the estimation 

00 

= ~ k2mc-;;.1 IC-1Dm(g) - C-1D'\g)1 
m=O 

~ ~ k2mc;.1 Ic-IDm(g) _ C-1Dm(g)1 
m=O 

+ I k2m IC-1Dm(g) - C-1Dm (g)1 
m=O 

~ I k2mam IC-1 
- c-II 

m=U 

+ k2C-1 ~ (2k2)mbm ID(g) - D(g)! 
m=O 

~ [C-1C-Y(k2)1(2)J(2) + k 2C-Y(2k2)J(2k2») 

x ilg + gllllg - gil, 
it follows that {J is continuous. Q.E.D. 

Next we extend the mapping {J from H2A onto a 
certain subset 

§ £ H2AxCe , 

where Ce stands for the (partially ordered) set of all 
subspaces of HI whose dimension is finite and even. 
§ is defined by 

§ == reg, U): U ...L RD1(al}' 

With each element U E Ce , we associate a nor
malized "Slater determinant" [UJ. We put [0] = 1. 
Obviously [U] E H2PA if and only if dim U = 2p. The 
extension of {J is defined by 

{J(g, u)n = 0, 

{J(g, U)2P = C-IPtVl' 

(J(g, U)2(m+P) = C-1amPyfflAWl' 

{J(g, U)2(m+ Pl-l = 0, 

(4.36) 

where Pg"'A[U] stands for the projector onto the ray 
generated by gm II [U] and 2p == dim U. 
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Definition 4.3: A state of the many-body system of for m ~ p 

:~::;~7e.P(g, U), U =/: 0, is called a generalized BCS Dm(hn) = D(hr;:) = DC~(7)(JlbWgm-i) 

Proposition 6: Each generalized BCS ensemble 
(3(g, U), U =/: 0, is an adherence point of the set 
P(H2",0) == P(H2") of all (ordinary) BCS ensembles. 

Proof: Let J be the set of all pairs of successive 
natural numbers as defined by Eq. (4.8) and let 
Jo == {(I2),'" ,(2p - 1, 2p)}. Moreover, denote by 
J1 the complement of Jo in J. Now let P(g, U) be a 
generalized BCS ensemble with dim U = 2p =/: 0 and 
let 

g = 2~ ~ ;'![a] 
(fEJl 

be the representation (2) of g. Let e1 , ... , e2P be an 
orthonormal basis of U and let 

where [1'] stands for 2!(e2i-l " e2;) if l' = (2j - 1, 2j). 
Let {Jln} be a sequence of positive numbers such that 

limJln = CfJ 
n .... oo 

and define 

Then hn is a sequence of "geminals" with the property 

We want to show that P(hn ) -+ peg, U) in cpo 

Lemma 8: Denote by D(hn) the element in cp with the 
components 0 at the odd entries and the components 
C;.l Dm(hn) at the even entries 2m. Then D(hn) can be 
represented as a polynomial of degree 2p in Jlt: 

D(hn) = K2P(Jlh2P + K 2P_1(Jl!i,,--1 + ... + Ko, 

(4.37) 

whose coefficients K! belong to cpo Tn particular, 

K:;;' = 0 for m < p, (4.38) 

K~;' = (;rc;'lC,,(p[U] " Dm-")(g). (4.39) 

p[U] E SiP denotes the projector onto the ray gener
ated by [U]. 

Proof of Lemma 8: From Proposition 4 we deduce 

where for any real number 0 [oL denotes the largest 
integer which is not greater than O. It follows that 

K~m = C-;"l Dm(g) 

and for I = 1,2, ... ,2p - 1, 

!<t-l) 
K~m = 2 ~ K 2m(l, i), if I is odd, 

i=max[!-",O] 

!O-2) 

K~m = 2 ~ K2m(l, i) + K 2m(l, 1/2), 
i~mllx[l-p.O] 

if I is even, 
where 

K2m(l; i) == C;'lC : i) (7) D(hHg\ higH)" Dm-l(g) 

and finally 

K~;' = C-;"1(;)2D"(h) " Dm-"(g). (4.40) 

To prove that the coefficients K1 , ••• ,K21J belong 
to cp, it is sufficient to show that, for every I = 1, ... , 
2p and i = max [/ - p, OJ, ... , [1/2L, the sequence 
K(l, i) is an element of cpo 

Indeed, for every natural number k we have 

00 

~ k2m IK2m(l, i)1 
m=1 

~ [l; i) ~ k2mc-;,,1 ( m ) (nil) cm-1am- 1 
m=1 1-

< k21[1; i) ! (2(m + I»! k2ma 
- I! (1 - i)! 221 m=O (2m)! m 

< (21)! [1; i] K21(4k2) 

- I! (I - i)! ' 

where [I; i] stands for ID(hl-igi, higH)I. 
Furthermore, since Dm(hn) is of order m < p in Jln 

for m < p. it follows that K:r: = o for m < p. Finally. 
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if we combine the equality 

D1'(h) = c1'p[U] 

[cf. Proposition 4(x)] with (4.40), we obtain the ex
pression for Ki: (m ~ p) asserted by Lemma 8. 

. Q.E.D. 

Now by the definition of (J(g, U) we have 

(J2m(g, U) = 0 for m < P 

and 

C(J2m(g, U) = am-1'Pgm-~A[U] 

= Ilgm-1' 1\ [U]II-2 am-1'(P[UJ 1\ Dm-1'(g» 

_ -1 (2m) (P 1\ Dm-1'( » _ K 2m 
- cm-1' 2p [U] g - 21' 

for m > p. 

Again we apply Proposition 4(x) to obtain the above 
sequence of equalities. It follows that 

C' (J(g, U) = K 21" 

and we are able to write 

Pk((J(hn) - (J(g, U» 
= C-1(Pk(D(hn) . (1 + fln)-1' - K2P» 
~ C-

1
[Pk(K21') ( 1 - (1 :~n)1') 

21'-1 (fl!)1 1 
+ i~ piK j

) (1 + fln)1' ' 

an inequality which immediately implies 

lim Pk((J(hn) - (J(g, U» = O. 
n-+oo 

This completes the proof of Proposition 6. Q.E.D. 

From Proposition 6 and some elementary results of 
topological spaces, one can deduce the following 
corollary: 

Corollary to Proposition 6: The set of all generalized 
BCS ensembles is a connected subset of the set 'P of all 
states of the many-body system. 

In the sequel, the following functions associated with 
a geminal g playa certain part: 

(i) f" == IT (1 + Apt) = (1 + tA,,)-1, 
pop" 

(ii) j"r == IT (1 + Apt) = (1 + tA,)-Y". (4.41) 
pop".r 

Their expansion coefficients we denote by 

(i) 

(ii) 

Lemma 9: 

(i) 

(ii) 

Proof' 

am(a) == -L f~m)(o), 
m! 

(
A A) _ 1 j(m)(o) am aT = - "T • 

m! 

L A"am_1(a) = mam' 
"eJ 

am = am(a) + A"am_l(8). 

(i) From Theorem AI2 we deduce 

(4.42) 

On the other hand, it follows from (4.24) that the 
power-series expansion off' is given: 

00 

f' = I mamtm
-

1
• 

m=l 

The comparison of the two expansions for f' yields 
the desired result. 

(ii) If we reformulate [4.41(i)] as 

fit) = (1 + A"OI,,(t) 

and write both sides of the equations as power series, 
we obtain 

00 00 

I amtm = (1 + A"t) I am_l(8)tm- 1 
m=O m=1 

00 

= I (am + A"am_l(a»tm. 
m=O 

If we compare both expressions for I, we obtain the 
asserted result. Q.E.D. 

The following theorem is a generalization of a 
theorem by Coleman3 to a "generalized AGP function" 
and to infinite rank of the geminal g. 

Theorem 8: Let U be a q-dimensional subspace of 
W. Moreover, let J1 denote the set of all pairs of 
successive numbers greater than q: 

J1 = {(q + 1, q + 2), ... , (q + 2 - 1, q + 2), ... }. 

Let g E H2A and let 

W=Et;lW" 
"eJl 

(4.43) 
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be the representation of the closure of the range of Hence 
Dl(g) described in Proposition 5. Let 

be the corresponding decomposition of the projector 
onto W so that Dl(g) can be written as 

Dl(g) = ! AaP a . 
aeJ 

Furthermore, let 

~!..(U) == L~m+a(PqmA[UJ)' i = 1,2. 
Then 

(i) (2m + q)~~(U) = a;.l ! Aaam_l(a)Pa + Pu 
"eJ1 

= 2m~~(0) + Pu . 

(ii) Let {e i } be a CONS in U EB W such that the 
first q elements span U and the rest is a CONS in Wof 
the particular kind occurring in Proposition 5, and for 
every finite sequence (il ... i1') of natural numbers let 
[il ' .• i1' ] denote the normalized Slater determinant 
corresponding to the linear span of ei1 ••• eip ' Further
more, let 

bm(ij Ilk) == ([ij) I ~~(U)[lk]). 
Then bmW Ilk) = 0 with the following exceptions: 

(a) em 2+ q)b(ij I ij) = 1, i,j E (1," q), 

(b) em 2+ q)amb(ij I ij) = A"am_l(a), 

i E (1 ... q), JET, T E J l , 

(
2m + q) I A (c) 2 ambm(O' 0') = A"am_l(O'), O'EJl , 

(d) em 2+ q)ambm(O' IT) = A!A'am_l(a-r), 
O',TEJl , 

(e) for m ~ 2: em 2+ q)ambm(ij I ij) = AaAram_2(a-r), 

iEO', JET, O'=;I:.T, O',TEJI . 

The result shows that 

em 2+ q)~~(U) = em 2+ q)~~(O) + Pu A Pu 

+ 2(2m + q)(PUA~~(O». 
Proof' Let h be the normalized vector on the ray 

generated by gm A [U] defined by 

h == gm A [U]/ligm A lUlli. 

Then h can be written as 

h = a-t '" 'Ai ... Ai [1 ... q 0' ... 0' ] m ~ at (1m. ,1 m • 
(11 < .. oa", 

unless (kl ... k 2m+a- 1) = s(I ... q 0'1 ... am) for some 
permutation s and some 0'; E J1 • In this case 

([k ... k ] [ h) = (_1)"(8) At ... Ai (444) 
1 2m+a-l a1 am' • 

where O'(s) denotes the signature of s. Let us write 
bm(ij) for (e

i 
I ~!n( U)ei ). Then 

bm(ij) = ! (ei (8) ei1 ••. (8) ei2m+<-l I h) 
il" 'iam+O'-l 

x (h I ei (8) ei1 •.. (8) eizm+O-) 

= [(2m + q)W1 ! ([iiI' .. i2m+a-l] I h) 
il' • 'i2m+Q-l 

x (h [ [jil ..• i2m+q-1]) 

= (2m + qr1 ! ([iiI' .. i2m+q- l] I h) 
it < ... <i2m+q-l 

x (h I [jil ... i2m+q-1])' (4.45) 

Substitution of (4.44) into (4.45) yields 

(a) bm(ij) = 0, 

(b) i E (1 ... q)(2m + q)bm(ii) 

= ~ 1([ii1 ' •• i2mH- 1] I h)1 2 

il < ... itm+q-l 

(c) i E 0' E J1 : (2m + q)bm(ii) 

= a-m
l A_ ~ A' .. A ., 4., at am-l 

al < '" C1m-l 

(ii) In exactly the same way as we deduced Eq. 
(4.45), it is possible to derive 

bmW I kl) = em 2+ qf 
x ! ([iji1 ' •• i2m+q- 2] I h) 

il < .•. itm+t1-t 

x (h I [kli1 ... i 2m+a-2])' (4.46) 

Applying the result expressed in Eq. (4.44), we obtain 
assertion (ii) of Theorem 8. Q.E.D. 

We are now ready to calculate the first three com
ponents of L 0 peg, U), i.e., the contraction of the 
generalized BCS ensemble associated with g and U. 

Theorem 9: Under the same hypothesis (with q = 
2p) as in Theorem 8, the following statements hold. 
Let for i = 1, 2, ~i(U) = pri 0 L 0 P(g, U). Then 

(i) ~l(U) = Pu + ! ~ P" = ~1(0) + Pu . 
aeJ1 1 + A." 
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(ii) Let {e i } be a CONS in U Ef:l W such that the 
first 2p elements span U and the rest is adapted to the 
decomposition (4.43) of Wand let Jo = {(l2), ... , 
(2p - I, 2p)}. Moreover, define 

b(ij I kl) == nUl I ~2(0)[klJ). 
Then b(y I kl) = ° with the following exceptions: 

(a) i E CT, j E 7", CT, 7" E Jo, b(ij I ij) = 1, 

(b) i E CT E J 0, JET E J 1, b(ij I ij} = -.L , 
1 + At 

b( I ) A!A~ 
(d) a, 7" E J1 , CT =;i: T, CT T = (1 + A,,)(1 + AT) , 

(e) i E a, j E 7", a < T, a, T E J1 , 

AA 
b(ij I ij) = (1 + A,,;(~ + At) 

The result shows that 

~2(U) = ~2(O) + Pu A Pu + 2(Pu A ~1(O». 

Proof" 
00 

(i) ~l(U) = C-1 ! 2(m + p)am~!n(U) 
m=O 

= C-1 f (amPu + ! A"am_1(6)P,,) 
m=O "EJl 

= Pu + C-1 ! A"f"(l)P,, 
"EJl 

To get the last equality we used part (i) of formula 
(4.41). 

(ii) i,jE(1,"',2p): 

b( "I")_C-l~(2(m+p») b ("''')=1' IJ IJ - f=o 2 am m IJ 1J , 

iE(l,···,2p), jEaEJ1 : 

b(ij I ij) = C-1ioc(m 2+ P»)ambmW I ij) 

00 A 
= C-1 ! A"am_I(6) = C-1"{l»)",, = __ u_ ; 

m=l 1 + 1" 

a,TEJI , a=;i:T: 

b(al T) = C-1ioc(m 2+ P»)amb(a l T) 

= C-IA!A: ~ am_l(af) = C-YuT(1)A!A: 
m=l 

X~At 
_ (1 T • 

- (1 + A,,)(1 + AT) , 

b(", .. ) - C-1 ~ (2(m + P») b ("1 .. ) IJ IJ - m-':O 2 am m IJ 1J 

00 

= C-1A"AT! am_2(M) = C-1A"Ari",(1) 
m=2 

A" AT =----
1 + Au1 + AT 

Q.E.D. 

Theorem 10: Let Il == (1, ~1, 0, ... ) be an actual 
one-state with the· property that ~l has evenly de
generate eigenvalues. Then there exists a generalized 
BCS ensemble P(g, U) such that 

V(P(g, U» = Il. 

Proof" Let W == R Al and let 

W=EJ:)W" 
"EJ 

be a representation of W as a direct sum of two
dimensional subspaces which is compatible with the 
decomposition into a direct sum of eigenspaces of ~1. 

Let P" be the projector corresponding to W" and let 

~l = !f-l"P", p,,:5: PT for a ~ T, 
"EJ 

where J is defined by Eq. (4.21). Since Il E :r[l], it 
follows that 1I~111 :5: 1, and hence 0 < P" :5: 1 for all 
a E J. Since, on the other hand, Tr (~1) = !"EJ p" < 
00, only a finite number of f-la's can be equal to 1 : 

f-l" = 1 for J o == {(12), ... ,(2p - 1,2p)} 

and 

0< f-l" < 1 for a E J - Jo == J1 • 

Define 

where [a] stands for some normalized Slater deter
minant associated with Wa' 

Now it is an immediate consequence of Theorem 
9(i) that 

V(P(g, U» = 4. Q.E.D. 
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According to Theorem 9, the eigenvalues nl1 of 
~I(U) == prl 0 L 0 peg, U) are given by 

n" = 1, a Elo, 

n" = A,,/1 + Aa , aEll . (4.47) 

What is their physical meaning? To answer this 
question let us look at the observable 

Na == (0, P, 0, ... ), 

where P is the projector onto a pure state contained in 
the subspace Wa which corresponds to the projector 
P a' i.e., a one-dimensional projector for which 
PPa = P. It is clear that 

(r(Na) I peg, U» = na' 

Thus na can be interpreted as the expectation value 
for the occupation number of any pure state con
tained in Wa if the total system is in the state peg, U). 

Using the concept ofthe occupation number .defined 
by (4.47), the content of Theorem 9 can simply be 
expressed as 

(i) L~.t(U) = I naPa, 
aEJ 

(ii) b(ij I kl) = ° exceptjor: (4.48) 

a E l, b( a I a) = na, 

a:F T, a, TEl, b(a IT) = n!n: 

X (1 - na)!(1 - n}, 
i E a, JET, a < T, b(ij I ij) = nanr' 

a,TEJ, 

Hence the expectation value of a two-particle 
observable 

B = (BO, BI, B2, ... ) 

in the state peg, U) can be written as 

(B) == (f(B) I peg, U» 
= BO + I na(Tr (BIPa) + baa} 

aEJ 
+ 2 I n!n~(1 - na)i(1 - nr)ibar + I nanrb;, 

a<r a<r 
where 

bar == ([a] I B2[T]), a, T E J, 

b~ == I I ([ij] I B2[ij]) , a:F T, a, T E J. 
i€a JET 

For example, for the observable 

N2 = (0, T, 2A 2 , 0, ... ), 
we obtain 

(N2
) = 4 ! na + 8 I nanr 

aEJ tt<r 

= (Nl + 4! na(1 - na)' (4.49) 
aEJ 

Thus the dispersion of N is given by 

(N2
) - (N)2 = 4 I na(1 - na)' (4.50) 

aEJ 
It is minimal (= 0) if g = 0, i.e., if the (generalized) 
BCS ensemble degenerates to a Slater determinant. 
On the other hand, it is clear that, by an appropriate 
choice of the n,:s, the dispersion can be made arbi
trarily large. 

Let W be a subspace of HI whose dimension is 
finite and even. We associate with W the following 
subset of the set P(rl) of all generalized BCS ensembles: 

Ow == {D E P(rl); RL (D)l S; W}. 

Then the dispersion ofN takes a maximum value on Ow 
for P(g., 0), where ge denotes the extreme geminal asso
ciated with W (cf. Coleman3), i.e., the geminal for 
which DI(g) coincides with the projector onto W. The 
value of the maximum equals t dim W. 

If the value of (N) is prescribed, the following 
situation holds: For practical purposes we may assume 
that (N) is an integer. 

Let {Wr } be an increasing sequence of even
dimensional subspaces of fl1 such that 

U Wr = HI. 
r 

Let dim Wr = r ;;:: (N) and let g~ be the extreme 
geminal associated with Wr • Furthermore, let ftr == 
(r - (N»-I(N). Then the expectation value of N for 
the BCS ensemble P(ft!g~ , 0) is equal to (N) and the 
dispersion is given by 

2(N)(1 - rl(N». 

From this we conclude that the lowest upper bound of 
the dispersion for given expectation value· (N) of the 
particle number is equal to 2(N) and that it is not 
attained for any BCS ensemble. 

For the minimal value we have to distinguish two 
cases: (a) (N) = even number. Then the minimal 
dispersion is ° and it is taken for P(O, U) with dim U = 
(N). (b) (N) = odd number. Then the minimal dis
persion is 1 and is taken for p([a], U), where dim U = 
(N) - 1 and [a] is a Slater determinant associated 
with a two-dimensional subspace of fl1 orthogonal 
to U. 

In general, we may conclude from the particular 
form of expression (4.50) for the dispersion of N that 
the latter is relatively small for states in which the 
occupation numbers are either close to ° or close to 1. 
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APPENDIX 

1. A Lemma about Vector Spaces of Sequences 

Lemma AI: If {.'8n } is a sequence of real or complex 
Banach spaces with the respective norms {II lin}, then 
the sets 

and 

.'8' = {B' B = (BO Bl .. ')Bn E .'8 , " n 

X sup f3n IIBnll n < oo}, 
n 

where {f3n} stands for a sequence of strictly positive 
numbers, are vector spaces under the componentwise 
addition and multiplication with a scalar. Equipped 
with the norms 

II II == 2 f3n IIBnll n 
n 

and 

n 

they are again Banach spaces. 

Proof Let {B z} be a Cauchy sequence in .'8; then, 
for any E > 0, there exists a natural number N(E) such 
that 

IIB z - Bmll < E, I, m ~ N(E). 

We have for any integer s ~ 0 

8 

2 f3n IIB~ - B:!.lln < E, I, m ~ N(E), (AI) 
n=O 

and hence for any n, {B:!.}:=1 is a Cauchy sequence in 
.'8n • Since by assumption .'8n is a Banach space, there 
exists en E .'8n such that 

lim B;:' = c. 
m-+oo 

Going in (AI) to the limit m -- 00, we obtain 

8 

2 f3n IIB~ - enll n ~ E. 
n=O 

Now forming the limit s -- 00 we get 

liB! - C\I ~ E, I ~ N(E). 

Hence C E.'8 and lim B z = C. A similar proof holds 
z-oo 

for the second statement of the lemma. Q.E.D. 

2. Some Notions and Theorems about Real Linear 
Spaces and Convex Sets5 

This part of the Appendix is a reprint of the 
Appendix to NRP with the only difference that we 
have added the Krein-Milman theorem (Theorem 
A9). 

Definition Al (Ref. 5, p. 31): A dual pair (of real 
linear spaces) is a pair of real linear spaces (El' E2) 

such that to every pair (x, u) EEl X E2 there corre
sponds a real number denoted by xu, such that: 

(DI) xu is a bilinear form; 
(D2') if xu = 0 for all u E E2 , then x = 0; 
(D2") if xu = 0 for all x EEl, then u = o . 

Definition A2: A topology in El is called compatible 
with the dual pair (El' E2) if it is locally convex and if 
the topological dual space of El coincides with E2 • 

Theorem Al (Ref. 5, p. 34, Proposition 8): Let 
(£1' E2) be a dual pair and let M be a subset of E1. 
The operation of taking the convex closure of the set 
M is independent of the topology as long as it is 
compatible with the dual pair. 

Definition A3 (Ref. 5, p. 32): Let (El' E2) be a dual 
pair. The weakest topology on El compatible with the 
dual pair coincides with the weakest topology under 
which the set of all linear functionals 

/u(x) = xu, U E E2 , 

are continuous. It is called the weak topology in El . 

Definition A4: Let (El' E2) and (F1 , F2) be two 
dual pairs. Let A be a map from El into Fl' Then the 
expression (Ax)v represents a linear form in El for 
fixed v E F2 • In other words, there exists an element 
Vi E Ei such that (Ax)v = xv'. The map A': v __ Vi is 
called the adjoint map of A. If A is linear, A' is linear . 

Theorem A4 (Ref. 5, p. 38): Let (E1 , E2) and <F1 , F2) 

be two dual pairs. A linear map A from El into Fl is 
weakly continuous if and only if Vi = A'v E2 for every 
v EF2 • 

Definition A5 (Ref. 5, p. 4): Let E be a real linear 
space. A subset e of E is called convex if whenever 
x, y E e, the whole segment 

[x,y] = {zEE;z = (Xx + (1 - (X)yO ~ (X ~ I} 

is a subset of C. 
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Definition A6 (Valentine,13 p. 137): A subset C' of 
a convex set C is called extreme, if whenever [x, y] E C 
shares an inner point with C', then in fact [x,y] E C'. 
An extreme subset of C consisting of a single point is 
called an extreme point. 

Definition A7 (Ref. 13, p. 27): A convex subset .3(, 

of a real linear space E is called a convex cone with 
vertex a if whenever x E.3(" then the half-ray 

r(x) = {zE; z = a + o(x 0( ~ O} 

is a subset of .3(,. A convex cone is called pointed if 
J(, - a does not contain a one-dimensional subspace 
of E. 

Definition A8 (cf. K6the,14 p. 187): Let C be a 
convex subset of a real linear space E not containing 
a E E. The projection cone of C from the center a is 
the smallest convex cone with vertex a containing C. 

Definition A9: Let (E1 , E2) be a dual pair and let M 
be a subset of E1 • The subspace of E2 defined by 

M = {u E £2; xu = 0, X E M} 

is called the orthogonal complement of M. 

Theorem A5 (special case of the bipolar theorem): 
(i) M is a closed subspace of E2 ; (ii) M is the smallest 
closed subspace containing M. 

Definition AIO (Ref. 14, p. 246): Let (El' £2) be a 
dual pair and let M be a subset of E1 • Then the subset 

M = {u E E2; xu ~ 0, X E M} 

is called the polar cone of M. (Ml S; M2 implies 
M1 ;2 M2') 

Theorem A6 (bipolar theorem; Ref. 5, p. 36; cf. also 
Halperinl5) : 

(i) M is a closed convex cone with vertex 0 con
tained in E2 ; 

(ii) if is the smallest closed convex cone with vertex 
o containing M. 

Definition All: Let (El' E2 ) be a dual pair and 
a E E2 (a ~ 0). Then the orthogonal complement {a}.L 
is a closed subspace of codimension 1 in El [cf. 

18 F. A. Valentine, Convex Sets (McGraw-Hili Book Co., New 
York, 1964). 

14 G. Kothe, Topologische lineare Riiume (Springer-Verlag, Berlin, 
1960). 

16 I. Halperin: Trans. Roy. Soc. Canada XLVII, Ser. III, Sec. 3, 1 
(1953). 

Theorem A5(i)]. Let b EEl' Then the set b + {a}.L is 
called a closed hyperplane in £1 . 

Definition AI2 (cf. Ref. 14, p. 340): Let (E1o E2) be 
a dual pair and .3(, a closed convex cone in El with 
vertex 0 and let a.it - {OJ. Then {a}.L is a supporting 
hyperplane of .3(,. The intersection {a}.L is called an 
exposed subset of .3(,. A point of .3(, belonging to an 
exposed subset is called a supporting point of .1(" A ray 
rex) = {zE; z = O(x 0( ~ O} being at the same time an 
exposed subset of .3(, is called an exposed ray of .3(,. 

Remark: If .3(, is the projection cone of a closed 
convex subset C of a closed hyperplane not containing 
o and if a E.x" then the set {a}.L ("'\ C is calIed an 
exposed subset of C provided it is not empty. An 
exposed subset of C consisting of a single point is 
calIed an exposed point. 

Theorem A7 (cf. NRP Appendix, Theorem A7): 
Every exposed subset of a closed convex cone .3(, S; El 
is closed, convex, and extreme. 

Theorem A8 (Theorem of Klee; cf. Ref. 14, p. 340): 
Let C be a compact convex subset of a normed linear 
space. C is the closed convex hull of all the exposed 
points of C. 

Theorem A9 (Krein-Milman; cf. Ref. 5, p. 138): If 
E is a separated convex space and C is a convex com
pact subset of E1 , then C is the closed convex envelope 
of the set of its extremal points. (For a normed space, 
Theorem A9 is a consequence of Theorem A8 since, 
according to Theorem A 7, the set of exposed points of 
C is contained in the set of extreme points.) 

3. Some Notions and Theorems about Infinite 
Sequences, Series, and Products of 

Holomorphic Functions16 

Let C be the complex plane and D S; C an open 
subset. 

Let C(D) be the linear space of alI continuous 
complex valued functions on D, and :reeD) the sub
space of all holomorphic functions in CCD). We equip 
CCD) with the topology of compact convergence. It is 
generated by the following sequence of seminorms 
(cf. Ref. 5, p. 20): 

P .. (J) = sup IJ(t)l, JE CCD), 
tEAn 

18 H. Cartan, Theorle ellmentaire des fonctions analytiques d'une 
ou plusieurs variables complexes (Hermann et Cie, Paris, 1961). 
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where 

An = {t E C; It I :::;; n, d(t, ,.....,D) ~ n-1
}. 

(,.....,D denotes the complement of D in C.) 
A sequence {In} is convergent in the topolpgy of 

compact convergence if it converges uniformly on 
every compact subset K £; D. 

Theorem AJO (cf. Ref. 16, p. 150): 
(i) C(D) is complete; 
(ii) Je(D) is a closed subspace of C(D); 

(iii) the mapping which maps IE Je(D) onto its 
derivative f' E Je(D) is continuous. 

Definition A13 (cf. Ref. 16, p. 144): A series L.nln 
of functions In E C(D) converges normally on every 
compact subset if, for every compact subset K £; D, 
the series of the restrictions In/K is dominated by a 
convergent series of positive numbers. It is clear that if 
the series L.n In converges normally on every compact 
subset, then the sequence of its partial sums converges 
uniformly on every compact subset. 

Definition Al4 (cf. Ref. 16, p. 160): The infinite 
product TIn In offunctionsln EC(D) is called normally 

convergent on every compact subset if the series L. Un 

with Un == In -' I converges normally on every com
pact subset. 

Theorem All (cf. Ref. 16, p. 161): Let {In} be a 
sequence of elements of Je(D) such that the product 
ITn In is normally convergent on every compact 
subset. 

Then 
(i) The sequence of partial products constitutes a 

sequence of holomorphic functions which is uniformly 
convergent on every compact subset. Hence its limit 
1== ITln belongs to Je(D) [Theorem AlO (ii)]. 

(ii) For every natural number p the formula 

is valid. 

Theorem A12 (cf. Ref. 16, p. 161): With the hy
pothesis of Theorem All the following statement 
holds: The series of holomorphic functions L.nllfn . 
I n is normally convergent on every compact subset 
and its limit is equal to the derivative f'. 
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The methods of a previous communication are used to derive a general expression for the first 
Mandelstam iteration of inputs of the form 

At(s, t) = ~gi(S, t)(j(t - tBi), 
j 

where the sum is over terms representing t-channel resonances in narrow-width approximation. The 
coefficients gi(S, t) can be either analytic in s, as for an expansion in t-channel partial waves, or mero
morphic in s, as in a Pade- or Schlessinger-type expansion. 

In a previous communication,! we derived a general 
procedure for evaluating integrals of the type 

I = J.~ p(s)f(s) ds, (1) 

pes) = S-l[(S - s+)(s - s_)]!, (2) 

where s+ > s_ and /(s) is an arbitrary meromorphic 
function such that sl~1(s) - 0, as lsi - 00; we 
applied it to several situations involving partial wave 
amplitudes. Here, we wish to point out that the same 
methods can also be used to evaluate the first 
Mandelstam iteration for an input form commonly 
used in strong interaction calculations: 

At(s, t) = ~ gj(s, t)c5(t - tn;), (3) 
j 

where the sum is over terms representing I-channel 
resonances at I = I Rj in narrow-width approximation. 
The sum in (3) could come either from an expansion 
in I-channel partial waves, in which casegi would be 
analytic in s, or resonance forms continued analyti
cally by Pade approximants or the methods of 
Schlessinger,2 in which case g i would be merom orphic 
in s. 

The central ideas of the iteration were first described 
by Mandelstam3 and have been recently reviewed by 
Collins and Johnson.' The double spectral function is 
of the form5 

A_ t = e -s4m)! 

X (00 (00 dl1 dI2At(s, (1)At(s, (2 )0(1 - 1+), (4) 

J4m2 J'm2 v[K(I, 11, 12; s)]1 
---

• Supported in part by the National Research Council of Canada. 
t Present address: Department of Physics, Ohio University, 

Athens, Ohio 45701. 
1 J. Dilley, J. Math. Phys. 8, 2022 (1967). 
2 L. Schlessinger, Phys. Rev. 167,1411 (1968). 
3 S. Mandelstam, Phys. Rev. 122, 1344 (1958). 
• P. D. B. Collins and R. C. Johnson, Phys. Rev. 169, 1222 (1968). 
6 For simplicity. we limit ourselves here to the equal-mass case 

and ignore the other single spectral function A", but the method is 
applicable in general. 
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K(I, 11, 12 ; s) 

= 12 + Ii + I~ - 2(tl1 + 112 + 11t2) - 11112/V (5a) 

= (I - 1+)(1 - C), (5b) 

! 
t± = 11 + t2 + t~:2 ± 2(t1t2( 1 + ~~) (1 + ~:)), 

(6) 

(7) 

When (3) is inserted in (4), a series of integrals is 
obtained having effective minimum values at 11 = 
1m and la = 1 Ri. Because of the factor 0(1 - 1+), 
these terms are zero unless 

IR!tn; 
t> Iii = 1m + tn; + --

2v 

+ 2[tR!tn;( 1 + :~!) (1 + t;;) r 
---+ [(tm)! + (tn;)!]2 (8) 
s-> 00 

or, in s, 

s > s!i = 4m2 + 4tm ln;I/[(t - 1m - 1n;)2 - 4tm ln;]. 

(9) 
Using (5a) and (9), one finds 

4vK(I, 1m , In;; s) 

= [12 + t~u + t~i - 2(llm + lin; + tmln;)](S - Sur 

(10) 

and the double spectral function obtained can be 
written in the form 

A = '" 4g!(s, IRI)g;(s. 1n;)O(s - Sli) 
_t £., 2 ! ! . 

l.i [(I - tm - tRi) - 4tRltn;] [s(S - Slj)] 

(11) 

Then, for I> [(1m)! + (IRi)!]2, we find that 
At(s. I) has new contributions from (4), obtained 
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from the dispersion relation 

A( ) _lIA_t(S',t)d' 
t s, t - S 

7T s' - s 
4 

=! 1 I,i[(t - tm - tRi)2 - 4tmtRi] 

1 i oo g/(s', tR/)g;(s', tRj) ds' x-
7T _II (s' - s)[s'(s' - Sli)]! . 

(12) 

(13) 

The integral in (13) is of the same general type as 
Eq. (I) and can be evaluated using the methods of 

or 

provided that the asymptotic requirement 

G(s, su)g/(s, t R/)g;(S, t R;) -----+ 0 (17) 
1_1-+00 

is satisfied. Explicit forms for G with real s are 

7TiG(s, sz;) 

1 I (sz; - s)1 - (-s)! 
= [s(s _ Sl;)]! n (su _ s)! + (-s)!' s < 0, 

-7T ( 1 (s)! - i(sz; - S)l) 
= l+-arg , 

[S(SII - s)]l 7T (s)! + i(sz; - s)l 

0< s < Sli' 

= 1 [In (S)! - (s - SU)!) ± i7T], 
[s(s - su)]! (s)!- + (s - szi 

s > su, (18) 

where all the radicals have a positive sign and the ± 
are for s = s ± ie on the cut s > Sz;. 

If the condition (17) does not hold, then subtractions 
are required in the expression for A(s, t), but the 
integral can be handled in the same way. For example, 
if one subtraction is required, we write 

Ref. 1. One need only construct a function G(s, sz;) 
having only the right-hand cut of [s(s - SII)]-! and 
proceed as before. The required function is 

(14) 
If gi are analytic in s, this leads to 

(15) 

(16) 

Als, t) 

_ A ( ) + s - soi
oo 

A_ls', t) ds' 
- t So, 1 

7T _II (s' - s)(s' - So) 

_ A ( t) + '" 4(s - so) 
- t so,"(" 2 1 

I,i[(t - tRI - tR;) - ttRltR;] 

1 j,oo g/(s', tR/)g;(s', tRj) ds' 
X - , (19) 

7T -'I (s' - s)(s' - so)[s'(s' - Sli)]! 

which can be evaluated as before, since there is only 
an additional term coming from the pole at so: 

A ( ) 
_ '" ( 4gz(s, t RI)g;(S, t Ri)iG(s, sz;) 

t S, t -,,(., i 
I,i [(t - tm - tR;)2 - 4tRltR;] 

4g/(so, tR)g;(s, tRj)iG(so, Sli») 

+ [(t - tRI - tRi)2- 4tRltRj]! 

+ AtCso, t). (20) 

The first term in (20) is just the unsubtracted solu
tion (16) and still holds up to factors which are 
independent of s. 

If gis, t) is meromorphic instead of analytic in s, 
then the same procedure for evaluating (13) can be 
used except that new terms appear on the right-hand 
side of (15) coming from the poles of g. 
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The evaluation of Fermi-Dirac integrals is discussed for cases in which the Sommerfeld method fails. 
Such cases occur when the integrand has a singularity at the Fermi surface and when the integrand is a 
rapidly oscillating function. As examples, the first-order exchange integral for electrons and the free
energy integral of the noninteracting electron gas in a magnetic field are evaluated. The method uses a 
contour-integral representation of the Fermi function (previously mentioned by Dingle), supplemented 
by Mittag-Leffler type expansions. 

1. INTRODUCTION 

Integrals of the Fermi-Dirac form, 

fOO G(z) 
F(IX) = dz , 

o eZ-«+l 
(1) 

occur throughout the physics of metals and semi
conductors,l as well as in formulations of the many
fermion problem,2 and appear in both equilibrium 
and nonequilibrium calculations. For rx < 0, integrals 
of this type which are encountered in physical prob
lems can usually be evaluated by elementary methods. 
In cases with (i) high degeneracy (rx» 0) and (ii) 
G(z) slowly varying near z = rx and possessing a 
Taylor series expansion with a reasonable radius of 
convergence about that point, it is frequently possible 
to use the Sommerfeld method3 to obtain an asymp
totic expansion in ascending powers of (lJrx). When 
these conditions are satisfied, the result of the Sommer
feld method may be expressed as4 

F(rx) = csc (17D)G(z), (2) 

where the operator 17 csc 17 D indicates the Laurent 
expansion of the cosecant about zero with 

d I 1 i« D = - and - = dz. 
dz z=« D 0 

(3) 

Occasionally, a calculation at nonzero temperature 
requires the evaluation of a Fermi-Dirac integral, for 
which the integrand does not satisfy both conditions 
(i) and (ii). For example, G(z) may oscillate rapidly 

• Work performed under the auspices of the U.S. Atomic Energy 
Commission. 

1 A. H. Wilson, Theory of Metals (Cambridge University Press, 
Cambridge, England, 1960). 

• C. Bloch and C. De Dominicis, Nucl. Phys. 7, 459 (1958); 10,181 
(1959); 10, 509 (1959). 

a A. H. Sommerfeld and H. Bethe, in Handbuch der PhYSik, Vol. 
24, S. Flugge, Ed. (Springer-Verlag, Berlin, 1933), p. 346. 

'H. E. DeWitt (unpublished notes). 

or may have an inopportunely situated branch point. 
In such circumstances ordinary methods may fail. A 
useful technique involves converting the real integral 
into a complex integral by substituting the representa
tion for the Fermi function: 

f-(z, rx) = (eZ--« + 1)-1 = -. 17 CSC (17t)et (<<-zl dt, 1 lb+'OO 
2171 b-ioo 

(4) 
where ° < b < 1. 

This representation is contained in an earlier anal
ysis of the Fermi-Dirac integral5 and has been reiter
ated and used by others in specific cases.8- 8 It has also 
been shown9 that this representation possesses 
enough algebraic flexibility to permit the reduction of 
Fermi integrals to tabulated Laplace transforms and 
their inverses or, at worst, to a tractable exercise in 
residue theory. In some cases "exact" evaluation in 
terms of tabulated mathematical functions is possible; 
for example, the familiar integral 

1 (00 z· 
F.(rx) = rev + 1) Jo ea-« + 1 dz (5) 

can be expressed in terms of confluent hypergeometric 
functions.5 •9 This common integral, of course, 
satisfied condition (ii) above and can, therefore, be 
evaluated in the high-degeneracy limit by Eq. (2). 

The principal intent of this paper is to evaluate two 
integrals which are of physical interest and to illustrate 
several techniques that may be employed on integrals 
for which the Sommerfeld approximation does not 
apply. The first of these is the first-order exchange 
integral from the many-fermion problem, which wiIl 

• R. Dingle, Appl. Sci. Res. 86, 225 (1956). 
• J. M. Luttinger, Phys. Rev. 121, 1251 (1961). 
? R. J. Swenson, Phys. Letters 16A, 632 (1968). 
8 A. Wasserman and H. E. DeWitt, J. Phys. Chem. Solids 19, 

2113 (1968). 
• A. Wasserman, Phys. Letters 17A, 360 (1968). 
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be treated in the high-degeneracy limit. The second, 
which can be evaluated "exactly," is the free-energy 
integral of the noninteracting electron gas in a 
magnetic field. 

2. THE EXCHANGE INTEGRAL 

The exchange integral with the Coulomb interaction 
frequently appears in the literature as 

Jex(Cl) = ~3 f dx f dyf~~:!~~() (6) 

with 

x = lxi, y = Iyl, 
and has previously been evaluated in part by re
casting it aslO 

JexCO() = 2 foo dCl'[F -i(Cl')t (7) 

We can begin the evaluation of Jex(O() along the lines 
suggested in Ref. 9 by performing the obvious 
elementary integrations to obtain 

8 foo foo I x + y I Jex(Cl) = - dxxf-(x2) dyYf-(i) log --
7TO 0 x-y 

8 foo = - dxxf-(x)J(x, Cl). 
7T 0 

(8) 

Here we encounter a branch point which makes the 
Sommerfeld approximation inadequate. The y integra
tion is straightforwardly approached by isolating that 
term which contains the annoying branch point. Thus, 
we have 

J(x,O() = 2 L'~ dyyf-(i) log Ix + yl 

-Loo dyyf-(y2) log Ix2 _ y21 

= J1 - J 2 • (9) 

The first term of Eq. (9) is (at high degeneracy), by 
Eq. (2), 

J1 = tCllog Cl + Cl(~ - t) + Cl~210g ~ + 0((1 - ~2) 

X log (1 + ~) + 7T2/120(~ + 1) + 0(1/0(-3), (10) 

where 
~ = x/O(i. 

After a change of integration variable, the repre
sentation Eq. (4) is inserted into J2 to give 

foo dz 2 

J 2 =tO( (-1) logl~ -zl 
o e'" + 1 

Cl i o+ioo i 00 = -. dS7T CSC (7Ts)e"8 e-"ZSlog Ie - zl dz. 
47Tl o-ioo 0 

(11) 
10 H. E. DeWitt, J. NucI. Energy C2, 27 (1961). 

The z integral is a tabulated Laplace transformll and 
brings us to 

1 lHioo CSC 7TS 2 
J 2 = -. dS7T -- e""[log ~2 - e-"s sEi(O(es)], 

47Tl o-ioo s 
(12) 

where E;*(z) is the exponential integral. The first term 
in J2 is equal to Cl log ~[1 + log (1 + e-")]. The second 
term is handled by introducing a Mittag-Leffler 
expansion12 

1 oo~ (_I)n 
7T csc 7TS = - + 2s 2 -2--2 . (13) 

s n=l S - n 

The explicit use of a Mittag-Leffler expansion for 
this and other meromorphic functions is a key 
algebraic step which frequently permits evaluation of 
Fermi-Dirac integrals in terms of tabulated mathe
matical functions. 

We now have 

J 2 = O((log ~{1 + log [1 + exp (-O()]} 

__ 1_1b+i
OOds exp Cls(1 - e) E*(0(~2s) 

47Ti o-ioo S2 • 

_ ~ i (_ltlHioodS exp ~s(1 ~ ~2) Ei(CleS»). 
2m n=l o-ioo (s - n ) 

(14) 
In the first of these integrals let 

S-1 = Loo e-·u du, Re s > o. 

The s integration becomes a tabulated inverse Laplace 
transform,1l·l3 the subsequent u integration being 
elementary. We obtain 

_1_ (HiOOds exp O(s(1 - ~2) E'!'(Cl~2S) 
47Ti J o-ioo S2 • 

= ![1 + (~2 - 1) log 11 - ~2IJ. (15) 
2 ~2 

The last integral of Eq. (14) is 

_1_ iHiOOdS exp ~s(1 -: ~2) Ei(0(~2S) 
27Ti o-ioo (s - n ) 

= ~[_~ i HiOO 
ds exp O(s(1 - e) Ei(O(es) 

2n 2m o-ioo (s + n) 

+iHiOOdS exp Cls(1 - e) E:(0(~2S)J. (16) 
b-ioo (n - s) 

11 Bateman Manuscript Project, Tables of Integral Transforms, 
A. Erde1yi, Ed. (McGraw-Hill Book Company, Inc., New York, 
1954), Vol. I. 

.. E.g.,H. Fuchs and B. Shabat, Functions of a Complex Variable 
(Pergamon Press Ltd., Oxford, England, 1964). 

18 G. E. Roberts and H. Kaufman, Tables of Laplace Transforms 
(W. B. Saunders and Co., Philadelphia, 1966). 
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Because n > Re s, we can replace 

(n ± S)-l = Loodu exp [-en ± s)u] 

and perform integrations. by parts to reduce the 
complex integral to a representation of the step 
function. The remaining integrals (ignoring terms of 
order e- ilt

) are familiar representations of the exponen
tial integral. 

Thus, with modest effort, we have 

J(x, oc) = a~(l + 1 - e log 11 + ~ I) 
2~ 1 - ~ 

1T2 00 ( l)n+l + - a + 1)-1 + sgn (1 - ~2) I "'--~-
12a n=l 2n 

x [exp (nail - eOEl-nall - eo 
- exp (- niX 11 - ~2I)E:CnaI1- ~21)} 

+ 0(:3) (17) 

with sgn (x) = sign of x. J(x, a) itself is of some 
physical interest. If we take ~2 = G2j4[t, where G is a 
vector of the reciprocal lattice and # is the chemical 
potential, then lex, a) appears in lowest-order 
electron-periodic potential correction to the free 
energy of a noninteracting electron gas.s 

The remaining x integration of Eq. (8) is substan
tially more tedious, but is, nonetheless, a repetition of 
the steps taken above. Again, the separation is made 
between those terms for which the Sommerfeld 
approximation is valid and those that have branch 
points. 

With the change of the variable integration, z = ~2, 

we have 

7a2 

JexCa) = - + 71"(1 - t log 2) 
271" 

_ 2oc2 (OOdz 11 - zllog 11 - zl 
1T Jo e~(z-l) + 1 

20c 00 (-1)n+li oo dz + - sgn (1 - z) L ( -1) 
1T n=l n 0 erJ. Z + 1 

X [en~!l-z!Ei(-nall - zl) _ e-nrJ.!l-z! 

x E1(nocll - zl)] + 0(:2)' (18) 

where Eq. (2) has been applied to the former type of 
term and the latter is displayed explicitly. The tech
niques outlined above reduce the remaining collection 
of integrals to an easy application of residue theory. 

We begin with the first of these by inserting the 

representation of Eq. (4) to give 

2a2 1 ib+iOO 
- - --. dt71" CSC (1Tt) 

71" 271"1 b-ioo 

xL'" dz(l - z) log 11 - zl e-t,,(z-I). (19) 

The real integral consists of standard forms, and the 
contour integral that remains is 

- ~ -. dt1T csc ~ [ENtoc) - et~]. (20) 
2 2 1 ib+iOO t 

1T 2m b-ioo (toc) 

Use of Eq. (13) leaves the evaluation of the integrals 

_ ~ ~(ib+iOO dt [Et(toc)s - et~] _ 2 ~ (_l)n+1 
71" 271"1 b-ioo t n=1 

i b+iOO [E:(toc) - eta]) 
X dt 2 2 = Ql + Q2' (21) 

b-ioo t(t - n ) 

Both of these are conveniently done by deforming the 
contour to lie along the cut on the negative real axis 
with an indentation of radius E about the origin. 
Letting E -+ 0 and using the fact that 

00 zn 
Ei{z) = y + log z + L -, (22) 

n=l n! n 

where y = Euler's constant, we get 

Ql = oc2{271" 
and 

Q2 = -i71" log oc - !1T(Y - 1) 

(23) 

_ i ! (_1)n+1 10g
2 
n + O(e-"). (24) 

71" n=l n 

The last of the integrals in Eq. (18) are also easily 
evaluated by use of Eq. (4). We obtain real integrals 
that are integrated by parts, leaving 

Qa = ± ~ rb+iOOdt I( _l)n+1 71"2CSC 71": E1(l1.t). (25) 
71" 2m Jb-ioo (t - n ) 

We can either expand 71" csc 71"t once more, or we can 
sum over n. Employing the latter, we get 

Qs = ~ ~[ (b+iOOdt 71" cs~ 1Tt Et(at) 
71" 271"1 Jb-iOO t 

_ (b+iOO dt (1T CSC 1Tt)2 Et(oct)] ; 
Jb-iOO t 

(26) 

whereas, by expanding 71" csc 71"t, we introduce integrals 
tabulated in standard works and eventually obtain 

4 <Xl (_1)n+1 
Q3 = -i1T log oc - - I 2 log n - i1TY + i1T 

71" n=l n 

+ ~ i i (-It+k l~g k1n
2 
+ O(e-"). (27) 

71" n=l k=l k - n 
k<Pn 
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If we proceed, instead, from Eq. (26) and use the 
Mittag-Leffler expansion 

2 1 ex> (t2 + n2
) 

('IT csc 'ITt) ="2 + 2 ~ ( 2 2)2 ' (2S) 
t ,,=1 t - n 

we encounter contour integrals that are readily done 
by well-known methods and obtain 

4["'( 1t+1 
Qa :;::.- ~ - 2 (y + log oc + log n) 

'IT ,,=1 n 

-! \ (oc - 1 + log oc + log n)]. (29) 
,,=1 n 

The slowly converging sum ~:'1 log n/n2 can be 
converted (see Appendix) to a more rapidly converging 
form: 

~ 108
2 
n = 2 I ( _1),,+1 1082 n + t'IT210g 2. (30) 

,,=1 n n 

If we collect the various terms, the exchange integral 
is then 

Jex(oc) = C1OC
2 + Czlog oc + Cs + O(oc-2

), 

where 
(31) 

and 

Cs = 2'IT - t'IT log 2 - i'ITy + (4/'IT),'(2) 
ex> (_1)"+1 

= 2'IT - 2'IT log 2 - i'ITy - (S/7T) ~ 2 log n, 
n=1 n 

(32) 

where "(s) is the derivative of the Riemann zeta 
function and 

ex> ( 1),,+1 
~ - 2 log n = -0.10131658. 

,,=1 n 

The result, Eq. (31), contains explicitly the term 
that gives rise to the long-known logarithmic diverg
ence of the exchange contribution to the specific heat 
of an electron gas.14 Equally well known is the fact 
that this divergence must be eliminated by complete 
summation of all the ring diagrams. IS 

3. THE FREE-ENERGY INTEGRAL 

The free energy of an electron gas in a magnetic 
field H can be written 

mco 100 

F=,N--z- dk z 
2'IT {J/i -ex> 

00 

x I [In (1 + exp {tll' - €('Y}, k.m)] 
~=O 

= ,N - 'D(P, co, '), (33) 

1& J. Bardeen, Phys. Rev. SO, 1098 (1936). 
16 M. Gell-Mann, Phys. Rev. 106, 369 (1957). 

where , is the chemical potential, N is the average 
number of particles in the system, co = (eH/mc), and 

We start with an integration by parts to bring it into 
the form of a Fermi-Dirac integral: 

At this point we use the integral representation of 
Eq. (4) to give 

nco 1 'D({J co Y) - - -
, ,,:> - 2 22 . 'IT 7T1 

rb
+/

OO 

x Jb-i", ds'IT CSC ('lTs)e'l8 exp (- fJlicos/2) 

x L: dk,k: exp (- (Jsn2k:/2m) 

ex> 

X ~ exp ( - fJsnW'YJ). (35) 
~=o 

In this form the kit integration and sum over 'YJ are 
trivial, and the result is 

m({J Y) __ v_ 7T CSC 'ITS 1Z8 ~ i HiOO 

.u ,0), ':> - ie, 
2'ITi b-ioo s sinh An 

(36) 

where 

The integral in Eq. (36) can be expressed as a sum of 
tabulated mathematical functions, as will now be 
shown, where the important step is again a Mittag
Leffler expansion: 

'IT csc 'ITS = 1.. + ! (-1)" 
sinh AS As2 "=-00 

.... 0 

(37) 
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Thus, 

[ 
1 ib+too ea., 

'J)(P, ro, ') = <5 -.. "T ds 
217AI b-ioo S 

+ i (-1t [ 1 
11=-00 217i sinh An 
n"O 

(38) 

The first integral in Eq. (38) is the reciprocal of a 
gamma function, 

1 iHiOO ea.8 oct - ds-=-; 
217i Hoo st ret> 

(39) 

the second is a representation of confluent hyper
geometric functions, 

n > 0, 

n < 0, (40) 

where 

U(a, b; x) 

r(1 - b) F (a b· x) 
r(1 + a _ b) 1 1 , , 

reb - 1) I-b + X IF1(1 + a - b, 2 - b; x). rea) 

The last integral of Eq. (38) may also be written in 
terms of confluent hypergeometric functionsl3 : 

1 lb+iOO e'l" ocl ( CXn17i) - ds =-IFl 1,t;- . 
217i b-ioo sl (s. _ nt) r(!) A. 

(41) 

An alternative form may be obtained by replacing 

Integrating s then gives 

- ds--~----
1 i b+too 

ea.8 

217i b-ioo I( n17i) s s--
). 

(a. t [n17i ] = Jo dxx exp T(cx - x) . 

We can now write 

{ 
cxt 1 00 (_1)11+1 

'J)(P, ro, n = (j ~r(~) + cx 2 . h ~ 
,. 2 n=1 SIn J1.n 

+ 217 i (-It 
11=1). sinh (n172/).) 

(42) 

x fdxx1 sin C).17)CCX - X)}. (43) 

An integration by parts recasts the remaining integral 
in Eq. (43) into the Fresnel integral form 

fdXX! sin (n).17)(CX - x) 

).cx 1 ). (2A)1 =----
n17 2n17 n 

x [sin (n17cx/)')S(n17cx/).) + cos (n17cx/).)C(n17cx/A) 

(44) 
with the Fresnel integrals 

C(z) = _1_ r= cos t dt, 
(217)1 Jo t1 

S(z) = _1_ r= sin t dt. 
(217)i Jo t1 

Eq. (43) may finally be written 

{
oct 1 00 (_1)11+1 

'J)(P, ro, ') = <5 ~r(~) + oc 2 . h ~ 
II. 2 n=1 SIn J1.n 

(45) 

[
U(1,t;OCn) e-a.n F(3 5. ] 

x r(H + ret) 1 1 2,2, cxn) 

+ 20ci :i ( _1)n (2..1.)1 
1/=1 n sinh (n172/A) 

00 (-1)" 
x2-~~

n=1 nf sinh (n172
/).) 

x [sin (n17oc/A)S(n17oc/).) 

+ cos (n17oc/A.)C(n17Ot/A.)]}. (46) 
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In the region of high degeneracy, (X» 1, (X» A, we 
have 

U(l, t; (Xn) -+- «(Xn)-I, 
F (1! .2. (Xn) -+- r(t) e«n(r:t.n)-1 • 

1 1 2,2, rC-D ' 

c C;(X) -+- t, 

s C;(X) -+-l, 

and Eq. (46) becomes 

~(A (X) = c5{~ + 2r:t.! 
, Ar(t) 

X -2 +2~--.::..!.--[ 
1 00 (_1)n+1 (_1)n+! ] 

r(t) n=1 n sinh An n sinh (n7T2jA) 

+ A 2 cos - ± in . t 00 (_1)n+! (n7T(x )} 
n=1 nf sinh (n7T 2jA) A 

(47) 

Even in the "region of partial degeneracy, the condition 
(X » A prevails, and the oscillatory sum on the right of 
Eq. (47) persists. 

APPENDIX 

We use the fact that 

i IOg2
n = ~'(S)I ' 

n=1 n ds 8=2 

where '(s) is the :Riemann zeta function, where 

1 1 r« x·-1 

'(s) = (1 _ 21- 8) r(s) Jo e<X: + 1 dx. 

Differentiation and integration yield 

i log2 n = 2 i (-It+!IOg2 n + ·h210g 2. 
n=1 n n=1 n 

Furthermore, by comparing Eq. (27) and Eq. (29), we 
arrive at the unusual summation formula 

.TO URN A L 0 F MAT HEM A T I CAL PH Y SIC S VOL U M E 11, NU M B E R 2 FEB R U A R Y 1970 

Parametrization of Crossing. Symmetric Amplitudes * 

RALPH Z. ROSKIES 

Physics Department, Yale University, New Haven, Connecticut 06520 

(Received 26 May 1969) 

The crossing equations of Balachandran and N uyts are solved to give the most general expansion of the 
17°_17° amplitude consistent with crossing symmetry and in which the partial wave expansion is manifest. 
We find that crossing symmetry imposes 2L + 1 constraints on the Lth partial wave if the lower waves 
are known. The simplest such constraint (in the units were 4m~ = 1) is 

H (1 - s)(3s - 1)[o(s) ds = 0, 

where j~(s) is the s-wave 17°-17° amplitude. 

I. INTRODUCTION 

During the past several years, attempts have been 
made to find examples of amplitudes which embody 
the general principles of analyticity, unitarity, and 
crossing. Until recently, the emphasis seemed to be 
on incorporating the first two, with crossing symmetry 
usually mutilated; for example, the Nj D formalism 
applied to each partial-wave amplitude. Recently, 
however, the importance of crossing symmetry has 

• This work (Yale Report 2726-549) is supported in part by the 
U.S. Atomic Energy Commission under contract AT(30-1)-2726. 

been emphasized, and some successl has been achieved 
in attempts to incorporate analyticity and crossing. 

In a parallel development, which also emphasizes 
crossing symmetry, Balachandran and Nuyts2 con
sidered the following problem: Could one find an 
expansion of the amplitude F(s, t, u) in terms of known 
functions of sand t with unknown coefficients but 
which automatically satisfied crossing symmetry and 
in which the partial wave expansion was obvious? 

1 G. Veneziano, Nuovo Cimento 57A, 190 (1968). 
• A. P. Balachandran and J. Nuyts, Phys. Rev. 172, 1821 (1968). 
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Their result was as follows: One could write the 
amplitude (for spinless equal-mass scattering) as 

00 00 

F(s, t, u) = L L 2(n + I + 1)(21 + 1)a~(1 - S)I 
n=O 1=0 

X p~I+1,O)(2s - 1)PtCz), (1) 

where the mass of the scattering particle has been 
taken as t, and p!.2I+l,0) is the Jacobi polynomial. 
We have for s, t, and z the usual formula, namely, 

z = 1 + 2t/(3 - 1). (2) 

Since Pl(z) is a complete set for -1 ::; z ::; 1 and, 
for fixed I, p~21+1.0)(2s - 1) is complete in the region 
o ::; s ::; 1, it is not surprising that F can be expanded 
as in (1). The simplification arises because, in this 
basis, the condition F(s, t, u) = F(t, u, s) reduces to 
a series of finite-dimensional linear relations on the 
a~, which can be formulated as follows: For each cr, 
define the column vector (bl!) with components 

(bl!)1 = a~-l' 1= 0, 1, ... , cr, (3) 

and define the (cr + 1) x (cr + 1) matrix 

GI! _ (-lr(cr!)2(21'+1) 
( hi' - (cr - 1')! (cr + l' + I)! 

x 4F3(-[I, I' + 1,1- cr, -cr - 1- 1; 

-cr, -cr, 1; 1). (4) 

Then the amplitude is invariant under cyclic permuta
tions of s, t, u, if 

(5) 

as a matrix equation. 
In this paper, we shall find all solutions of (5) in 

two sets: those involving only even I and those 
involving only odd I. It can be shown directly that 
these solutions span the space of solutions of (5), 
but it can also be argued more simply. Any function 
F(s, t, u) can be written as 

F(s, t, u) = t[F(s, t, u) + F(s, u, t)] 

+ UF(s, t, u) - F(s, u, t)]. (6) 

If F(s, t, u) is invariant under cyclic permutations, 
each of the bracketed terms on the right-hand side 
of (6) is cyclically invariant, and the first is totally 
symmetric under interchange of s, t, and u and thus 
involves only even I. The second is totally anti
symmetric and involves only odd I. The symmetric 
solutions will be the physically meaningful ones for 
7TO_7TO scattering, for which the amplitude is totally 
symmetric under all permutations of s, t, u. 

Having found these solutions, we can write the 

most general crossing symmetric solution for 7T0_1/'0 

scattering in terms of a set of completely arbitrary 
constants and known functions, in which the partial
wave expansion is manifest. This yields all the con
ditions on the partial-wave amplitudes in the region 
o ::; S ::; 1 which are imposed by, and which imply, 
crossing symmetry. The result is that if the partial 
waves for I < L are given (L even), there are 2L + 1 
constraints on the Lth partial wave. In the simplest 
case, for L = 0, we find 

f(1 - s)(3s- 1)/0(s) ds = 0, 

where foes) is the s-wave amplitude. This simple 
relation seems to have been overlooked in previous 
work on the rigorous results concerning the 7TO_1/'0 S 

wave. 
Our expansion still has many drawbacks. First of all, 

the domain 0::; s ::; 1, -1 ::; z ::; 1, in which the 
expansion is given is the Mandelstam triangle bounded 
by s = 0, t = 0, u = 0, which is an unphysical 
region for all three channels. To get information on 
the physical amplitudes, it is necessary to continue 
the expansion into the physical regions. But it is 
difficult to find the constraints on the unknown 
coefficients which assure that the total amplitude 
has the proper analytic behavior. Secondly, it is also 
difficult to formulate the constraints of unitarity in 
the Mandelstam triangle. So it appears that we have 
gained crossing symmetry at the expense of analyticity 
and unitarity. 

On the other hand, Martina has obtained some 
remarkable results on the partial waves of the 7TO_7TO 

amplitude precisely in the region· 0::; S :$; 1 (in 
Martin's language, ml1 = 1, so that he writes ° ::; s ::; 4, whereas we have normalized to ml1 = t 
so that the region is 0 ::; s ::; 1). These results follow 
from the analytic properties of the amplitude and 
from the positivity of the absorptive part. (It is 
interesting to note that, neglecting isospin violations, 
7TO_7TO scattering never satisfies elastic unitarity 
because the 1/'+ -1/'- threshold coincides with the 
elastic one.) It is hoped that these constraints of 
Martin will considerably reduce the arbitrariness of 
the original expansion. We hope to return to this 
question in a future publication. 

We also defer to a later publication the problem of 
the crossing symmetric solution of the 7T-7T amplitudes 
with isospin, which involves studying the constraints 
imposed on amplitudes which have mixed symmetry 
in the variables s, t, and u. 

• A. Martin, Nuovo Cirnento 58A, 303 (1968); 63A, 167 (1969), 
and references cited therein. 
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II. SOLUTION OF THE CROSSING PROBLEM 
FOR EVEN I 

A. General Approach 

Since p~21+1'O) is a polynomial of degree n, the term 
on the right-hand side of (12) is of order sa. Thus 
only the term 

a=2m+3q (18) We shall discover the most general solution of (5), 
subject to survives and, for this value of a, the right-hand side is, 

(7) asymptotically, (ba)l = 0, 1 odd, 

not by directly solving these equations but by a 
roundabout method which is based on the following 
observation: The 71'0_71'0 amplitude is a totally sym
metric function of s, t, and u and can therefore be 
written as a function of 

x = st + su + tu, 

Y = stu, 
Z = S + t + u. 

Because of the constraint 

s+t+u=l, 

(8) 

(9) 

the most general symmetric amplitude can be written 
as an arbitrary function of x and y. A polynomial 
basis for the amplitude therefore consists of the 
functions 

(10) 

Since such a function is totally symmetric in s, t, and 
u, it can be written as 

00 00 

xmyq = 2 22(n + 1 + 1)(21 + l)(amq)~(l - sy 
.. -0 !=o 
x p~t+l.0)(2s - I)P!(z) (11) 

00 co 

= 2 22(a + 1)(21 + l)(b:'q)z(l - s)t 
1=0 (1=! 

x p~~il.0)(2s - 1)P1(z), (12) 
with 

(13) 

satisfying (5) and (7). Because xmy(/ is a polynomial 
in sand t, the sum on the right-hand side of (11) 
involves only a finite number of nand 1. In this case, 
there is no question of convergence of the sum, and 
(12) holds for all values of sand t. We now take the 
limit s -- 00, z finite, and retain only the dominant 
terms on both sides of the equation. In this limit 

so that 

and 

t ~ is(z - 1), (14) 

(15) 

sa .± (-I)! (2a + 1)1 2(a + 1)(21 + l)(b:'q)!Pt(z) , (19) 

!-o (a - 1)! (a + 1 + I)! 
where we have used the asymptotic form' 

p~.O)(x)""" (ex + 2n)! (!x)". 
n! (ex + n)l 

Equating (17) and (19) and solving gives 

ba _ (a -1)! (a + 1 + I)! (_I)/+mH 
( mQ)1 - 4(a + 1)(20' + I)! 

x f:lPI(Z)[l(z2 + 3)]m[l(z2 - 1)]0 dz. 

(20) 

(21) 

It is clear that the integral vanishes for odd I, so that 
the factor (-1)' can be replaced by + 1. This expres
sion gives one solution of Eq. (5). 

B. Solutions for Given (1 

For a given (1, we can generate different solutions 
of Eq. (5) of the type given in (21) in as many ways 
as we can write 

a=2m+3q (22) 

for nonnegative integers m and q. In this section we 
show that these solutions are linearly independent and 
that they form a complete basis for the set of solutions 
subject to (7). 

To study the number of nonnegative solutions to 
(22), we note that 

m = l(a - 3q) (23) 

must be an integer. Thus, q is odd if a is, and q is 
even if (1 is. 

Therefore, we write 

q = a - 2p. 
Then 

m = 3p - a. 

(24) 

(25) 

Thus, we have a solution for each integer p satisfying 

(26) 

(16) and we label the corresponding solutions (bCJ
) , by (b;)/' 

Thus, the left-hand side of (11) is, asymptotically, 

s2m+3q( -l)m+q[l(zll + 3)]m[1(z2 - 1)]Q. (17) 

'See, e.g., Higher Transcendental Functions, A. Erdelyi, Ed. 
(McGraw-Hill Book Co., New York, 1953), Vol. I, p. 61; ibid. 
Vol. II, p. 170. 
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Thus, from (21), using (24) and (25), we have 

(b") = (0' - I)! (0' + 1 + I)! (-I)" 
" ! 4(a + 1)(2a + I)! 

x ftz(Z)[!(Z2 + 3WV-"[!(Z2 - 1)]"-2,, dz. 

(27) 

From (26), it is clear that if 0' = (0, 1,2,3,4,5), then 
the number of solutions is n" = (1,0,1,1,1,1), 
respectively. If 

a = 6a + b, (28) 

then the number of solutions is a + nb . 
To prove the linear independence of these solutions 

for fixed 0', suppose 

~ Aib~)l = 0, 0 ~ 1 ~ a, (29) 
that is, 

~ (-I)"A,,4-" ft!(Z)(Z2 + 3)3"-"(Z2 - 1)"-2,, dz = 0, 

o ~ 1 ~ a. (30) 

The term (Z2 + 3)3"-"(Z2 - l),,-2P is a polynomial in 
Z2 of degree p, and so is a polynomial of at most 
degree 0' in z [recall Eq. (26)]. Thus, the integral 
certainly vanishes for I > a and, by the completeness 
of the p!(z), we have 

~ (-IYA,,4-"(z2 + 3)3"-"(Z2 - 1)"-2,, == 0, (31) 

" 
that is, 

~ (-I)"A,,[(Z2 - 1)/(Z2 + 3)]" 

" 
that is, 

where 

(34) 

which is possible only if A" = 0. Thus, the b~ are 
linearly independent. 

To prove the completeness, suppose that we are 
given a solution (b' '')! of (5) and (7). Then, from the 
analysis of Ref. 2, we have that 

" 
F(s, t, u) = ~ 2(a + 1)(21 + 1)(b''')!(1 - s)! 

!=o 

x p~~il.0)(2s - I)Pb) (35) 

is a totally symmetric function of s, t, and u. More
over, it is a polynomial in these variables and, there
fore, 

(36) 

Comparing asymptotic terms in s, for fixed z in (35) 
and (36), we find that the dominant term in (36) must 
be of order sa; i.e., the dominant terms can be written 
as 

Comparing asymptotic forms implies that 

(b''')z = ~ aib~)l' 
which establishes the completeness. 

m. THE ANTISYMMETRIC CASE 

(37) 

(38) 

We can apply the same arguments to an amplitude 
G(s, t, u) which is totally antisymmetric under inter
changes of s, t, and u. This rests on the observation 
that such a function can be written as 

G(s, t, u) = (s - t)(t - u)(u - s)H(s, t, u), (39) 

where H is totally symmetric. Moreover, if G is 
holomorphic, then so is H, since G vanishes if two 
of its arguments are equal; thus, 

G(s, t, u)/(s - t)(t - u)(u - s) 

is also holomorphic. The basis for anti symmetric 
functions is, therefore, 

(s - t)(t - u)(u - s)xmy«, (40) 

where x and y are defined as in (8). Carrying through 
exactly the same analysis, we find solutions 

(b") =(a-I)!(O'+ 1+ 1)!(-1)" 
" z 4(0' + 1)(2a + 1)! 

x ftb )[!(Z2 + 3)]3V-"[!(Z2 - 1)]"-2V-1 

X 1(z2 - 9)z dz 

with p integral, satisfying 

to' ~p ~ t(0' - 1). 

The number of solutions for a = 6a + b is 

fi = a + fib' 

where 

(41) 

(42) 

(43) 

nb = (0,0,0, 1,0,1), if b = (0, 1,2,3,4,5). (44) 

IV. SOME IMPUCATIONS 

The most general crossing symmetric form for the 
7TO_7TO amplitude is 

00 00 [1,,] 

F(s, t, u) = ~ ~ ~ (21 + l)c~(b~M1 - s)! 
l=O,,=Z ,,={i,,} 



                                                                                                                                    

486 RALPH Z. ROSKIES 

where 

and 

nO'} is the smallest integer ~ !O', 

[to'] is the largest integer:::;; to', 

the (b~)! are given by Eq. (27), 

the (c~) are arbitrary constants. 

The partial wave amplitudes are 

ct) [t"l 
.fzCs) = ~l 1l1,/~(b~}z(1 - S)!p~~il.0)(2s - 1). (46) 

First we notice that, for O' = 1, there is no integer 
value of p, so that the term with O' = 1 is missing. 
Using the orthogonality properties4 of the functions 
p~~P,O) for given 1 and different O', and noting that 
O' = 1 occurs only in the s wave, we find5 

f ds(1 - s)pi1•
0)C2s - 1)/oCs) = 0, (47) 

that is, 

fdS(1 - s)(3s - 1)/o(s) = O. (48) 

Now suppose that the s wave is given in the region 
o :::;; s :::;; 1 and satisfies (48). By the completeness 
and orthogonality of p(!,o)'(2s - 1), this determines 

[tal 

L c~Cb~)o 
(p=!"l 

(49) 

for each O'. For O' = 0,2,3,4,5,7, there is only one 
value of p, so that c~ is completely determined for 

6 Dr. S. Nussinov has kindly pointed out the following simple 
derivation of (48). It is trivially true that 

Sf F(s, t, u)(s + t + u - 1) ds dt = 0, 

where the integration is over the Mandelstam triangle. Because F 
is totally symmetric, we can replace 

s + t + u - I == (s - 1) + (t - 1) + (u - !) 

by 3(s - 1) in the integral. The t integral then yields the s wave 
multiplied by (I - s), and (48) follows. 

these values of O'. Thus, in expanding the d wave in 
terms of (1 - s)2P~~g)(2s - 1), the coefficients corre
sponding to the terms with O' = 2, 3,4,5, 7 are 
completely determined. Thus, crossing symmetry 
imposes five constraints on the d wave, if the s wave 
is given. [This arises because the coefficients c~ in (46) 
are independent of I.] The simplest such constraint 
(for O' = 2) is 

that is, 

f(1 -s)(10s2 - 8s + 1)/o(s) ds 

= t f(1 -s)3/2(S) ds. (52) 

As one goes to higher waves, the number of con
straints increases, and it is easy to see that, given all 
the waves with I < L, there are 2L + 1 such rela
tions involving the Lth partial wave and the lower 
ones. 

Notice, however, that in this formalism the s wave 
is arbitrary except for (48); that is, any s wave 
satisfying (48) can be incorporated into a crossing 
symmetric form. However, crossing symmetry is not 
the only constraint to impose on the amplitude. In 
fact, using analyticity and the positivity of the 
absorptive part of the amplitude, Martin3 has found 
strong constraints on the partial wave amplitudes in 
the region 0 :::;; s :::;; 1. We hope to apply his techniques 
to the manifestly crossing symmetric amplitude (45) 
in order to derive constraints on the coefficients c~ . 
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We consider random walks on simple cubic lattices containing two kinds of sites: ordinary ones and 
"traps" which, when stepped on, absorb the walker. We study two related problems: (a) the probability 
of returning to the origin and (b) the situation in which the particle can meet its end, not only by absorp
tion at a trap, but also by a process, called spontaneous emission, which has a constant probability per 
step. In problem (b), we ask for the probability that emission, rather than absorption, occurs. The 
solution to (a) is known for 1 dimension, and given here for the 3-, 4-, ... dimensional cases; the 2-
dimensional case remains unsolved. The solution to (b) is known for the 1-, 3-,4-, ... dimensional cases; 
we give it for 2-dimensional case. 

I. INTRODUCTION 

A random walk (R W) on a space lattice provides 
a model for many situations and processes encountered 
in statistical mechanics, solid state theory (e.g., 
diffusion of electrons, excitons, energy transfer, 
conductivity, dislocations), as well as in probability 
theory and related fields in pure mathematics. Here 
we consider a particle performing a symmetrical RW 
on a lattice (of dimension to be specified later). There 
are two kinds of lattice sites, ordinary ones and 
"traps" or "absorbers"; whenever the particle steps 
on a "trap," it gets absorbed, and the walk ends. 
We consider two related problems: (a) the probability 
of returning to the origin (Sec. II) and (b) the situa
tion in which the particle can meet its death, not only 
by absorption by a trap, but also by spontaneous 
emission, a process defined to have a constant 
probability per step (Sec. III); in that case, we ask 
for the probability that the walk end by emission, 
rather than by absorption. 

The solution to problem (a) is known! in 1 dimen
sion; we give it here for 3 dimensions (Sec. II). The 
solution to problem (b) is known for 1 dimension2,3 

and for 3 and more dimensions4 ; we fill in the gap, the 
2-dimensional case (Sec. III). It is interesting that the 
2-dimensional case presents the greatest difficulties for 
both problems. The possibility of extending the treat
ment to different situations is discussed also. Results 
are summarized in Sec. IV. 

II. PROBABILITY OF RETURNING TO THE 
ORIGIN BEFORE STEPPING ON A TRAP 

Consider a particle performing an RW in a D
dimensional simple cubic lattice. Let traps be located, 

1 E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 (1965), 
Sec. VI. 

2 H. B. Rosenstock, J. Soc. Ind. Appl. Math. 9, 169 (1961). 
3 N. Levinson, J. Soc. Ind. Appl. Math. 10,442 (1962). 
, M. Rudemo, SIAM J. Appl. Math. (formerly J. Soc. Ind. Appl. 

Math.) 14, 1293 (1966). 

at random, on a fraction q of the lattice sites. We ask 
for the probability that the particle return to its 
origin (i.e., before being trapped). This problem was 
proposed by Montroll and Weiss! and solved in 1 
dimension. We solve it here for D ~ 3, valid for small 
q, using a line of reasoning essentially due to Rudemo.' 

Let the quantity of interest be r(q), the probability 
of returning to the origin, given a density q of traps; 
and let r:q) equal the -probability of firsl return (fr) to 
the origin at step I, given a density of traps q. Then, 

(1) 

If we define ;q(I, Wi) as the probability that for a 
given walk Wi of length I [1 ~ i ~ (2D)t] trapping 
not take place (at any trap) before step I, given a 
density of traps q, then we can write 

(2D)' 

r:q) = (2D)-t L <5fr .tCWi);q(t, Wi), (2) 
i=! 

where <5fr ,t(w;), somewhat analogous to a Kronecker 
delta, is unity for the walks that first return to the 
origin at t, and zero for all others. 

Now let V(I, Wi) equal the number of different 
points visited in the I steps of walk Wi' in the absence 
oftraps. Then, the probability that none of the points 
visited in I steps be a trap is 

(3) 

Substitution of (3) into (2) and that in turn into (1) 
then gives 

r(q) = L (2Drt L <5!r.tCwi )(1 - q)V(t,w;). (4) 
t 

Now for any "transient" RW we have asymptotically5 

V(I) -+ (1 - F)I, (5) 

• L. Spitzer, Principles of Random Walk (Van Nostrand, Inc., 
New York, 1964), pp. 35-38. 
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where F is defined as the probability of eventual 
return to the origin6 (in absence of traps). F is a 
number whose value for the R W under consideration 
is easily obtained numerically, as we shall see later in 
connection with Eq. (12); for D = 3, F is known7 

to be 0.340537. Equation (5) is not accurate for small 
values of t, i.e., for short walks; short walks will, 
however, make a negligible contribution to (4) when 
q is small-the physically interesting situation. For 
small q we substitute (5) into (4), take the (1 - q) 
term outside the i sum, and note that 

(2D)t 

(2D)-t L (Jfr.lwi) 

is just ,:0), the probability of first return to the origin 
at step t in the absence of traps: 

,(0) = L ,~O)(1 _ q)U-F)t (6) 
t 

or 
,(0) = L ,:0) p~, (7) 

t 
with 

p = (1 _ q)I-F. (8) 

We recognize the right-hand side of (7) as the gener
ating function F(P) for first returns to the origin, 

,(0) = F(P). (9) 

[Observe in passing that the quantity F used in Eq. 
(5) is, in fact, F(1).] In general, this generating func
tion for first return is related to the generating.func
tion G for return (not necessarily first) to the origin by8 

F(P) = 1 - G-l(p); 

hence, we finally obtain 

,(0) = 1 _ G-l(p). 

Now G is a known function9 expressible as 

(10) 

(11) 

G(p) = (D/p) 100 

e-DZ/V1!?(z) dz, (12) 

where D is the dimension of the lattice and 1o the 
zero-order Bessel function of pure imaginary argu
ment. For any given D, the evaluation of (12) can be 
done numerically, using Simpson's rule and the 
convergent series for 10 for z smaller than some Zl' 

and the asymptotic one for larger Z.10 We have carried 
this out for D = 3; the dividing point was chosen as 

6 An R W is called "transient" if F < I, "recurrent" if F = 1. 
Symmetric RW's on simple cubic lattices are recurrent in 1 dimen
sion and 2 dimensions, but transient in higher dimensions. 

7 E. W. Montroll, J. Soc. Ind. Appl. Math. 4, 241 (1965), Eq. (4.5). 
8 Ref. 7, Eq. (3.4). 
• Ref. 7, Eq. (2.l1b). 

10 H. B. Dwight, Tables of Integrals (Macmillan, New York, 1947), 
formulas 813.1 and 814.1. 

0.41----------------~ 
-NUMERICAL 

II> q ~2 APPROXIMATION 

0.1 

0.1 0.9 1.0 

FIG. 1. Probability of return to the origin in 3 dimensions as 
a function of trap density q. ' 

ZI. = 9. The results are shown in the accompanying 
FIg. 1. A rough check on the precision of the calcula
tion is provided by the number F = F(I), which 
appears both in the input [in Eq. (12) via (8)] and the 
output (,(0) must equal F for physical reasons when 
q = 0). The input value was 0.340537, the output 
0.340344, suggesting 3- to 4-figure accuracy. We can 
also find the behavior of ,(0) for very small q from the 
analytic behavior of 10; we find a negatively infinite 
slope, in agreement with our figure, viz., 

,(0) "'-' F - D!(1 - F)%2-t7T-1qt + .... 

In the 3-dimensional case this becomes 

,(0) = 0.3405 - 0.4130qt, 

(13) 

which is in good agreement (see Fig. 1) with the 
numerical results. 

The 2-dimensional case is appreciably more 
difficult. To be sure, the generating function is 
known-merely substitute D = 2 into (12). But (5) 
does not hold for recurrent6 RW's; instead we havell 

Vet) "'-' 7Tt/ln t. (14) 

If this, instead of (5), is put into (4), the result is 

,(0) = L ,:0)(1 _ q)"t/lnt 

t 
(15) 

and not simply the known generating function for the 
coefficients ,:0). We would, therefore, have to go 
through the procedure of explicitly computing the 
expansion coefficients from the generating function 
before being able to evaluate (15). A straightforward 
computation of '1' '2' '3"" is, of course, possible; 
but we have been unable to obtain an expansion for 
'k asymptotically valid for large k and, therefore, 
we have failed to evaluate (15). 

III. SPONTANEOUS EMISSION 

Let oc = const be the probability per step of spon
taneous disappearance ("emission") of the walker 

11 Ref. I, Eq. (1II.IS.b). 
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from the lattice. (We may visualize this walker as a 
radioactive or otherwise unstable particle capable of 
decay with constant probability in time.) We ask for 
the probability that the walk end by spontaneous 
emission rather than by stepping on a trap. (Physically, 
this is the probability that emission be observed.) To 
obtain a formal solution in 2 dimensions we follow the 
reasoning of Rudem04 rather than that of earlier 
workers2•3 which seems useful for 1 dimension only. 

Let P(q) be the probability of emission if the density 
of traps is q, and let piq) be the probability that this 
happen at step (. Then 

(16) 

Defining ~ as in Eq. (2) and bernis,t as unity if emission 
takes place at step ( and zero otherwise, we obtain, 
as for (2), 

(2m t 

p:q) = (2D)-t I bernls.tCwi)~it, Wi)' (17) 
i=l 

If q is small, ~ can be taken out of the i sum, since V 
and, hence, ~ will asymptotically become independent 
of Wi; (2D)-1 Ii bernis,t then becomes just the proba
bility of emission at step t in absence of traps, viz., 

P:O) = (1 - rxYrx (18) 

(failure to emit at steps 0, 1, 2, ... , ( - 1, followed 
by success at step t). Substitution of (17) into (16) then 
gives 

p(q) = rx I (1 - rx)t(l - q)vw. (19) 
t 

In evaluating this, we confine ourselves to the limit 
in which both the trap density q and the emission 
probability per step rx are small, though their ratio 
remains unrestricted. In that situation, the factor rx 
assures us that the early terms in (19) will not con
tribute appreciably; we can, therefore, use the asymp
totic value (14) for the mean number of distinct points 
visited in a 2-dimensional RW throughout the range. 
Furthermore, since adjacent terms will not vary 
greatly in magnitude, we can replace the sum by an 
integral: 

p(q) = rx1''' dt(l - rxY(1 - q)"tllnt. 

Neglecting terms of order rx2 and q2, we obtain finally 

p(q) = rx fO dt exp [-rxt - (7Tqt/ln t)]. (20) 

This should be evaluated for arbitrary values of the 
ratio rx/q. We were unable to do this in closed form, 
but obtained separate expressions valid for small and 
for large rx/q. 

When rx/q» 1, the first term in the exponent is the 
dominating one throughout the range of integration. 
We, therefore, let rx( = y and rewrite (20) as 

p(q) =J.oo dy exp [-y(l + 7Tq/rx )J. (21) 
a In y + In (l/rx) 

Here In (l/rx) is a large number, much larger than y 
in all regions except those in which y itself is so large 
as to cause the leading term exp-II to make the 
integrand negligible. The Iny term can, therefore, 
be neglected, and we obtain 

p(q) = {I + [7Tq/rxln (l/rx)]}-l 

x exp (-rx{l + [7Tq/rxln (l/rx)])) 

'" (1 - rx){l - [7Tq/rxln (l/rx)]). (22) 

In the other extreme rx/q« 1, the second term in 
the exponential in (20) will be the larger when t is small 
[Le., forvaluesoft< exp (q/rx)], but the first one when 
t is larger. However, if rx/q is small enough, the 
crossover point will occur for ( so large that the 
entire integrand is negligible beyond. We, therefore, 
set 7Tqt = z and write (20) as 

p = (rx/{J) Loodze-g(t), (23) 

where 

g(z) = (rx/{J)z + z[ln z + In (l/{J)r l (24) 

with {J = 7Tq. Even though (1./ {J is small, {J is itself 
small. Hence, In (1/ (J) is a large number, and In z will 
be comparably large only for values of z so large that 
the entire integrand is negligible. Therefore, we 
expand g as follows: 

g = In (~/{J) ( 1 - Inl~l;{J») + ~ z 

or, introducing c = In (l/{J), W = z/c, 

g = w(I + rxc/{J) - (w/c) In cwo 

Inserting this in (23) and expanding exp [-(wlc) In cw] 
in a Taylor series then gives 

p(q) = ~[rOO dWe-w(Hae//l) 

(J J /lIe 

+ roo w dwe-w(ln c + In W)] 
J~c . 

Now replace the lower limit by zero, thereby increasing 
second-order errors only. The first two integrals are 
then elementary, and the last onel2 is 1 - Y = 0.423, 

10 I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, 
and Products (Academic Press, New York, 1965). formulas 4.352.2 
and 9.73. 
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TABLE I. Summary of solutions of problems (a) and (b). 

Dimensionality 
D 

Problem (a)
return to origin Reference 

Problem (b)
spontaneous emission Reference 

q(1 - q)-lln (l/q) 

2 not known 

(D/P) S;;' exp (- Dz/p)If(z) dz 

~ F - Di(1 - Fh-i
7T-1l + O(qi), 

with p = (1 _ q)I-P 

y being Euler's constant. So we finally obtain 

P(q) = (oc/f3)[e + In e + 0.423 + O(e-I )] + O«OC/f3)2). 

(25) 

Since the derivation involves integration over a 
region in which previous expansions are not formally 
valid, this is an asymptotic, rather than a convergent, 
series. Summarizing (22) and (25), we have 

p(q) = 1 - oc - [1Tq/OC In (l/oc)], 

oc [1 1 = - In- + Inln- + 0.423 
1Tq 1Tq 1Tq 

1Tq small, 
oc 

1Tq large. 
oc 

(26) 

Direct numerical evaluation of (20) gives good 
agreement with (26). For example, direct evaluation 
of (20) gives 0.00924 and 0.00121, respectively, for 
(OC,1TQ) = (10-6 , 10-3) and (10-8,10-4), whereas the 
second line of (26) gives 0.00926 and 0.00119 for these 
situations. Similarly, direct evaluation of (20) gives 
0.99883 and 0.~9758, respectively, for (OC,1TQ) = 
(10-3 ,10-6) and (10-3, 10-5), whereas the first line of 
(26) gives 0.99885 and 0.99755. The general behavior 
of P as a function of oc and 1Tq is illustrated in Fig. 2. 

o 
o 

1 - r~ S;;' exp (-'7'IU) tanh u du 
~ 1 - '7'1 + O('7'D, small '7'1> 
~ 2'7'~2 + 0('7';'), large '7'1, 

with '7'1 = 2fq/oct 

ocS~ exp [-oct.- (l7qt/lnt)] dt 
= 1 - oc - [17'7'2/ln (1/oc)] + 0('7':), 

small '7'2, 
= (17'7'2)-1 [In (1/1Tq) + In In (1/l7q) 

+ 0.423 + O(1/ln 1Tq)] + 0('7';-2), 
large '7'2, 

with '7'2 = q/oc 

[1 + (1 - F)1'2]-1 

3 
2 
2 

o 

o 
o 

4 

I.0r----------:;:::=--= ...... -----.... 
09 

/,---
. /a=10-2 

0.8 I 

0.7 

0.6 

P (q) 0.5 

0.4 
0.3 

0.2 

0.1 
O~~~~~~~~-L-~--~ __ -L~ 
10-5 10 

a 
;;q 

FIG. 2. Probability of spontaneous emission in 2 dimensions, 
for various trap densities q and spontaneous emission probabilities 
IX per step. 

REVIEW 

The known results for both problems discussed in 
this paper are summarized in Table I, where q and oc, 
as previously defined, are, respectively, the trap 
density and the emission probability per step; F, the 
return probability in absence of both traps and 
emission, is a number whose value depends on the 
dimensionality. The "reference" column refers to our 
footnotes; Ref. 0 means the present paper. The 
functional dependence of the calculated probabilities 
is seen to be quite strongly determined by the 
dimensionality. 
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A general theory is presented concerning the interaction between the polaritons and the acoustic 
phonons in molecular crystals. Using a one-phonon approximation to truncate the hierarchy of the 
Green's functions involved and disregarding mixing of different polariton bands, we derive an expression 
for the dielectric permeability of the crystal. The absorption coefficient for the coupled polariton-phonon 
spectrum is found to have an asymmetric Lorentzian Iineshape even if the frequency dependence of the 
energy shift and spectral width is neglected. The damping function causing the asymmetry of the spectral 
line depends entirely on the coupling between the dressed electron subsystem and the phonon field. 
Expressions are developed for the energy shift and spectral width of the resonance line, and their temper
ature dependence is discussed. Far from the resonance peak, the frequency and temperature dependence 
of the absorption coefficient is established. In the transparent region of frequencies of the crystal, the 
expression for the absorption coefficient consists of two terms that have delta-function distributions and 
are peaked at different frequency regions, depending on whether or not the polariton and the phonon 
fields are coupled. In the limiting case where retardation can be ignored, the bare exciton-phonon 
interaction is discussed. The average energy of the crystal resulting from the polariton-phonon inter
action· at finite temperatures·has been derived in a closed form. 

I. INTRODUCTION 

As is well known, a polariton is an elementary 
excitation (quasiparticle) which is a mixture of the 
low-lying excited states of a crystal (excitons or 
phonons) with the electromagnetic field (photons). 
In a tight-binding model of a molecular crystal, a 
polariton may be viewed as an electron-hole pair 
tightly bound to one another, dressed by the radiation 
field, and migrating through the crystal. This concept 
was first introduced by Hopfield1 in his study of the 
optical properties of insulators. Since then a large 
number of investigations have been devoted to the 
properties of polaritons in molecular crystals, partic
ularly by Russian workers. In a recent excellent 
review article, Ovander2 has begun with the work 
of Agranovich3 and discussed the progress that has 
been made in this field, with emphasis on the non
linear optical effects in crystals; we refer to his paper2 
where references are given. 

Agranovich and Konobeev4 have found that the 
interaction between polaritons and acoustic phonons 
becomes substantial at low temperatures and deter
mines the shape of the long-wavelength edge of the 
exciton absorption bands. Ovander2.5 developed a 
theory for Rayleigh scattering in molecular crystals by 
considering the polariton-acoustic photon interaction 

• Issued as N.R.C. No. 10816. 
1 J. J. Hopfield, Phys. Rev. 112, 1555 (1958). 
2 L. N. OYander, Usp. Fiz. Nauk 86,3 (1965) [SOY. Phys.-Usp. 

8, 337 (1965)]. 
a V. M. AgranoYich, Zh. Eksp. Teor. Fiz. 37, 430 (1959) [SOY. 

Phys.-JETP 10, 307 (1960)]. 
• V. M. AgranoYich and Yu. Y. Konobeey, Fiz. TYerd. Tela 3, 360 

(1961) [SOY. Phys.-Solid State 3, 260 (1961)]. 
• L. N. Oyander, Fiz. TYerd. Tela 5,21 (1963) [SOY. Phys.-Solid 

State 5, 13 (1963)J. 
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at zero temperature. For frequencies of the incident 
light far from the absorption band, he derived an 
expression for the photon cross section, which is a 
generalization of the known formula for the Rayleigh 
scattering in gases; it contains an additional term 
which is due to the interaction between tl1e electronic 
excitation and the acoustic phonons. Ovander sug
gested that this term will dominate for frequencies in 
the exciton absorption region. We shall indicate in 
due course what parts of the polariton-phonon 
interaction were taken into account in both mentioned 
studies. 

In the present study we attempt to develop a general 
theory of the interaction between polaritons and 
acoustic phonons in a molecular crystal. We begin in 
Sec. II with an expression for the dielectric permea
bility derived in earlier work6 that corresponds to the 
interband excitations occurring in a molecular crystal. 
Here we neglect terms in the expression for the 
dielectric permeability describing the physical process 
of Raman scattering because we will deal with this 
problem in a later publication, but the coupling of the 
excitation field to the acoustic branches of the phonon 
field is fully included. Then, by means of a canonical 
transformation, the exciton operators are transformed 
into that of polaritons and the required expression for 
the dielectric permeability is derived corresponding 
to the normal polariton waves in the crystal. In Sec. 
III the model Hamiltonian for the crystal is devel
oped, which consists of the free-polariton field, the 
phonon field in the harmonic approximation, and the 
polariton-phonon interaction. 

• c. Mayroyannis, J. Math. Phys. 8, 1522 (1967). 
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The equations of motion in a closed form are derived 
in Sec. IV for the Green's functions for the polariton 
field and the polariton-phonon field by applying a 
simple decoupling approximation to the higher-order 
Green's functions involved. The decoupling approxi
mation amounts to· restricting ourselves to physical 
processes involving the emission or absorption of one 
phonon. Then, disregarding mixing of different 
polariton bands, we obtain expressions for the Green's 
functions of interest and consequently the expression 
for the dielectric permeability of the coupled polariton
phonon system. It consists mainly of two terms: one 
of them describes the coupled polariton-phonon 
spectrum, while the other is proportional to the 
unperturbed polariton-phonon Green's function. In 
the limiting case where retardation may be neglected, 
the corresponding expression is derived for the bare 
exciton-phonon spectrum. The Green's function for 
the phonon field is calculated in the same approxima
tion as that used for the derivation of the polariton 
Green's function and the polarization operator corre
sponds to the physical process where two polaritons 
are created or annihilated simultaneously through the 
exchange of a phonon. The phonon occupation num
ber is evaluated in the limit when the imaginary part 
of the polarization operator tends to zero. 

The expression for the frequency and wave-vector
dependent absorption coefficient of the polariton
phonon system is calculated in Sec. V. It consists of 
two terms: the first term is proportional to a shape 
function, while the second has a delta-function distri
bution. The shape function is an asymmetric Lorent
zian line, even if the frequency dependences of the 
energy shift and the damping functions are neglected. 
The asymmetry arises from the coupling between the 
electronic excitations as well as the intermolecular 
interactions with the phonon field. Expressions have 
been obtained for the energy shift and spectral width 
as a function of temperature for the case of resonance, 
provided that certain conditions are satisfied. It is 
shown that, for frequencies near resonance, the shape 
function consists of a superposition of symmetric and 
asymmetric Lorentzian lines, and, at resonance, the 
temperature dependence of the absorption coefficient 
is established. To our knowledge, the polariton reso
nance spectrum has not been previously discussed. 

In the limiting case where the damping goes to zero, 
both terms in the expression for the absorption 
coefficient are delta shaped, but they satisfy different 
dispersion relations and, therefore, they are peaked 
at different frequency regions. The first term corre
sponds to the energy spectrum of one-particle excita
tion where the polariton and the phonon field are 

coupled together and the energy of excitation is just 
the unperturbed polariton energy renormalized to 
account for the interactions involved. This is the 
physical process for polariton scattering by acoustic 
lattice vibrations. The particular case where our 
results correspond to those obtained by Ovander2•5 

are pointed out. The second term is peaked in the 
frequency region where the polariton and phonon 
fields are not coupled; this is the frequency region of 
two-particle excitations. In the limit where retardation 
is not important, the absorption coefficient for the 
bare exciton-phonon is discussed. 

Finally, in Sec. VI the average energy of the system 
is calculated by averaging the total Hamiltonian. The 
average energy of interaction due to the polariton
phonon interaction is obtained in a closed form. It is 
expressed as the difference of the excitation energy 
corresponding to the coupled polariton-phonon field 
which is temperature dependent and the unperturbed 
polariton energy. 

II. DIELECTRIC PERMEABILITY 

The dielectric permeability tensor is related to the 
complex electrical conductivity tensor O",,(k, w) by the 
well-known relation 

Eij(k, w) = bij + (47rijW)O"ii(k, w). 

In Ref. 6, use has been made of the relation between 
the electrical conductivity tensor and the Fourier 
transform of the current-current retarded Green's 
function of the system, e.g., Eq. (98) of Ref. 6; then, 
discarding Umklapp processes, an expression for the 
dielectric permeability, corresponding to the interband 
excitations occurring in an isotropic molecular crystal, 
has been derived in the form6 

Eii(k, w) = Eoo - 1T2 w!(no - nil) I!o,.(k, i)E,,(k)g,,(k, w) 
w " 

2 

- 1TWP1 I [(no - n,,)!o,,(k, i)E,,(k)]! 
w 2N'Ii .. ,r,,,,,,' 

X [(no - n".)!o",(k - q, i)E",(k - q)]t 

x [Yr*(q)«b,.(k); b;;'(k - q)/J~(q») 

+ YrCq)«b,.,(k - q)/Jr(q); b~(k»)] 
2 

- 1T~p (no - nil') 1 !o",(k - q, i)E".(k - q) I y"(q)\2 
W N "'.,,,r 

X «b".(k - q)Piq); b;(k - q)P~(q»), (1) 

where 

Eoo = 1 - (no - n,,)w!/w2
, w: = 41TeWaS/mV, 

(2) 
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w'P is the frequency of plasma oscillations, and 
no == (IXtOIXkO> and n", == (IXt",IXk",> are the occupation 
numbers of the holes and the electrons in the valence 
and Ilth excitation bands, respectively. The system 
of units with Ii = 1 is used throughout. The oscillator 
strength/oik, i) is defined as 

foik, i) = (~m ) ~ leki • p~",\2 Eik) 
e as ~ 

x lu",~(k) + v",ik)12 exp ik • (r~~ - r~!), (3) 

where m is the electron mass, e2 denotes the square of 
the electronic charge divided by the static dielectric 
constant of the substance, IX (= 1, 2, ... ,a) enu
merates the molecules in the unit cell, and Sand N are 
the total number of electrons in the unit cell and the 
total number of unit cells in the crystal, respectively. 
The compound index Il denotes the exciton band, the 
corresponding molecular term, and the kind of mode, 
transverse (i = Ill. = 1, 2) or longitudinal (i = Ilil = 
3). The quantity Eik) is the energy of excitation of the 
Ilth exciton band, and u",ik) and v",~(k) are the 
amplitudes that diagonalize the unperturbed part of 
the Hamiltonian arising from the direct electron-hole 
pair interactions in the zero approximation; explicit 
expressions for Eik) and u",ik) and v",ik) are given 
elsewhere.3

.? The dipole-moment operator P~", corre
sponds to the allowed transition 0 ~ Il, while eki 

( = e_ki) and V designate the photon-polarization vector 
and the total volume of the crystal, respectively. The 
position vector of the molecule IX at equilibrium on the 
lattice site n is denoted by r~o1 , and k is the wave vector 
of the external electromagnetic field. In the expression 
(1), g",(k, w) is the Fourier transform of the retarded 
Green's function given by 

gik; w) == «b",(k); bt(k»), b/k) == b",( -k) - bt(k), 

(4) 

and b;(k) and b",(k) are the creation and annihilation 
operators corresponding to the bare exciton spectrum 
and obey Pauli statistics. The retarded Green's 
function g",(k, t - t') is defined asS 

gik, t - t') = -iO(t - t')([b",(k, t), bt(k, t')1-), 

where the angular brackets denote the average over 
the canonical ensemble appropriate to the total 
Hamiltonian Je of the system, OCt) is the usual step 
function, and the operators 5/k, t) and 5;(k, t') are in 
the Heisenberg representation. In Eqs. (1) and (4) 
and what follows, the time arguments of the operators 

, C. Mavroyannis, J. Chern. Phys. 42,1772 (1965). 
8 C. Mavroyannis, J. Math. Phys. 8, 1515 (1967). 

have been suppressed for convenience. For further 
details regarding expressions (1) and (4) we refer to 
our previous work. 6 

We remark that in Ref. 6 the Green's functions, 
which appear in the expression for the dielectric 
permeability [Eq. (99) of Ref. 6] corresponding to 
interband transitions for an isotropic molecular crystal 
(static lattice), have been calculated by means of the 
total Hamiltonian consisting of the exciton Hamil
tonian plus the interaction between the excitons and 
the electromagnetic field. Though Umklapp processes 
have been neglected, the derived expression for the 
dielectric permeability, Eqs. (103)-(108) of Ref. 6, 
includes "local field corrections" explicitly and is a 
generalized version of the well-known Lorenz-Lorentz 
formula. For a discussion on "local field" effects in 
the tight-binding model we refer to Ref. 1. In com
parison with the expression €ii(k, w) derived in Ref. 
6, we have here disregarded in (1) quadratic terms 
with respect to the exciton operators corresponding to 
the physical process of Raman scattering, but the 
coupling between the bare excitons and the acoustical 
branch of the phonon field has been included explicitly. 
This is done in the usual way by expanding in power 
series the displacements of the molecules from their 
equilibrium positions and retaining only the linear 
terms in the expansion; then use has been made of the 
expansion of the molecular displacements arM that 
are assumed to be small, in terms of the phonon 
creation and annihilation operators, i.e., 

with 

where e:r is a unit vector in the direction of polarization 
of the phonon, w,(q) is the frequency of the trans
lational acoustic vibrations in the harmonic approxi
mation, and Mit is the mass of the molecule IX. The 
operator Pr(q) == {J,(q) + {J~( -q), where M( -q) and 
{Jr(q) are the creation and annihilation operators of 
acoustic phonons with wave vector q, respectively, 
and satisfy Bose commutation relations; the index r 
designates the phonon branch. The sum over q in (5) 
extends over all values, while 2wr(q)-lPr(q) refers to 
the reduced vector in the first zone; this amounts to 
the inclusion of Umklapp processes. The Umklapp 
processes are not treated here explicitly, since we are 
mainly concerned with interband transitions, while 
Umklapp processes dominate only in the x-ray range 
of frequencies, but they may be included without 
major changes in the theory. The nonlinear effects due 
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to the electronic-vibrational interaction leading to 
Raman scattering, which have been excluded from the 
expression (1), will be the subject of a later publication. 
Since we have made the assumption that the molecular 
displacements from their equilibrium positions are 
small, the expression (1) corresponds to weak coupling 
between the bare excitons and the bare acoustic 
phonons. The opposite case corresponding to the 
strong coupling between localized or trapped excitons 
and the lattice vibrations accompanied by a local 
deformation of the lattice shall not be treated in the 
present study. Our treatment is not applicable in this 
case because the displacements of the molecules from 
their equilibrium positions are large. 

In order to study the polariton spectrum we employ 
the canonical transformation3•4 

bik) = L [u/Lp(k)'p;.(k) + v:i -k)'t;.( -k)], (7) 
p 

of A there are two polariton branches, a fact that has 
been discussed in the literature previously.10 In (8), 
(X~o) is the average energy resulting from the dressed 
electron-hole pair interactions; its explicit expression 
is given elsewhere. 6•s 

Substituting (5) and its complex conjugate into (1), 
we obtain the following expression for E).).(k, w) == 
E).(k, w), correspopding to the normal polariton waves 
in the crystal: 

7TW! 
EiJk, w) = Eoo - -2- (no - n,,) 

W 

x !loik, A)wp;.(k)«tp).(k); 't;.(k») 
p 

2 

- 7TW Pt ! [(no - n,,)loik, A)wp;.(k)]t 
w 2N' q.r,p,p' 

X [(no - n".)lo".(k - q, A')wp.;..(k - q)]t 

X [Yr*(q)«tp;.(k); ,;')..(k - q)b:(q») 

+ ¥,.(q)«'p . ...{k - q),Br(q); 't;.(k»)] 
2 

- 7TWp (no - n".) ! Jo".(k - q, .1') 
w2N Q,r,p' 

X wp.;..(k - q) I Yr (q)1 2 

X «'p.)..(k - q),B.(q); ';')..(k - q),B:(q»), 

where u/Lp(k) and v/Lp(k) are the amplitudes that 
diagonalize the Hamiltonian for the free (static lattice) 
excitons interacting with the electromagnetic field, 
while 't).(k) and 'p..{k) are the creation and annihila
tion operators for the polariton spectrum, respectively, 
which satisfy approximately Bose commutation rela
tions.3 .4.9 In this approximation the Hamiltonian for 
the undisplaced lattice becomes diagonal, i.e., (11) 

X(O) = (Xo)(O) + L wp;.{k)'t;.(k)'p;.(k), 
where loik, A) is defined now as 

(8) 

loik, A) = !foik, i) (Eik») X IU"p(k) - v"i -kW 
k.p.). 

where wp).(k) is the real energy of excitation of the 
polariton waves with wave vector k and polarization 
A (= 1,2), and is given by the pth root of the secular 
equationS 

(9) 

with 1}(k, wp).(k» being the real part of the index of 
refraction of polariton waves in the crystal and which is 
equal to 

1]2(k, wp;.(k» 

= 1 + ~(k, wp;.(k» 

= 1 + (no - n/L)w! Ifo,,(k, A)/[E!(k) - w;;.(k»). 
",). 

(10) 

We note that in the expression (10) for the square of 
the index of refraction of optical waves, which satisfies 
the Maxwell equation (9), the "local field" effects are 
included.s The index p enumerates the polariton bands 
which correspond to the solutions of the secular 
equation (9). It is evident from (10) that for each value 

" wp;.(k) 

= Lfoik, i)[1 - (ddw: I}~(k, W»)-l ], 
" W w=wp).(k) 

(12) 

and 'p..{k) == 'p).(k) + '~).( -k). In deriving the second 
equation on the r.h.s. of (12), we have made use of the 
explicit expressions for the amplitudes u"p(k) and 
v,,/ -k) derived in Ref. 8. The expression for E).(k, w) 
given by (11) can be easily reduced to the same form as 
that used by Agranovich and Konobeev9 if we retain 
only the first two terms of the r.h.s. of (11) and then 
replace E;.(k, 00) by its inverse e;:l(k, 00). In the follow
ing sections we calculate the Green's functions that 
appear on the r.h.s. of (11) by means of a model 
Hamiltonian corresponding to a molecular crystal. 

III. THE POLARITON-PHONON HAMILTONIAN 

The Hamiltonian for a molecular crystal is taken in 
the form 

Je = Je(O) + Xphonon + Jeint , (13) 

• V. M. AgranoYich and Yu. V. Konobeey, Fiz. TYerd. Tela 5, 10 A. A. Demidenko, Fiz. TYerd. Tela 3,1195 (1961) [SOY. Phys.-
2544 (1963) [SOY. Phys.-Solid State 5, 1858 (1964)]. Solid State 3, 869 (1961)]. 
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where the unperturbed Hamiltonian Je(O) is given by 
the expression (8), while the Hamiltonian of the 
phonon field Jephonon in the harmonic approximation 
is equal to 

Jephonon = L wr(g)(P:(g)Pr(q) + t)· (14) 
q.r 

The interaction of the polaritons with the acoustic 
phonons Jeint , linear with respect to the phonon 
operators, is described by the expression5.9.1L12 

Jeint = ~ <l>q,(k + g, p', A'; k, p, A) 
k.<I.r 

p,p',A.A' 

x ':'A,(k + q)~pik)Pr(q) 
+ I Wqr(k + q, p', ).'; k, p,).) 

k,<I.r 
p.p'.A.A' 

x ';'A,(k + g)'p..{k)Pr(g) 

+ L [W<lr(k + q, p', ).'; k, p, A) 
k.<I.r 

P,P'A.;" 

+ r+ -X 'pi -k)'oP'A,(k + q)PrCg) + h.c.], (15) 

phonon field and which is equal to 

<l>qr(k + q, p', ).'; k, p, ).) 

= iw: L [foik + q, )")E,lk + q)/c(k + q)]t 
2N2 /l 

X [u!p(k) - v!p( -k)] 

x [up'A,(k + q) + Vp'A'( -k - g)]Yr(g) 

+ (w;/4cN*)[ekH ,A" euj[up..{k) + vP;'( -k)] 

x [u;,;.{k + g) + V;,;.{ -k - g)]Y,(q). (16) 

The two terms in (16) result from the expression for the 
electron-photon interaction Hamiltonian (in the un
coupled picture), which are linear and quadratic 
with respect to the vector potential, respectively. 5 In 
(16), ekA and ek+Q.A' are the photon polarization 
operators with wave vectors k and k + q and polari
zation ). and ).', respectively. The amplitudes up;.(k) 
and vpA( -k) arise from the canonical transformation 
from the photon operators <XA(k) and IXt(k) to the 
corresponding polariton operators, i.e., 

rx;.(k) = 2: [upik)'p;.(k) + v;;.( -k)'%i -k)]. 
p . 

where <l>qr(k + g, p').'; k, p, ).) is the coupling function If we make use of the expressions for the u's and v's 
arising from the interaction between the electro- given in Ref. 8, then the expression for <l>qr(k + g, p', 
magnetic field and the acoustical branches of the A'; k, p, ).) turns out to be 

It is easy to see that the expression (17) for <l>qr(k + g, 
p', ).'; k, p, ).) is a generalization of the Mandelstam
Brillouin component2.5 (in energy units) in the light
scattering process that is caused by the interaction 
with acoustic vibrations in the crystal. 

The coupling function Wqr(k + q, p', A'; k, p, A) 
that arises from the interaction between the electronic 
subsystem in the excited state, the intermolecular 
interactions, and the acoustic vibrations, is given by 

Wq,(k + g, p', A'; k, p, i.) 

= 1 [E/l/l,(k + g, k) + F~~\(k + q, k») 
/l./l' 

x [u:p,(k + q)u/l'p(k) + v/l,,.{-k - q)v~·,lk)]Ylg) 

11 A. S. Davydov, Phys. Status Solidi 20, 143 (1967). 
12 A. S. Davydov and E. N. Myasnikov, Phys. Status Solidi 20, 

153 (1967). 

(17) 

+ .2 F~!\(k + g, k)[v:p'( -k - q)ul"p(k) 
I'll' 

+ u:p,(k + g)V/l,ik)]¥,.(g), (18) 

where 

EI'I'.(k + q, k) 

= .2 ~;[uj/l(k + q)ufl',(k) + V,,,( -k - qvf!,( -k)] 
f,ll 

(19a) 
and 

A~ = E! - E~ + L [(O,jl VBSl IO,f) 
1*, 

- (001 Y.81100)J. (19b) 

In deriving (l8)-(19b), the overlap of the electronic 
wavefunctions has been neglected. In (l9a) and (l9b), 
E{ - £2 is equal to the energy of excitation of the 
isolated molecule C/.. in the fth excited state and ufl',(k) 
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and vlll '( -k) are the amplitudes that diagonalize the 
bare unperturbed exciton Hamiltonian. The functions 
F~~~(k + g, k) and F~~~(k + g, k) describe the cou
pling between the intermolecular interactions and the 
acoustic phonons. The expressions (I8), (19a), and 
(19b), with the exception of the second terms on the 
r.h.s. of (18) and (19b), which are small, have been 
derived by Ovander5 where the expression for 
F~~!(k + g, k) is given. He has shown that the ratio 
of E"",(k + q, k)/F!~~(k + g, k) is of the order of 
E/ V', where E is the energy of excitation of an isolated 
molecule and V' is the energy of interaction be
tween the molecules; since E» V', the function 
F(l~(k + q, k) has been ignored in his treatment. The "" .. x component of the couplIng functlon F~~~(k + q, k) 
in the dipole-dipole approximation has been con
sidered by Agranovich and Konobeev4 in their study 
of the long-wavelength edge of the exciton absorption 
band. Explicit expressions of the coupling functions 
F~~!(k + g, k) that result from the interaction between 
bare excitons with acoustic as well as with optical 
phonons have been recently derived by Davydovll for 
one- and three-dimensional models of molecular 
crystals of certain symmetry and have been used by 
Davydov and Myasnikov12 for the calculation of the 
dielectric permeability corresponding to the bare 
exciton spectrum. Davydovll also derived a coupling 
function that results from the derivative of the second 
term on the r.h.s. of (19b) with respect to the inter
molecular distance, but he has ignored in his treatment 
the coupling functions E"",(k + q, k) and F~1~(k + 
q, k). 

In discussing the coupling functions that appear in 
the expression (18), we may regard the coupling 
function E",Ak + q, k) Yr(g) as that corresponding to 
an isolated bare exciton dressed with phonons, while 
the term F~~(k + g, k) results from the matrix ele
ments causing the transfer of energy from one mole
cule to the other; therefore, the coupling function 
F!1~(k + q, k) Yr(q) accounts for the transfer of energy 
of the coupled bare exciton-phonon system between 
neighboring molecules in the crystal. Similarly, the 
coupling function F!~(k + q, k) Yr(q) arises from the 
simultaneous creation or annihilation of two bare 
excitons coupled with phonons. We refer to the 
previously mentioned papers regarding the expression 
for F!~(k + q, k). As far as the expression for 
F!~~(k + q, k) is concer~ed, it is obtained from ~hat of 
F(l~(k + q, k) by replacmg the resonance matnx ele-

"Il , . I ments (0, II V II , 0) by the matnx e ements corre-
sponding to the simultaneous excitation of two 
electrons, (0, 01 V 1/,/'). The bare exciton-phonon 
interaction due to dipole-dipole interactions between 

the molecules in molecular crystals at low tempera
tures has been elegantly discussed by Agranovich and 
Konobeev13

; we refer to their paper for details. 
Substituting the expressions for the u's and v's into 
(18), we find 

Wq.(k + q, p', A'; k, p, A) 
2 

= w,,! I [EJl".(k + q, k) + F~!!(k + q. k)]Y,.(q) 
4N Jl.Jl' 

x [wp).(k)wp,).,(k + q)]-! 

x { [foik + g, A')foJl.(k, ;')Eik + q)EJl,(k)]t 

[EIl,(k) - wp,.{k)][E".(k + q) - W",).,(k + q)] 

+ [(foll,(k, A)foik + q, A')EJl.(k)Eik + q)]t } 

[E".(k) + wp).(k)][Eik + g) + wJI,;..(k + q)] 

x (dw: ~2(k, W»)-* (dW: ~2(k + q, W»)-! 
dw w=wp;'(k) dw w=wp').'(kH) 

t ! w
2 

X (no - nil') (no - nIl) +----17 
4N~ 

x L F~!!(k + q, k)Yr(q)[wp;.(k)wp,).,(k + g)]-i 
".,,' 

x { [/o,,(k + q, ;")foJl,(k, ;')EIl(k + q)EIl,(k»)t 

[Eik + q) + wp')..(k + q)][E",(k) - wp),(k)] 

+ [fo",(k, A)foik + q, ;")E"(k)E,,.(k + q)]! } 

[EIl(k + g) - wp,).'(k + q)][E,,'(k) + wp).(k)] 

x W
2 
~2(k, W) (d 2 )-t 

dw w=Wp.\(k) 

x (dW: ~2(k + q, W»)-* 
dw w=wp' .\'(k+'l.) 

X (no - n"i(no - n,i. (20) 

Similarly, the nondiagonal coupling constant 
Wqr(k + q, p', ;.' ; k, p, A) that results from the si
multaneous excitation of two polaritons turns out to be 

ffrqr(k + q, p', A' ; k, p, A) 
2 

= W"l I [EJl",(k + q, k) + F~~~(k + q, k)]Yiq) 
4N~".p,' 

x [Wp;.(k) Wp,).,(k + q)]-l 

[foik + q,;")fo".(k,Il)E,,(k + q)E".(k)]* 
x 

[Eik + q) - w",;,{k + q)][E",(k) + wpik)] 

x (no - n,,)t(no - n"i(dW:~~(k'W)ri 
dw JW=WpA(k) 

x (dW: ~~.(k + q,W»)-! 
dw w=wp').'(k+'I) 

18 V. M. Agranovich and Yu. V. Konobeev, Fiz. Tverd. Tela 6, 
831 (1964) [SOy. Phys.-Solid State 6, 644 (1964)]. 
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It is easy to show that the coupling constants in the 
expression (15) satisfy the relations 

4>qr(k + q, p', A'; k, p, A) = 4>:,.(k, p, A; k + q, p', A') 

and 

Wqr(k + q, p', A'; k, p, A) 
= W!(k, p, A; k + q, p', A'), 

i.e., Je1nt is Hermitian. We note that in the first term on 
the r.h.s. of the interaction Hamiltonian (15), the 
diagonal and nondiagonal coupling constants with 
respect to the polariton operators are equal, while a 
comparison between the first terms on the r.h.s. of 
(20) and (21) yields (Wqr/Wqr),....., [E/Ak) - lOp).(k»)/ 
[EI',(k) + lOp).(k»), and the inverse ratio results from 
the comparison of the corresponding last two terms. 
In the expression (17) for cI>qr(k + q, p', A'; k, p, A), 
both terms are of the same order of magnitude, while 
a comparison between the first term in (17) with the 
first term in (20) leads to 

(cI> q,/ Wqr) 

,....., [lOp,).,(k + q) - EI',(k + q)]/EI'I',(k + q, k). 

IV. GREEN'S FUNCTIONS 

Having written a model Hamiltonian in the previous 
section, we now evaluate the Green's functions appear
ing in Eq. (11) for the dielectric function. 

A. Polariton-Phonon Field 

If we introduce the notation 

G(k, P, A; k, p, A; lO) == G(k, p, A; lO) 

and 
== «'pik); t:).(k») 

G( -k, p, A; k, p, A; lO) == G( -k, p, A; lO) 

== «'ti-k); 't).(k»), 

then, using the Hamiltonian (13), we find the following 
equations of motion for the Green's functions 

G(k, p, A; lO) and G( -k, p, A; lO), respectively: 

[lO - lOp).(k)]G(k, p, A; lO) 

= (1/217-) + ! IXp).(k, q)[IX:l).l(k, q)G(k, PI ,AI; (I) 

q,r.p'.).' 
Pl.;'l 

+ &:l).l(k,q)G( -k, PI ,AI ;w»)D~~)(k - q,p',A';w) 

+ 2 &p;.(k, q)[&:l;'l(k, q)G(k, PI ,AI; w) 
q.r.p·.).' 
Pl.).l 

+ lX:l).l(k,q)G( -k, PI, AI; w)] 
x D~~)(k - q, p' ,A'; -w), (22) 

[-w - wplk»)G( -k, p, A; w) 

= (I/27T) + 2 IXp;,(k,q)[IX:l)'l(k,q)G( -k, PI' AI; w) 
q.r.p'.;" 

Pl.;'l 
+ &:l;.lk,q)G(k, PI, AI; w»)D!~)(k - q,p', A'; -w) 

+ ~ ~pik,q)[tX:l).l(k, q)G(-k,PI,AI;W) 
q.r.p .;. 

Pl.).l 
+ lX:l).l(k, q)G(k, PI' AI; w»)D!~)(k - q, p', A.'; w), 

(23) 
where D!~)(k - q, p', A.'; w) is the unperturbed Green's 
function corresponding to the polariton-phonon field 
and is equal to 

D (O)(k _ q , 1'. ) _ 1 + N,(q) qr ,p,II.,W-
lO - wp';.,(k - q) - wiq) 

+ Nr(q) (24) 
w - wp,Ak - q) + w,(q) 

and Nr(q) == (tJ:(q){Jr(q» is the phonon occupation 
number. The functions IXp).(k, q) and tXp).(k, q) have 
been defined as 

IXpik, q) == cI>q,(k, p, A; k - q, p', A') 

+ cI>qr(q - k, p', A'; -k, p, A) 

+ Wqr(k, p, A; k - q, p', A'), (25) 

&p;.(k, q) == cI>qr(k, p, A; k - q, p', A') 

+ cI>qr(q - k, p', A'; -k, p, A) 

+ Wqr(k, p, A; k - q, p', A') 

+ Wqr(q - k, p', A'; -k, p, A). (26) 

In deriving the coupled equations (22) and (23), we 
have made use of the simple decoupling procedure 
for the higher-order Green's functions, i.e., 

«'Pl;'l(k - q - q/)Pr(q)p:(q); 'tik») 

~ [1 + 2N,(q)]!5q '._iJ".G(k, PI' AI;W), (27a) 

«'Pl).l(k - q - q')[{J,(q) - Pr( -q»)P/(q); {tik») 
~ !5q'._Ar,G(k, PI, AI; w), (27b) 

«{:',Ak - q){Pl;.lk)'p,).,(k - q); {t;.(k») 

~ <'t-;..(k - q)'p,;,.(k - q»(O)!5P"p,!5;.")" 

x [G(k, PI, A.I; w) + G( -k, PI, A.I ; W)], (27c) 
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Green's function and we have set equal to zero terms proportional to 
<~}A,(k - q)~p'A,(k - q)(OI because they give neg
ligibly small contributions. In (27a)-(27c), the de-

is coupling approximation has been carried out by 
pairing off, where possible, operators having. the 
same time arguments. The physical process described 
here corresponds to the scattering of a polariton from 
(k, p, A) to (k - q, p', A'), with the emission of a 
(q, r) phonon or the absorption of a (-q, r) phonon. 
The remaining phonons create a self-consistent field 
determined by the phonon density </J:(q){3r(q». The 
propagator which describes such a process is given by 
the expression (24). 

In the same approximation, we derive the following 
coupled equations for the Green's functions 

r,lk - q, p', A'; k - q, p', A'; co) 

== fqr(k - q, p', A'; lO) 

== «~p,..,(k - q)PrCq); t;;'A,(k - q)p;:(q») 
and 

i\lq - k, p', A'; k - q, p', A'; co) 

== i\rCq - k, p', A'; lO) 

== «~;;,Aq - k)P,(q); t;;,Ak - q)P;:(q»), 

respectively: 

D (OI-l(k ' 1'. )r (k ' 1'. ) qr - q, P , 1\ ,lO qr - q, P , 1\ , lO 

=(1/27T)+ I Cl:;.(k,q)[ClplAl(k,q)fqr(k-q,PuA1;lO) 
,.r,p,A 
Pl,Al 

+ OCplAI(k, q)rqr(q - k, PI, AI; lO)]G~~(k; lO) 

+ I oc:;.(k, q)[ ClplAlk, q)r qrC q - k, PI , AI; lO) 
Q,r,p,A 
PI,I.I 

+ OCplAl(k,q)fq,(k - q, PI, AI; lO)]G~Ol(k; -lO), 

(28) 

D~~'-I(k - q, p', A'; -lO)rqr(q - k, p', A'; lO) 

=(1/27T)+ I Cl:;.(k,q)[ClPl).l(k,q)rqr(q-k,P1,A1;lO) 
Q,r,P," 
Pt.).l 

+ ocpl).Jk, q)f qik - q, PI , AI; lO) ]G~Ol(k; - lO) 

+ ~ oc:..ck,q)[ClpI).lCk, q)rqrCk - q, PI, AI; lO) 
q,r,p,A 
Pt.Al 

+ ocp,;.lk, q)rqr(q - k, PI, AI; lO)]G~olCk; lO), (29) 

where 
G~Ol(k; lO) = [lO - wp..{k)]-l 

is the unperturbed polariton Green's function. Simi
larly, we find that the equation of motion for the 

= I Cl:I).lCk, q)[ D~~l(k - q, p', A'; lO)G(k, PI' )'1; lO) 
Plo"l 

+ D~~'Ck - q,p',A'; -lO)G(-k'P1 ,AI; co)] 

+ I oc:l,).Jk,q)[D~~'(k-q,p',A';-lO) 
Pl A) 

X G(k, PI ,AI; lO) 

+ D~~'(k - q, p', A'; lO)G( -k, PI, AI; lO)]. (30) 

To solve the system of equations (22) and (23) as a 
first approximation, we shall neglect mixing of different 
polariton bands. This means that we make the 
assumption that the bands pA and P1A1;i= pA are 
separated by large energy gap so that the contri
butions from the terms with PIAl ;i= pA are negligibly 
small. Then, using the fact that in the complex lO plane 
the relation D(O'(k - q P' A', -lO) = D(O'(k - q P' 

q,. '" qr' , 
A'; co) holds, we derive from (22) and (23) the follow-
ing expressions: 

and hence 

G(k, p, A; lO) + G( -k, p, A; lO) 

= (1/7T)n~~'(lO)/[102 - n~~(co)n~;'(lO)], (33) 

where n~~(lO) and n~~(lO) are equal to 

n~~(lO) = lOp;.(k) + I I Clp..{k, q) + ocp..{k, q)1 2 

Q,r,p',A' 

X D(O'(k - q , A" co) qr ,p" (34) 
and 

n~;)(lO) = lOp..{k) + ~ .I Clp..{k, q) - ocpik, qW 
q,r,p , .. 

x D~~)(k - q, p', A'; lO). (35) 

Thus the Green's functions G(k, p, A; lO) and G( -k, 
P, A; lO) given by expressions (31) and (32) have the 
same poles that give the energies of excitation for the 
polariton-phonon spectrum. Considering the defini
tion of Clp .. (k, q) and ocpA(k, q), expressions (34) and 
(35) then show that the coupling constant of the 
perturbed part of n~2) (lO) depends entirely on Wqr and 
Wqr , i.e" on the interaction between both the electronic 
excitation and the intermolecular interactions with the 
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acoustic phonons, while in the corresponding term of 
Q~l) (OJ) the dressed electromagnetic-phonon inter
action is also fully included. The perturbed Green's 
function for the polariton spectrum (31) is reduced to 
that derived by Agranovich and Konobeev9 if we 
consider the particular case studied by these authors, 
i.e., take the coupling constants as ocp;.(k, q) = 

rqr(k - q, p', X; OJ) = (217)-lD~~)(k - q, p', A'; w) 

Wqr(k, p, A; k - q, p', A'), ap;.Ck, q) = 0, 

E/l/l,(k, k - q) = 0, 

and F~~,(k, k - q) = 0 instead of the expressions (25) 
and (26) that have been used here. In the same 
approximation, the solution of the system of equations 
(28) and (29) leads to 

x {w2 - wp;.(k)ni~(OJ) + wq,r;,)locl);.(k, qW - la,,;.(k, qW]D~~)(k - q, p', A'; W)} 

X [w 2 
- n~~(w)n~~!(w)r\ (36) 

r q(k - q, p', A'; w) = (217)-1 D~~)(k - q, p', J.' ; w) 

X {w 2 
- wp;.(k)Qi2)(w) - Wq,r;.,)locp;.(k,qW -lap;.(k,q)12]D~~)(k - q, p', A'; W)} 

and 
X [w 2 

- n~~)(w)ni~(w)r\ (37) 

rqr(k - q, p', A'; w) + 1\r<k - q, p', A'; w) 

= (17)-1D(O)(k _ q I A" OJ) [w
2 

- wp;.(k)ni~)(w)] 
Gr , p, , [w2 _ Q~~(w)Qi~(w)] 

= D~~)(k - q, p', A'; W){(17)-1 + [ni~(OJ) - OJp;.(k)][G(k, p, A; w) + G( -k, p, A; w)]}. (38) 

Also for the expression (30) we have 

«'p,Ak - q)Pr(q); 't;.(k») = D~~)(k - q, p', A'; w)[oc:;.(k, q) + a:;.(k, q)] 

x [G(k, p, A; OJ) + G( -k, p, A; OJ)]. (39) 

Substituting (33), (38), and (39), and its complex conjugate into (11), we obtain the following expression for 
the dielectric permeability due to the polariton-phonon interaction: 

(40) 

where 

Ap).(k, w) == [loik, A)wp;.(k)]! + N-! ~ [lo/l.(k - q, A')Wp';.,(k - q)]!Yr(q) 
G,r.p' 

x [oc:;,(k, q) + a;;.(k, q)]D~~)(k - q, p', A'; w). (41) 

The first term on the r.h.s. of (41) arises from the 
free-polariton field, while the second describes the 
coupling function corresponding to the coupled polari
ton-phonon system. The expression for Ap;.(k, w) is 
a complex function for values of frequencies w corre
sponding to the zeros of the arguments of the Green's 
function D~~)(k - q, p', A'; w), but the square of its 
amplitude IAp;,(k, W)12 is real for the whole range of 
frequencies w. The last term on the r.h.s. of (40) re
fers to the unperturbed polariton-phonon spectrum 

through the Green's function D~~'(k - q, p', A'; w). 
This is due to the fact that we have only taken into 
account in the Hamiltonian (15) terms linear in the 
phonon operators and also restricted ourselves through 
the decoupling approximation only to processes in
volving the emission or absorption of one phonon. 

In the range of wave vectors where retardation 
effects can be neglected, the expression for the 
dielectric permeability corresponding to interband 
excitations in the crystal can be derived from (40) by 
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taking the limit when wp;.(k) = Eik) with the result 

(42) 

where 

Ak,.(w) = [fo,.(k, i)E,.(k)]l + ~ I [fo,.,(k - q, i)E,.,(k - q)]lY,(q) 
N q",,.' 

x (oc:(k, q) + oc!(k, q)]D~~)(k - q,,u'; w), (43) 

and the retarded Green's functions G(k,,u; w), G(-k,,u; w), and D~~/(k - q, fl'; w) are equal to 

~. 1 n~~(w) 
G(k, ,u; w) + G( - k, fl; w) = 2 _ £"\(1)( )£"\(2/( )' (44) 

'TT'W Uk,. W Uk,. w 

D!~)(k _ q,,u'; w) = 1 + Niq) + N,(q) 
w - E,.,(k - q) - w,(q) w - E,.,(k - q) + w,(q) 

(45) 

The expressions for the functions n~~(w) and n~~(w) are now given by 

n~~(w) = E,.(k) + lloc,.(k, q) + oc,.(k, qW D~~)(k - q,,u'; w). (46a) 

(46b) 
q",,.' 

n~~(w) = E,.(k) + l,loc,.(k, q) - oc,.(k, q)1 2 D~~/(k - q,,u'; w), 
q'r',u 

with 

oc,,(k, q) == Wq,(k.,u; k - q, fl'} 

= ~l [E,.,.,(k, k - q) + F~~~(k, k - q)]YrCq)(no - n,i(no - n,.,)l, (46c) 

and 

Since Eii(k, w) corresponds to the normal waves, the 
expression (42) for i = ,u 1. = 1, 2 gives the two trans
verse components, while for i = ,ull = 3 it gives the 
longitudinal component for the dielectric permeability. 
The expression for the Green's function G,.(k,,u; w) is 
reduced to that derived by Davydov and Myasnikov12 
if we take oc,.(k, q) = 0 and E,.,.,(k, k - q) = 0; 
physically, it corresponds to the extreme case, which 
occurs only when the resonance interaction between 
neighboring molecules dominates the interactions 
involved in the expressions for E,.,.,(k, k + q) and 
oc,.(k, q). We note here that the coupling constant 
ocik, q) given by (46d) depends entirely on the 
coupling between the matrix elements responsible for 
the simultaneous creation or annihilation of two bare 
excitons and the phonon field; therefore oc,.(k, q) < 
oc,.(k, q). However, since F!~!(k, k - q) is of the same 
order of magnitude as F!~!(k, k - q), both should be 
taken into account, especially for crystals having 
large transition dipole moments. The Green's function 
D~~/(k - q, ,u'; w) in the limit of zero temperature, 
N,(q) ~ 0, is identical to that derived by Rashba.14 

(46d) 

B. Phonon Field 

The equation of motion for the phonon Green's 
function, «p,(q); P:(q»), is easily evaluated by means 
of the Hamiltonian (13) with the result 

[w 2 
- w:(q) - wiq) Pq,(w

2)] 

x «p,(q); p-;:(q») = w,(q)/'TT', (47) 

where the polarization operator is equal to 

Pq,(w2
) = I locp;.(k, qW 

k,p,p' 
;.X 

X [(w - wp;.(k) - wp';.,(k _ q»-l 

+ (-w - wp;.(k) - wp';.,(k - q»-l]. (48) 

In deriving (47) and (48) we have made use of the 
decoupling approximations (27) and set equal to zero 
terms proportional to the polariton occupation num
bers. The expression (48) describes the physical proc
ess where two polaritons (k, p) and (k - q, p') are 
created or annihilated simultaneously through the 

" E. I. Rashba, Zh. Eksp. Teor. Fiz. 50, 1064 (1966) [SOy. Phys.
JETP 23, 708 (1966)]. 
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exchange of a phonon (q, r). The spectral representation for the phonon spectrum turns out to be 

Jqr(OJ) = 21m «Pr(q); Pt(q»)(1 - lOTI 
2w..(q) wr(q)Yq,(OJ)(ePO> - 1)-1 

=--x , (49) 
'IT [w2 

- OJ~(q) - OJ,(q) Re Pq..(OJ2W + [wr{q)Yq,(OJ2)]2 
where 

Re Pqr(OJ2) = ~ ! locp;.(k, q)12[(OJ - OJp;,(k) - OJp';..(k - q»-l + (-OJ - OJp;.(k) - wp,.<,(k - q»-1] (50) 
k.p./,' 

and 
A,;" 

with f3 = (KBT)-l, KB is Boltzmann's constant, Tthe 
absolute temperature, and ~ indicates that the prin
cipal value must be taken. The function (49) shows a 
resonance shape centered around the real frequencies 
that are determined by the dispersion relation 

OJ2 - w~{q) - wr{q) Re Pq,(w2
) = O. (52) 

If the damping Yq,( OJ!) is very small, the frequencies of 
the dressed phonons £Or ( q) are given by the roots of the 
equation 

£O~(q) - OJ;(ql- OJr(q) Re Pqr(£O~(q» = O. (53) 

Then Eq. (49) shows a Lorentzian shape around the 
frequency £O .. (q), provided that Yq,(£O~(q» « OJ,(q) and 
oYq,{OJ2)/OOJ2 « 1, and has a width of the order 

Yq,(£O:(q» 11 _ OJ ( ) 0 Re Pq,{(
2

) 1-1 (54) 
2w..(q} , q ow2 o>=«r(q) • 

From the expression (51), it is easily seen that the 
function Yq,(£O;{q» is different from zero unless 

£O,(q) = ±[wp;,(k) + wp'.I.,(k - q)]. (55) 

In the optical region, the condition (55) is not likely to 
be satisfied, for it means that the dressed phonon 
energy £O,,(q) must be equal to the sum of the energies 
of two polaritons with wave vectors k and k - q, 
respectively. Physically, the condition (55) indicates 
the simultaneous creation or annihilation of two 
polaritons through the dressed phonon (q, r). This 
kind of process could occur only in the infrared 
region of frequencies where the incoming radiation is 
of the order of magnitude of the phonon energies. 
Then, of course, allowance for anharmonicity will 
lead to further broadening of these peaks with the 
possibility of the appearance of new peaks ( overtones) 

Equation (56) indicates that the phonon spectrum will 
be strongly peaked at the frequencies £O;(q) given now 
by the roots of the equation 

OJ! - w;{q) - w/q)Pq,(w
2

) = O. (57) 

Using the relation 

(P:(q)Pr(q» = J:oo'" dwJq,(w) 

and (56), we find that integration over w leads to 

(p:(q)P,{q» = [wr(q)/£O,(q)1 coth lf3£O,(q), (58) 

and the phonon distribution function N,(q) is equal to 

N,(q) = ![wrCq) coth tfJwr(q) - IJ, (59) 
2 £O,(q) 

with 

(w,(q)/£O,(q» = [1 + Pqr(w~(q»/wr(q)rt 
x 11 - W,.(q) ~ Pq,.(w2

) 1-1 . 
ow o>=w.(q) 

(60) 

From (59) we see that, even at zero temperature 
(f3 -+ (0), the phonon distribution function is different 
from zero, i.e., 

(61) 

and could be interpreted as the zero-point fluctuations 
in the phonon field caused by the polariton-phonon 
interaction. Using (59), we derive the average energy 
due to the phonon field 

(Jephonon) = ! w,(q)[N,.(q) + t] 
Q,r 

(62) 

at multiple or combination frequencies. Therefore, in or 
the optical region, Yqr(w2) goes to zero and then Eq. 

(Jephonon) = 1! w,(q)[l + PQr(£O~(q»/w..(q)]-t (49) has a delta-function distribution, i.e., 
q" 

Jqr{w) ~ 2OJ,(q}(e'l0> - 1)-1 

X b(w2 
- w~(q) - w,(q)Pq,(w2», 

for Yq,,(w2
) -+ O. (56) 
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In the absence of interaction Pqr(wr(q» = 0, Eq. (63a) 
is reduced to the usual expression for the average 
energy in the harmonic approximation 

t L wr(q) coth t/Jwr(q)· 
q.r 

The constant factor 

that appears in the expression (63a) could be inter
preted as due to the polarization of the medium 
resulting from the polariton-phonon interaction. The 
temperature-dependent part, coth !t1wr (q), depends 
now on the dressed phonon energy wr(q). The modifi
cation to the average phonon energy that appears in the 
expression (63a) depends mainly on the value of the 
ratio Pqr(w:(q»!wr(q) and could have some importance 
at very low temperatures for .crystals having small 
anharmonicities. In the limiting case where retarda
tion is not important, wp;.(k) = Eik), the polarization 
operator becomes 

PklL(W2) = L I&ik, qW 
k.IL./I' 
X [(w - Eik) - EIL,(k - q)r1 

+ (-w - Eik) - Ew(k - q»-I], (63b) 

with lilL(k, q) given by (46d). the polarization operator 
now describes the physical process where two bare 
excitons are created or annihilated through the ex
change of a phonon (q, r). 

V. ABSORPTION COEFFICIENT 

The absorption coefficient ii(k, w), the index of 
refraction of the medium 17(k, w), and the real part of 
the electrical conductivity Re a(k, w) are related by 
the well-known formula 

ii(k, w) = 417. Re a(k, w) (64) 
C17(k, w) 

derived from Maxwell's equations for an isotropic 
cubic crystal. Using the relation 

w 
Re a(k, w) = 417 1m €(k, w), 

we see that the expression (64) becomes 

ii(k, w) = w 1m €(k, (0). (65) 
C17(k, w) 

In the optical region where the relations 

417 
Re €(k, w) > 0 and w» Re a(k, w) 

Re €(k, w) 
(66) 

hold,15 we may replace in (65) 17(k, w) by Re €!(k, w); 
that is, in the optical region of frequencies, 17(k, w) is 
a slowly varying function of wand may be regarded 
as constant. 

A. Polariton-Phonon Spectrum 

Substitution of the imaginary part of (40) into (65) 
leads to the following expression for the absorption 
coefficient: 

_ W: 2 
oc;'<k, W) = (no - nlJ L IAp.;.(k, w)1 Sp(k, w) 

cW17(k, w) " 

(no - nlL,)w: "" 7' ' . 2 (0) , , + ~ jOIL,(k - q, A )wp';..(k - q) I }'r(q)1 1m Dqr (k - q, p , A ; w), 
Ncw17(k. w) q,r,p',;" 

(67) 

where the shape function Sp(k, w) is equal to 

S (k w) = 2w;;.(kWkp(W) + [w 2 
- w!;.(k)]Ykiw) 

p' 22 2 - 2 - 2 [w - wp;.(k) - 2wp;.(k)Qkp(W)] + [2wp;.(k)Ykp(W)] 
and 

(68) 

1m D~~)(k - q, p', A'; w) 

= 17{[J + NrCq)]b(w - wp';..(k - q) - wrCq» + Nr(q)b(w - wp';.,(k - q) + wr(q»}. (69) 

In (68) we have made use of the following notation: 

QkP(W) = ! locp;.(k, q) - lip;.(k, q)1 2 Re D!~)(k - q, p', A'; w), 
Q.r,p',A' 

(70a) 

(70b) 

16 V. L. Bonch-Bruyevich, The Electronic Theory of Heavi(v Doped Semiconductors (American Elsevier Pub!. Co., Inc., New York, 
1966), p. 98. 
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YkP( w) == 1m n~~( w) = ~ ! IXp;.(k, q) + ocp;.(k, qW 1m D!~)(k - q, p', A'; w), 
q,r,p ,;. 

(70c) 

(70d) 

(70e) 

Ykp(W) == 1m n~~(w) = 1 IlXp;.(k, q) - ocp ;.(k,q)1 2 
1m D~~)(k - q, p', J.'; w), 

q,r,P',;" 

Ykiw) == HYkiw) + Ykp(W)] = ~ JllXp;.(k, qW + locp;.(k, qW] 1m D!~)(k - q, p', A'; w), 
q,r.I' ,A 

From (70a)-(70e) we note that the w-dependent part 
of the functions Qk/W), QkP(W), and YkP(W), Yk/W) is 
entirely determined by the real and imaginary parts of 
the unperturbed polariton-phonon Green's function 
D~~)(k - q, p', A'; w), respectively. Inspection of the 
shape function (68) shows that each absorption peak is 
of asymmetric Lorentzian shape even if we neglect 
the W dependence of the functions YkP(W), Yk/W), and 
QkP(w),respectively. The asymmetry arises from the 
function YkP(W) given by expression (70d); con
sidering expressions (25) and (26) for IXp;.(k, q) and 
ocpik, q), respectively, we see that the coupling con
stant of the function Yk/w) depends entirely on the 
couplings between both the dressed electronic sub
system in the excited state and the intermolecular 
interactions with the acoustic branches of the phonon 
field. The second term on the r.h.s. of (67) has a delta
function distribution given by the 1m D~~)(k - q, p', 
A'; w), and is peaked at the zeros of the arguments of 
the two delta functions that appear in expression (69) 
corresponding to the process of emission or absorption 
of a phonon, respectively, with frequency wr(q) for a 
given value of k. 

To investigate the frequency dependence of the 
function wii;.(k, w), we shall assume that the real and 
imaginary parts of the function D~~)(k - q, p', A'; w) 
vary slowly with w so that the conditions 

a
a Ykp(W)« 1, aa YkP(W)« 1, 
W W 

a a ~ 
- Q(w)« 1, - QkP(W)« 1, aw aw 

and 

o 
ow 1m D~~)(k - q, p', A'; w)« 1 

are satisfied within the region of frequencies 

Iw2 
- w;ik) I ~ 2w;;.(k)jikP(W)/YkP (w). 

Having these conditions in mind, it is sufficient to 
examine the solutions of the equation 

a 
- Sp(k, w) = ° (71) 
ow 

(70f) 

(70g) 

that result in the following expression for the fre
quencies w;;.(k): 

Iw!ik) - w!;.(k) I 

= 2w;ik )YkplYkP{ -1 ± [(1 + QkPYkp/YkY 
+ (YkP/wp;.(k»2]!}, (72) 

where the notation YkP == YkP(wpik», 
YkP == YkP(wp;.(k», 

and QkP == QkP(wp;.(k» has been introduced. Thus the 
function Sp(k, w) has steep maxima at some frequen
cies w = wp).(k) that are determined from expression 
(72) provided that wp;.(k) also satisfies the equation 

wp;.(k) - wp').'(k - q) ± w,(q) = 0, (73) 

a condition that is required for YkP ¢ ° and YkP ¢ 0. 
Then, if the conditions YkP «wp;.(k), YkP «-wp;.(k), 
and QkP « I hold, the solutions of Eq. (72), w!ik), 
correspond to the resonance frequencies of the polari
ton-phonon spectrum and the r.h.s. of (72) gives the 
energy shift with respect to the unperturbed energy 
w!).(k) and is temperature dependent. At the frequen
cies w = wp;.(k), the function ISp(k, wp;.(k»1 is equal 
to 

ISp(k, wp;.(k» I = (4YkP)-1{(1 + QkpYkP/YkP) 

± [(1 + QkPYkp/YkP)2 + Y~p/w!ik)]!}, (74) 

which gives the height of the resonance band while the 
corresponding width jrkP(wp;.(k» I in energy units is 
given by 

jrkp(wp;.(k»I = 4Ykp{(1 + QkPY/YkP) 

± [(1 + QkpYkP/YkP)2 + Y~p/w~p(k)]!tl . (75) 

At high temperatures f3wr (q) < I, the quantities YkP' 
YkP' and QkP vary linearly with temperature, because 
we have restricted ourselves to a one-phonon process, 
and it is easily shown that the expressions for the 
height and the width are approximately proportional to 
to T-l and T, respectively. This is due to the fact that 
the terms in (74) and (75) causing the asymmetry in 
the absorption line appear as the ratio of quantities 
such as YkPiYkP and QkP/YkP' and they are practically 
independent of temperature. For YkP = 0, both ex
pressions (74) and (75) for the height and the width of 
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the absorption band are reduced to that of ty;:(w p;' (k» 
and 2YkP(wp;.(k», respectively, corresponding to a 
symmetric Lorentzian line with wp;.(k) now determined 
from the roots of the equation 

w!;.(k) - w!;.(k) - 2w!ik)QkP(Wp;.(k» = 0, (76) 

provided that (ojOW)YkP(W)« 1, and (OjOW)QkP(W)« 
1 in the neighborhood of frequencies W ~ wp;.(k) that 
satisfy Eq. (73). 

Thus the expressions (74) and (75) arise from con
tributions resulting from the superposition of sym
metric and asymmetric Lorentzian lines; and since 
Yk)'YkP < 1, the deviation from the symmetric Lorent
zian shape depends mainly on the values of the 
quantities y~ jW;;.(k) and QkP' In the case of exact 

P • 
resonance, one may replace QkP ~ 0 in the expreSSIOns 
(68), (72), (74), and (75); then the asymmetry in 
the line shape will depend entirely on the value of the 
quantity Y:pjw!;.(k). Because of the condition (73), the 
second term on the rhs of (67) will be peaked at W = 
wp;.(k) and will thus give a constant contribution to 
the expression for the absorption coefficient. Therefore, 
in the case of exact resonance at W = wpik), we have 

[wiXp;.(k, W)]'Q~ciip).(k) 

(no - nll)w! ~ I' ~ _ (»I = k joik,JI.)wp;.(k)ISp(k,wp;' k 
C17(k, wp;.(k» p 

w!(no - nil') ~ 7' I + k jOIl,(k - q,A )wp,) . .(k - q) 
N c'f/(k, wp;.(k»4.r.p·.;.' 

X 1 Y,( qW 1m D~~)(k - q, p', A' ; W pik» 

x [1 + ~ ISp(k, wp;.(k» 1 YkP]. (77) 

At high temperatures (Jw,(q) < 1, the first three terms 
on the rhs of (78) vary linearly with T while the last 
term is proportional to T3. We also notice that in the 
expression (78) the damping constants Yk/ w) and 
)ik (w) are multiplied by [w2 - w!;.(k)]-2 and [w2 -

w~(k)]-l, respectively, which means that they behave 
differently with respect to [w2 - w;;.(k)]. The first 

and ISp(k, wp;.(k» 1 is given by (74) with QkP ~ O. At 
high temperatures (Jw,(q) < 1, the first term on the 
rhs of (77) varies like T-t, while the remaining two 
terms are proportional to the temperature T. There
fore, at high temperatures the last two terms on the 
rhs of (77) will dominate the first term. Of course, at 
very high temperatures, where anharmonicities be
come substantial, then consideration of multiphonon 
effects might result in more complicated temperature 
dependence of the absorption coefficient. At low 
temperatures (Jw,(q) > 1, there will be a competition 
among the terms that appear on the rhs of (77) but 
for very small values of the damping constant YkP' 
YkP «wp;.(k), it seems that the first term will be 
predominant. Our discussion so far has been based on 
the assumption that the function D~~)(k - q, p', A'; w) 
varies slowly with W in the neighborhood of W ~ 

W ik) which appears to be the case for most physical 
p • 

problems where the nature of the real final states IS 

such that (OjOW)YkP(W)« 1 and (ojOW)YkP(W)« 1. 
If the variation of 1m D~~) (k - q, p', A'; w) with 
respect to W is taken into consideration, further 
asymmetries will appear in the line shape with the 
possibility of the appearance of new peaks at fre
quencies corresponding to the so-called combination 
bands determined by the relation 

(ojOW) 1m D!~)(k - q, p', A'; w) = o. 

In the vicinity of the edges of the polariton absorp
tion band where w2 

- w;;.(k) »2w!;.(k)QkP(W), the 
absorption coefficient is described by the expression 

(78) 

term on the rhs of (78) can be reduced to that derived 
by Agranovich and Konobeev,4 if one considers the 
particular case studied by these authors. 

In the limiting case where the condition (73) is not 
satisfied, that is, when the arguments of the delta 
functions that appear in (69) are different than zero 
forw = wpik) , then thedampingconstantsYkP(w p;.(k» 
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and YkP(wp).(k» go to zero and the expression for the absorption coefficient is equal to 

for 

YkP(wp).(k» -+ 0, YkP(wp;.(k» -+ ° and Ap).(k, w) 

is given by the expression (41), which is now real. The 
expression (79) corresponds to the transparent region 
of frequencies of the crystal and has a delta~function 
distribution. The first term on the rhs of (79) is dif~ 
ferent than zero for values of W given by the real roots 
of the equation 

w2 
- n~~(w)n~~(w) = 0, (SO) 

with n~~(w) and n~~(w) given now by the real 
expressions (34) and (35), respectively, while the 
second term obeys the dispersion relation 

w - wp,).,(k - q) ± wr(q) = O. (SI) 

It is easily seen that for a given value of k the two 
terms on the rhs of (79) are peaked at different 
frequencies and their energy spectrum is determined 
by the dispersion relations (SO) and (SI), respectively. 
The solution of Eq. (SO) that corresponds to the zero~ 
phonon-polariton spectrum is obtained by replacing 
n(I)(w) and n(2)(w) by n(l)(w, (k - q» and kp kp kp p').' 

respectively, with the result 

n~~2(k) = n~~(wp,).,(k - q»n~~)(wp,).,(k - q», (S2) 

where 

n~~(wp,).,(k - q» 
== wp;.(k) - ! I <Xp;.(k, q) + &p;.(k, q)1 2/wr(q) 

a.r.p'.).' 

and 
(S3a) 

n~~(wp,).,(k - q» 

== wp).(k) - ! I <Xp;.(k, q) - &p;.(k, qW/wr(q). 
k.r.p·.).' (S3b) 

The expression (82) for n~~(k) is the renormaIized 
energy of excitation for the zero~phonon-polariton 
spectrum, and the last terms on the rhs of (S3a) and 
(S3b) describe the scattering amplitudes in energy 

(79) 

units for the corresponding process at zero tempera~ 
ture that cause a reduction of the unperturbed energy 
wp).(k). The renormalized energies of elementary 
excitations w = ±np).(k), corresponding to the emis~ 
sion or absorption of a photon with energy wr(q), are 
obtained by solving Eq. (SO) provided that the 
function D~~)(k - q, pi, A'; w) varies slowly near the 
maximum frequency, 

npA(k) = [n~~(np.tCk»n~~(npA(k»]l. (S4) 

The spectrum determined by the solutions of (S4) 
corresponds to that of the coupled polariton-phonon 
system and the expressions for n~~)(Q ).(k» - w A(k) 

(2) r\ . P P 
and n kP (up).(k» - wpA(k), I.e., 

n~~(np"<k» - wp;,(k) = ! I <Xp.t(k, q) + &p;.(k, qW 
a.r.p'.).' 

x D~~)(k - q, pi, A'; np).(k», 

(S5) 

n~~l(npA(k» - wp).(k) = ! I <Xp;.(k, q) - &p).(k, q)1 2 
a.T.p' .... ' 

x D~~)(k - q, pi, A'; np).(k» 

(S6) 

describe the scattering amplitudes in energy units 
involving the emission or absorption of a phonon by 
the dressed particle np..{k). Since <XpA(k, q) > &pik, q), 
the rhs of (S5) is much larger than that of (S6) which 
depends entirely on the coupling of the dressed 
electron subsystem with the phonon field. The scatter~ 
ing amplitude (S5) or (S6) is reduced to that derived 
by Ovander, U apart from small corrections in the 
expression <Xp).(k, q), if we set &p).(k, q) = 0, replace 
the sum over q by an integral, and then integrate 
over q by taking the poles of the propagator 
D~~)(k - q, pi, A'; npA(k» with n A(k)"'" wp;.(k) in 
the limit of zero temperature. Th: energy spectrum 
determined by Eq. (SI) corresponds to frequencies 
w where the polariton and phonon fields are not 
coupled. Therefore, it is possible that for a given value 
of k the two terms on the rhs of (79) will be peaked at 
different frequency regions that depends on whether 
or not the polariton and the phonon field are coupled, 
respectively. 
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B. Bare Exciton-Phonon Spectrum 

The expression for the absorption coefficient corresponding to the bare exciton-phonon spectrum is 
obtained from that of the polariton-phonon by taking the limit when wp;.(k) = EII(k). Thus substitution of 
the imaginary part of (42) into (65) yields 

_ (no - nll)w!"" 2 
otii(k, W) = £., IAII(k, w)1 Sik, W) 

cW1J(k, W) II 

(no - 1l1l,)W! "" . 2 (0) , + £., foll.(k - q, I)EII.(k - q) 1 YrCq) 1 1m Dqr(k - q,p; w), (87) 
Ncw1J(k, W)q.r.II' 

where 

(88) 

and 

1m D~~)(k - q,p'; W) = 7T{[l + N,(q)]o(w - EII,(k - q) - (nlq» + N.(q)o(w - EII.(k - q) + w.(q»}. (89) 

The quantities Ykll(W), ,\/w), and Qk/w) appearing in (88) are now defined as follows: 

Ykll(W) == Ykiw) + Ykiw), (90a) 

Ykll( w) = ~ lotll(k, q) + &ik, q) 12 1m D~~)(k - q, p'; w), (90b) 
q.r.II' 

Ykiw) = ~ lotik, q) - &1I(k, qW 1m D~~)(k - q, p'; w), (9Oc) 
q.r.II' 

Qkll(W) == [Qkiw) + Qkll(W)]/2Eik) + [Qkiw)Qk,lW) - Ykll(W)?ikiw)]/2E!(k), (90d) 

Qki w) = ! lotik, q) + &ik, q) 12 Re D~~)(k - q, p'; w), (90e) 
q.r.II' 

Qki w) = ! lotll(k, q) - &ik, q) 12 Re D~~)(k - q, p'; w), (90f) 
q.r,lI' 

and 

with otll(k, q) and &1I(k, q) given by the expressions 
(46c) and (46d), respectively. It is easily shown that the 
whole discussion and the expressions derived for the 
polariton-phonon spectrum are applicable to that for 
the bare exciton-phonon spectrum, provided that we 
make the replacement of the expressions for D~~)(k - q, 
p', ),'; w), Yk/W), Yk/W), Qk/w), and Qk/w) given by 
(69)-(70g) by the corresponding expressions 

D(O)(k - q Il" w) 
qr 'r" 

Yk/W) , Ykll(W), Qkiw) and Qk/W) , and (89)-(90g), 
respectively. Substituting (46b) and (46d) into (90c), 
we obtain the expression for the damping Ykiw): 

Ykiw) = N-1 ! 1 [EIIII,(k,k - q) + F~~).(k,k - q) 
q,r.,u' 

- F~~~(k, k - q)] Yr(q) 1 
2 

x (no - nll)(no - nil') 1m D~~)(k - q,p'; w). 

(91) 

(90g) 

Since F~~(k, k - q) ""' F~~~(k, k - q), the main con
tribution to the damping Ykiw) that causes the 
asymmetry to the spectral line arises from the first 
term on the rhs of (91) corresponding to the coupling 
between the isolated bare exciton and the phonon 
field. 

In our discussion for the expression of the absorption 
coefficient corresponding to the coupled polariton
phonon, as well as for the bare exciton-phonon 
spectrum, the shape function is found to be an 
asymmetric Lorentzian even if we neglect the w 
dependence of the damping function. The asymmetry 
in each case is caused by the coupling of the electronic 
excitations and the intermolecular interactions with 
the acoustic branches of the phonon field. In our 
treatment we have ignored not only the mixing of 
different exciton bands, assuming that the exciton 
bands are well separated, but also the w dependence 
of the energy shift and damping functions. If these two 
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effects are taken into consideration, additional asym
metries will appear in the lineshape. In the studies of 
Toyozawal6 and Davydov and Myasnikovl2 for the 
bare exciton-phonon interaction, the deviations from 
the symmetric Lorentzian line appeared only when 
mixing of different bands and the W dependence of the 
energy shift and spectral width were taken into account, 
respectively. We believe that both effects are second 
order in comparison with the expression causing the 
asymmetry of the spectral line derived in the present 
study. This is due to the fact that the mixing ofdifferent 
bands becomes substantial only in the case where the 
energy bands are very close together, while the varia
tion of the energy shift and spectral width with respect 
to w is important for certain regions of frequencies 
where the density of the final states is large. Of course, 
in such cases both effects should be taken into con
sideration leading to more complicated lineshapes 
with the possibility of the appearance of new peaks 
corresponding to combination bands when multi
phonon effects are also included. 

VI. AVERAGE ENERGY 

The average energy of the system is obtained by 
averaging the Hamiltonian (13), i.e., 

(Je) = (Je(O) + (Jephonon) + (Jeint). (92) 

Using (12), (31), (32), and (62), we find the following 
expression for the average energy (92): 

(Je) = (Je~O) + ! 2 ~~(q) coth t,8wr(q) 
2 q,r wlq) 

1 l+<Xl [w + wp;.(k)]w(l - ePWrl 

+ - 2 dw 1m [2 0(1)( )0(2) ) 
?T k,p,;, -<Xl W - kp W k/'(W] 

(93) 

To integrate over W we have to assume that W is far 
from any absorption frequency of the crystal, which 
means that the functions O~~(w) and 0~2)(W) are real; 
then integration over W leads to p 

where Op;.(k) is the positive solution of Eq. (84). The 

18 Y, Toyozawa, J, Phys, Chern. Solids 25, 59 (1964) and refer
ences therein. 

last term on the rhs of (94) represents the energy of 
interaction resulting from the polariton-phonon inter
action at finite temperatures. It is given as the differ
ence between the energy of excitation of the coupled 
polariton-phonon system and the unperturbed polari
ton energy. In the limit ,8 ->- co, the expression (94) 
gives the ground-state energy of the crystal. When 
retardation effects are not important, i.e., when 
wp;.(k) = E,,(k), then expression (94) is reduced to 
that of the average energy due to the coupling between 
the bare exciton-phonon system. 

VII. SUMMARY 

The present study is concerned with the excitation 
spectrum arising from the interaction between polari
tons and acoustic phonons in molecular and insulating 
crystals. In the limit of weak polariton-phonon 
coupling, the various Green's functions appearing 
in the expression for the dielectric permeability have 
been calculated in the one-phonon approximation by 
means of a model Hamiltonian for the crystal. The 
described physical process is due to the scattering of a 
polariton from (k, p, A) to (k - q, p', A'), with the 
emission or absorption of a phonon (q, r). The line
shape for the process in question at finite temperatures 
is considered and is found to be an asymmetric 
Lorentzian line, if the frequency dependence of the 
energy shift and the spectral width is neglected. The 
temperature dependence of the frequency- and wave
vector-dependent absorption coefficient is discussed. 
In the range of wave vectors where retardation may be 
neglected, the lineshape of the exciton absorption 
bands is studied in detail and compared with the 
results derived from previous studies. 

The present work was motivated by the fact that 
most of the" observed exciton absorption spectra show 
some asymmetry.l6 Toyozawal6 attributed the asym
metry of the absorption lines as due to the interband 
as well as intraband scattering of excitons by phonons 
in insulating crystals. We refer to his papers,lS where 
comparison between existing theories and experi
mental results is made. A different process causing 
asymmetry in the lineshape of the absorption bands is 
proposed in the present study. It is hoped that this 
work will stimulate interest in measuring lineshapes of 
exciton absorption spectra, particularly in molecular 
crystals where the existing data are not sufficient to 
warrant comparison with theory. 
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The calculation of the Green's function for a point charge near an anisotropic planar diffuse layer 
leads to the differential equation U" - k2D2(u)U = -2k6(u - u'). Solutions for smalI and large k are 
obtained readily by a procedure equivalent to the principle of invariant imbedding. It is shown that the 
additional terms introduced in the solution for large k, due to the lack of smoothness in D(u) 
specifying the dielectric properties of the layer, may lead to singularities in the image potential. Similar 
considerations apply in the case of I-dimensional wave propagation through a stratified medium. 

In many physical problems when the properties of 
the medium vary as a function of position, as a 
simplification one assumes that the variation is limited 
to a strip or layer of finite width h. Some examples of 
such physical problems are the electrostatics of a 
point charge near a diffuse boundary between two 
dielectrics, wave propagation through a stratified 
medium, scattering from a potential field, etc. The 
equations which describe these phenomena depend on 
a parameter k in addition to those describing the 
medium. It is the purpose of this note to show that the 
dependence on small and large k may be readily 
calculated by a simple method. The lack of smoothness 
of the physical parameters introduces additional terms 
in the solution for large k. We illustrate this approach 
by the electrostatic problem mentioned above, where 
these additional terms introduce singularities in the 
image potential. We restrict ourselves to a brief 
discussion of a planar boundary with discontinuities 
in dielectric constant and its derivatives only at the 
boundaries of this layer and refer for further details to 
our forthcoming paper. l 

Let us label the three different regions defining the 
diffuse boundary between two dielectrics of dielectric 
constants, Dl and Da , by 1, 2, and 3 as shown in 
Fig. 1. 

Let there be a unit charge at the point R'. Let us 
choose the z axis as the axis perpendicular to the inter
face (with I as the unit vector), the +z axis being in the 
direction Da to D l . Because of the cylindrical sym
metry around this z axis, the dielectric tensor D is 
characterized by two dielectric parameters through 

• Supported by a grant from the Office of Saline Water. 
1 F. P. Buff and N. S. Goel, J. Chern. Phys. 51, 4983,5363 (1969). 

the relation 

D = D.v(z)1I + DT(z)(1 - II), (1) 

where I is the unit tensor. DN characterizes the di
electric properties of the medium perpendicular to the 
interface and D T , parailel to the interface. 

In general, we require the solution of the Poisson 
equation 

V • D • Vtp = -47T(5(R - R'), (2) 

where tp is the electrostatic potential at an arbitrary 
point R. 

Upon substitution of Eq. (1) into (2), making the 
transformation 

DN(Z) du = dz, 

and substituting for tp the expression 

1''' Jo(kr)U(k, u, u' ) du, 

(3) 

r = [(x - X')2 + (y - y')2]1, (4) 

we get for the three regions the equationsl 

d
2

Ul k2 2 k.lt(') -- - Dl U 1 = - 2 u u - u , 
du 2 

d
2
U2 

_ eD2U2 = 0, D2 == DTDN, 
du 2 

d
2
U3 _ k2D:Ua = O. 

du 2 

(5) 

(6) 

(7) 

Using the standard method of variation of con
stants,1.2 the general solution of Eq. (5) consistent 

2 F. Brauer and J. A. Nohel, Ordinary Differential Equations (W. 
A. Benjamin, Inc., New York, 1967). 
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3 2 

z=o z=h Rl 

FIG. I. The regions defining the diffuse boundary between two 
dielectrics. 

with the boundary condition VI --+- 0, U --+- 00 is 

VI = (al Dl)e-kDtU + V p , 

where a is an unknown constant and 

(8) 

(9) 

Further, the solution of Eq. (7) consistent with the 
boundary condition Va --+- 0, U --+- - 00 is 

(10) 

where d is an unknown constant. 
The solution of Eq. (6) can be taken as 

(11) 

where band c are unknown constants. Vn and V22 are 
the two linearly independent solutions of Eq. (6), 
which may be chosen such that 

R(O) is the value of R for the simple case of an abrupt 
interface. To calculate R, we differentiate Eq. (14) 
with respect to u. Using the fact that P satisfies Eq. (6) 
and utilizing Eq. (14), we get 

dR = -.!. [D~(1 _ R)2 _ D2(1 + R)2J. (17) 
du 2Dl 

We observe that if one adapts the method of invariant 
imbedding3.4 to this problem, one can recover Eqs. 
(16) and (17). 

To obtain R, one has to solve the Ricatti equation 
(17) together with the boundary condition (16). In 
general, there is no analytical solution for this equa~ 
tion. However, as we will show, it is possible to find 
formal asymptotic expansions for R for small k 
(useful for calculating 'PI for large z) and for large k 
(useful for 'PI as z = z' --+- h). 

To obtain an expansion for R for small k, we 
substitute 

(18) 

into Eq. (17) and equate the coefficients of equal 
powers of k on the left- and right-hand sides of Eq. 
(17) to get 

d~o = 0, that is, Ro = R(O), (19a) 

dRl = (2Dl)-I[D~(1 _ RO)2 _ D2(1 + Ro)2], etc. 
du 

(19b) 

Integrating Eqs. (19) and reitricting ourselves to 
first-order correction (higher-order corrections are 
examined in Ref. 1), we get 

U21(O) = 1, U~l(O) = 1, 

U22(0) = 0, U~2(0) = 1. (12) where 

Re2kh lz=h = Ro(1 + 2kz1) + O(k2) 

~ Roe2kz1 + O(k?), (20) 

By using the conditions that V and dU!du are con~ 
tinuous at z = 0 and z = h, it can easily be seen that1 

e-k/z-z' l e-k(H~'-2k) 

U1 = + R(z=h), 
Dl Dl 

where R is given by 

R = (kD1P - p')/(kD1P + p,'), 

p,' = dp,/du, 

(13) 

(14) 

(ISa) 

(ISb) 

(16) 

Zl = h - :I Dl :I fh(D p _ D~) dz. 
DI - DaJo DN 

(21) 

It may be noted that Eq. (21) can also be written as 

fa:> (Dp - D~) dz =fa:>(D1 _ D~) dz. (22) 
-a:> DN Zl Dl 

This equation is true for all h and. hence, for small 
k, the layer model is a convenient device for finding 

• R. Bellman and R. Kalaba, J. Math. Mech. 8, 683 (1959). 
'G. M. Wing. "The Method of Invariant Imbedding with 

Applications to Transport Theory and Other Areas of Mathemat-
ical Physics." in Colloquium Lectures in Pure and Applied Science. 
No. 10 (Field Research Laboratory, Socony Mobil Oil Co., Inc .• 
Dallas. Texas. 1965). 
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Zl for any diffuse boundary. Substituting Eq. (20) into 
(13), we get 

VI = (Dll)(e-klz-z'I + Roe-k(HZ'-~Zl». (23) 

It may be noted that the above procedure for 
calculating Rn is significantly more efficient than the 
procedure based on Green's functions. Equation (23) 
when substituted into Eq. (4) gives asymptotically the 
potential "p in region 1, so that 

1. Ro 
1m "Pim'"""-' 

f/"'R' 2Dl Iz - zll 
z''Ph 

(24a) 

where 

"Pim = "P - D1 \R - R'\ . (24b) 

H"Plm(R -- R')] is the image potential of the charge in 
region 1. 

Therefore, for distances far from the interface, the 
leading term in the electrostatic potential is the same 
as one would get by assuming a sharp boundary 
between the two dielectrics, but shifted to the point 
Z = Zl ¢ O. 

As Z = z' -- h, it is necessary to examine Eq. (17) 
for large k. For this purpose, we make the trans
formation 

Q = D11 - R. (25) 

into Eq. (27) and choose Qo so that 

dQo = k(l _ Q~) 
dw 

(30a) 

and then equate the coefficients of equal powers of k 
on both sides of the equation to get 

0= 2Q1 + DID, 

and 
Q1 = ~2QOQ2 - Q1(Q1 + DI D), 

(30b) 

(30c) 

Qn = - 2: QIQmOI+m,n+l' n 2 2. (30d) 
1""1 
m""l 

Equations (30) can be solved to give 

Q ( ) 
_ Qo(O) + tanh kw 

oW - , 
1 + Qo(O) tanh kw 

Q1 = -r(w), r(w) = d l;w
Dt 

, 

Q 
_ ;(w) + r2(w) 

2 - 2Qo ' 

Q3 = - 2~0' 
and 

(3Ia) 

(3Ib) 

(3Ic) 

(31d) 

Qn = - t- (Qn-1 + 2: QIQn-I)' n 2 4, (31e) 
o 1>2 

n-=!22 
Dl+R 

where Qo(O) is to be determined by the boundary 
Substituting this equation into (16) and (17), we get condition (26). Thus 

where 

Q(O) = D31 D(O), (26) 

dQ = k(1 _ Q2) _ Q D , (27) 
dw D 

. dD 
D=-. 

dw 

(2Sa) 

(28b) 

It may be noted that the Ricatti equation (27) enables 
us to calculate R (and hence "P) exactly, if bID is either 
zero or constant. 

To get an asymptotic expansion for 

k» l!w(h), k» bID, 

we substitute 

(29) 

Q (0) = D3 + reO) _ D(O) ;(0) + r2(0) .... 
o D(O) k D3 2k2 + 

Substituting Eqs. (31) into Eq. (29), we get Q, which, 
when substituted into Eq. (25), gives R. The asymp
totic value of R thus obtained is 

Dh = D (z = h), 

q = Qo (w = h) 

-1. 
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We observe that when the first-order WKB5 calcu
lation associated with Eq. (6) is carried out, the result 
is identical to that in the above equation to order k-l. 
Similarly, the second-order WKB calculation gives 
result identical to that in Eq. (32) to order k-2

, etc. 
Thus, the method which we have discussed is a simple 
method of obtaining the dominant terms in the 
potential at a point close to the boundary, which one 
gets from WKB calculations in various orders, the 
latter one involving a significant amount of calcu
lations. We may add that the Ricatti Eq. (27) can also 
be used to get an expression for Q (and hence for R) 
for small k by making a substitution of type (18). 

Using Eqs. (32), (13), and (4), itcan be shownl that, 
for z = z' ~ h, "Pim diverges as (z - h)-I, if at z = h 
D is discontinuous ,or as -log (z - h), if D is con
tinuous, but dD/dw is discontinuous and is finite 
when both D and dD/dw are continuous. Thus, the 
lack ·of smoothness at z = h may introduce singulari
ties into the potential at the boundary. 

It may be noted that knowledge of Q (or R) is 
sufficient to determine d as defined by Eq. (10) and, 
hence, the potential at an arbitrary point in region 3. 
We also observe l that R(z) and a functionally similar 
quantity R(z) permit calculation of"P everywhere with 
arbitrary location of charge. 

Let us now consider the wave propagation through 
a plane slab of finite width h where the wavenumber 
varies as a function of position coordinate u. Let us 
suppose that there is a wave coming from the right
hand side through a medium 1 with a constant wave
number ki (== kD I ) and impinging on the slab 2 with 
a position-dependent wavenumber k2(U) == (kD(u». 
This wave, in part, will be reflected and, in part, 
will be transmitted through the medium 3 with constant 
wavenumber k3 (== kD3) (Fig. 2). The wave vectors 
"PI , "P2, and "P3 in the three regions will satisfy the wave 
equations 

d2 "P1 2 2 
-2 + k Dl"Pl = 0, h ~ u < 00, (33) 
du 

d
2

"Pz Z 2 
-2 + k D (U)"P2 = 0, ° < u < h, D(oo) = D l , 
du 

D(-oo) = D3 , (34) 

d
2

"P3 2 2 
-2 + k D3"P3 = 0, - 00 < u ~ O. (35) 
du 

As in the case of electrostatics, by using the con
ditions that "P and d"P/du are continuous at u = ° and 

• R. Bellman, Perturbation Techniques in Mathematics, Physics, 
and Engineering (Holt, Rinehard and Winston, Inc., New York, 
1966). 

:3 2 

transmitted 

wave 

incident _ 

wave 

reflected 
~wave' 

FIG. 2. Transmitted and reflected waves originating from single 
incident wave at the boundary between slab and region 2. 

u = h, it can be easily seen that3 

1{Jl = e-ik,(U-h) + eik,(u-1dR(h), (36) 

where R, the ratio of the amplitudes of the reflected 
and incident waves, satisfies the equations 

R(O) = (DI - Da)/(DI + Da), (37) 

dR = J!. [D2(1 + R)2 _ Diu _ R)2]. (38) 
du 2DI 

Equations (37) and (38) are very similar to Eqs. (16) 
and (17) and so can be treated likewise. 

To obtain an asymptotic expansion for small k, 
we substitute 

(39) 

into Eq. (38) and equate the coefficients of equal 
powers of k on the left- and right-hand sides of Eq. 
(38) to get 

R = R(O) 1 + I (D2 - D:) du + . " . ( 
2ikD Ih ) 

D; - D; 0 

(40) 

This is the same result as obtained by MacLaurin6 

using the more laborious conventional Green's 
function method. Elsewhere,7 we have applied this 
small k expansion for the calculation of ellipticity of 
light reflected from an optically anisotropic stratified 
medium. 

• R. C. MacLaurin, Proc. Roy. Soc. (London) A74, 49 (1905). 
7 F. P. Buff and R. A. Lovett, in Simple Dense Fluids, H. L. 

Frisch and Z. W. Salsburg, Eds. (Academic Press Inc., New York, 
1968). 
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To obtain a formal asymptotic expansion for R 
for large k, we make the transformation 

Q = DI R - 1 
DR+l 

to obtain the equations 

Q(O) = - Da! D(O), 

dQ .k Q2) Q b 
dw = I (1 - - D' 

where 
dw = D du 

and 

b = dD/dw. 

(41) 

(42) 

(43) 

(44a) 

(44b) 

It may be noted that Eq. (43) enables us to calculate 
the reflection coefficient exactly, if either b is equal to 
o (Airy's modelS) or biD is equal to a constant 
(Rayleigh's modelS). 

Equation (43) is exactly Eq. (27), if one replaces k 
in Eq. (27) by ik. Therefore, we can write 

(45) 

where 

Qo = Qo(O) + i tan kw (46) 
1 + iQo(O) tan kw 

8 G. B. Airy, Phil. Mag.,Ser. 3,2,20 (1833). 
8 Lord Rayleigh, Proc. London Math. Soc. 11, 51 (1880). 

and the Qn' n > 1, are given by Eqs. (31b)-(31e). To 
determine Qo(O) , as before, we have to use the 
boundary condition (42). 

Contrary to the electrostatic case, we do not achieve 
the simplification Qo(h) -+ 1 for k -+ 00. However, if 
we limit ourselves to the special case in which the 
discontinuity in D and its derivative occurs only at 
z = h, the calculations are simplified. For this case, 

Qo = -1. (47) 

Using Eqs. CJlb)-(31e), (47), and (41), we get 

RI 1 
"=h"" (DI + Dh)2 

x [(D~ _ D~) _ 2DhDIr(h) _ DhDI 
ik k2 

x (f(h) + r2(h) - 2Dh r2(h») + ... J. 
Dl + D" 

(48) 

For Dl = Dh up to order k-1 , this reduces to the 
expression given by Landau and LifshitzlO in connec
tion with a similar problem of reflection of a particle 
above a barrier within the quasiclassical limit, when 
the potential has a discontinuity in slope. 

We finally observe that the transmission coefficient 
can be expressed as a quadrature in terms of Q. 

10 L. D. Landau and E. M. Lifshitz, Quantum Mechanics, NOII

relativistic Theory (Pergamon Press Inc., New York, 1965), p. 184. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME II, NUMBER 2 FEBRUARY 1970 

Construction of Weight Spaces for Irreducible Representations 
of An, Bn , en, Dn 

ROBERT GILMORE· 

Department of Physics, MassachusettS Institute of Technology, Cambridge, Massachusetts 02139 

(Received 9 October 1968) 

An algebraic technique is presented by means of which the weight space for the irreducible representa
tions (A) of An, 8 n , Cn , Dn can be constructed from the weight spaces associated with the representations 
(A') of the subalgebras An-I, 8n - 1 , Cn _ 1 , Dn- 1 • Since each chain ends with AI, all weight spaces of the 
classical simple Lie algebras associated with (A) can be constructed, ultimately, from the well-known 
representations of AI' 

I. INTRODUCTION 

Algebraic techniques are presented for determining 
the irreducible representations (A') of a canonical 
subalgebra A', subduced from the representation A 
of A under the restriction A ! A', for the following six 
cases: An! An_I' Bn! Dn ! Bn_1 ! Dn_1 , Cn ! Cn_1 • 

The converse problem, that of determining which 
irreducible representations (A) of A contain (A') of A' 
under the subalgebra restriction A! A', is solved 
using similar techniques. These two processes are 
then used, back to back, to solve the weight-multi
plicity problem. That is, the irreducible representations 
A of A can be synthesized from the representations A' 
of the subalgebra A' in the following cases: An ! An_I, 
Dn! Dn_1 , Bn! Bn_l , and Cn ! Cn_l' Since each of 
these four chains of simple Lie algebras terminates 
with AI' whose representations are well known and 
thoroughly understood, the representations (A) of 
the classical simple Lie algebras can aU be constructed 
by such bootstrap techniques as 

Al i A2 i Aa i ... i A n- l i An' .. 
or 

At i Al + Al '" D2 j Da j ... j Dn_l j D .. ... 

from the representations of AI' 

n. BRANCHING RULES FOR CANONICAL 
SUBGROUPS 

The finite set of irreducible representations for 
the general linear groups Gl(n, c), Gl(n, r) is in one
to-one correspondence with the set of aU partitions 
of an integer A into no more than n parts I : 

A = (AI' ... ,An), Al ~ A2 ~ ..• ~ An ~ O. (1) 

Under restriction to the canonical subgroup Gl(n - 1), 
obtained by leaving the nth coordinate of the carrier 

• This work is supported by Office of Naval Research and 
National Science Foundation. 

1 H. Weyl, Classical Groups (Princeton University Press, Princeton, 
N.J., 1946). 

space invariant, an arbitrary irreducible representa
tion A of Gl(n) will subduce a number of irreducible 
representations of the subgroup Gl(n - I): 

r). GZ(")~Gj(n-I)~ I r).' 
).' 

(2) 

In a tableau representing a basis vector for the 
representation A of Gl(n), the only positions in which 
the index n ~'\n occur lie at the end of a column, as 
shown in Fig. 1 (a). Representations of Gl(n - I) 

(a) GI(n)!GI(n - 1) 

XiX: 
Xi·--------· 

1-1--..1-_ X i ---
XiX! 

L~_!---------

(b) GI(n)jGI(n + 1) 

FIG. I. (a) In the partition A, the only positions in which an n 
can occur lie at the bottom of each column. These are removed by 
the "box annihilation operator" Pn • (b) In the partition A' the only 
positions to which a box with an n + I can occur lie at the bottom 
of each column. These are placed there by the "box creation 
operator" p!+l . 

subduced from A of Gl(n) do not contain any co
ordinate indices n in the tableaux which represent 
basis vectors. Therefore, those representations of 
Gl(n - 1) occur in this reduction corresponding to 
the removal of aU combinations of the boxes labeled 
X in Fig. lea): 

r ). Gl(n)~Gl(n-l) 
) (3) 

513 
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The sum in Eq. (3) is over all partitions A' which obey 

Al ~ A{ ~ .1.2 ~ A~ ~ ... ~ A~_l ~ An ~ O. (4) 

Each representation fA', with A' described by Eq. (4), 
occurs exactly once. 1 

Equations 3 and 4 can be summarized 'neatly by 
introducing the ordered annihilation operator 

Pn = (I - E,,)-l(I - En_ 1)-1 ... (1 - E2)-1(l - E1yl. 

(5) 

The operator Ei is to be interpreted as a box annihila
tion operator in the ith row: 

Ei (A1 ... Ai_ 1, Ai' AHI •.. An) 

= (AI ... Ai_I' Ai - 1, AHI ••• An) (6) 

and each term (1 - Ej )-l is a representation for the 
power series of annihilation operators 

(1 - E;r1 = 1 + Ei + E; + E~ + . . . . (7) 

Then Eqs. (3) and (4) can be rewritten 

(A)n G!(n)IGH,,-l)~ I (A') = P ,,(A),,_l' (8) 
A' as in (4) 

The operator in Eq. (8) will sometimes leave us with 
partitions containing columns of length n. Thus, if A 
has n rows, the leading term in P" = In!:l (E:i) = 
1 + ... will yield a partition A' = A. Since completely 
anti symmetric nth-order tensors cannot be constructed 
in an (n - I)-dimensional vector space, representa
tions of Gl(n - 1) corresponding to partitions with 
A~ > 0 vanish. The complete expression of Eqs. (3) 
and (4) is given by Eq. (8), coupled with the modifi
cation rules for Gl(n) L Gl(n - 1): 

(A{ ... A~-IA~)n-1 = (A{ ... A~-l)n-I' A~ = 0, 

= 0, A~ > O. (9) 

Representations of the special linear groups 
Sl(n + 1) are in one-to-one correspondence with 
partitions into no more than n parts. But, since the 
completely skew-symmetric tensor (1"+1) has the 
transformation properties of the identity, 

(AI ... .1.".1."+1) 

== (AI - .1.,,+1' .1.2 - .1."+1' ... , A" - .1."+1)' 

Using arguments similar to those for Gl(n), we easily 
construct the spectrum of irreducible representations 
of S/(n) subduced from A of S/(n + 1): 

(A),,+1 sHn+1)lsHn\ I (A')" = P ,,(A)n' 

Modification rules for Sl(n + 1) L Sl(n) are 

(Ai A~ ... A~_l A~)n 

(10) 

== (A; - A~, A~ - A~ ... A~_l - A~)n' (11) 

These arguments can be extended directlyl to the 
groups SU(n + 1) and SU(n) or their corresponding 
algebras An and An_1: 

{A}n+1 AnIA
n-\ I {A'}n = Pn{A}". (12) 

Modification rules for An L An_1 are 

{A~ ... A~-lA~}n+1 

== {A{ - A~, A~ - A~ ... A~_l - A~}". (13) 

For example, let us determine the spectrum ofrepre
sentations subduced from the representation associ
ated with 

under the restrictions Gl(n) L Gl(n - 1), Sl(n + 1) L 
Sl(n) , SU(n + 1) L SU(n). Applying P3 to the par
tition (4,3, 1), we obtain the solution 

= (1 + E3 + ... ) 

= (4,3, 1) + (4,3) + (4,2, 1) + (4,2) 

+ (4, 1, 1) + (4, 1) + (3,3, 1) + (3, 3) 

+ (3,2,1) + (3,2) + (3,1,1) + (3,1). (15) 

For Gl(n) L Gl(n - 1) and n - 1 ~ 3, Eq. (15) stands 
without modification. For n - 1 = 2, all partitions 
into more than two parts vanish: 

GH3) j (2 
(4,3,1) ) (4,3)2 + (4,2)2 + (4,1)2 + (3,3)2 

+ (3, 2)2 + (3, 1)2' (16) 

For n - 1 = 1, the partition (4,3,1) is not a repre
sentation of G/(2). For the restrictions 

Sl(~ + 1, c) L Sl(n, c), S/(n + 1, r) L Sl(n, r), 
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and 
SU(n + 1) ! SU(n) with n > 3, 

Eq. (15) remains unmodified. But, for n = 3, 

{A~ A~ l}3 == {A~ - 1, A~ - Ih: 

{4, 3, 1}4 S'U(4) j (3)~ {3, 2h + {4, 3h + {3, Ih 

+ {4, 2}3 + {3, Oh + {4, Ih 

+ {2, 2}3 + {3, 3h + {2, l}a 

+ {3, 2h + {2, Oh + {3, Ih. 

(17) 

For n = 3, {4, 3, Ih == {3, 2h, and the modification 
rules (11) and (13) give 

SU(3) j S'U(2) 
{4, 3, 1}2 == {3, 2}3 ) {1}2 + {2h + {3}2 

+ {0}2 + {1}2 + {2h· 

(18) 

Similar results hold for the unimodular orthogonal 
groups SO(2n + 1) and SO(2n).2 The representations 
of the algebra Bn , whose associated compact group is 
SO(2n + 1), are in one-to-one correspondence with 
partitions into no more than n parts. The character 
of the representation of SO(2n + 1) associated with 
the partition (A) is denoted3 [A]2n+1' Similarly, the 
representations of the algebra Dn are in one-to-one 
correspondence with partitions into n parts (A). The 
character of the associated connected compact group 
is denoted3 [A]2n' By arguments similar to those used 
for Gl(n), S/(n + 1), and SU(n + 1), we find 2

•
3 

B,,!Dn 
[A]2n+l ----+ Pn [A]2n, 

[ 
Dn!Bn-l 

A]2n ) P n[A]2n-1' 

There are no modification3- 5 rules for Bn ! Dn. 
Modification rules for Dn ! Bn_1 are 

(19) 

(20) 

[Ai' .. A~-lA~]2n-l = [A~ ... A~-1]2n-l' A~ = 0, 1, 

= 0, for A~ > 1. (21) 

In order to discuss directly the cases Bn ! Bn_1 and 
Dn! Dn_1 , we merely apply (19)-(21), back to back: 

[~] Bn !Bn- 1 

1\ 2n+l ) P nP n [A ]2n-l , 

[A]2n D !Dn-l~ Pn_ 1Pn [A]2n_2' 

(22) 

(23) 

In Eqs. (22) and (23), the modification rules (21) are 

2 H. Boerner, Representations of Groups (North-Holland Publ. 
Co., Amsterdam, 1963). 

3 D. E. Littlewood, Theory of Group Characters (The Clarendon 
Press, Oxford, 1950). 

'F. Murnaghan, The Theory of Group Representations (Dover 
Press, New York, 1963). 

• M. J. Newell, Proc. Roy. Irish Acad. AS4, 153 (1951). 

applied after the last annihilation operator P n has been 
applied. It can be easily checked that the processes 
indicated in Eqs. (23) and (21) are equivalent to 
(24) and (25): 

[~] Dn j D.-l ~ 
1\ 2n ~ P nP n [1\]2n-2' (24) 

Modification rules for Dn ! Dn_1 are 

[A{ ... A~_l; 2]2n-2 = - [A{ ... A~-d2n-2' 

[A{ ... A~_2' 1; 1]2n-2 = + [Ai' .. A~_2' 0]2n-2, (25) 

A{ ... A~_l; A~]2n-2 = 0, otherwise. 

The fourth and final series of simple Lie algebras 
Cn is associated with the symplectic groups Sp(2n, r). 
The representations of Cn are in one-to-one corre
spondence with partitions (A) into no more than n 
parts. The compact group associated with Cn is 
called USp(2n). The character of the unitary repre
sentation of USp(2n) associated with partition (A) is 
denoted3 (A)2n' The spectrum of representations 
(A')2n_2, subduced from (A)2n under the restriction 
Cn ! Cn_ 1 , is given by Eqs. (26) and (27): 

(A)2n On! l~ PnPn (A)2n-2' (26) 

Modifications.6 rules for Cn ! Cn_ 1 are 

(A{ ... A~_l; A~)2n-2 = (A{ ... A~-1>2n-2' A~ = 0, 
= 0, for A~ > O. (27) 

Results derived from a character analysis on the 
unitary representations of the compact groups 
associated with algebras An' Bn, Cn' Dn hold for the 
algebras as well, both compact and noncompact. 
These results, therefore, apply even to the finite
dimensional nonunitary representations of the non
compact groups associated with these four series of 
simple Lie algebras. 

Similar results can be applied directly to discussion 
of the representations of the symmetric group. The 
representation of Sn are in one-to-one correspondence 
with partitions of the integer n. Thus, the repre
sentations of Sn-l' subduced from (A)n of Sn' are 

The operator (~~l E;) acts to reduce the number of 
boxes in the partition (A) by one. Since this operator 
is homogeneous of first order, this expression can be 
brought into a form similar to the results for simple 
Lie algebras: 

• G. C. Hegerfeldt, J. Math. Phys. 8, 1195 (1967). 
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TABLE I. Spectrum of representations (A') of the subaIgebra A' subduced from the representation (A) of A under the restriction A~A'. 

SubaIgebra restriction 
A~A' Spectrum of subduced representations Modification rules 

A,. JA"_l 

B,.JD,. 

D,.JB"-l 

{A}"+l --->- P,.{A} .. 

[A].,.+l --->- P,.[A].,. 

[A].,. --->- P,.[A]Z"-l 

(A) ... --->- p,.p .. o.).,.-z 

(A),. --->- P,.(A),.-l 

Modification rules for Sn! Sn-l are: All partitions 
with more or fewer than exactly n - 1 parts vanish. 
The foregoing results have been collected in Table I. 

m. EMBEDDINGS IN LARGER ALGEBRAS 

The problem solved in the last section can be turned 
around and asked again. That is, we might ask what 
representations (A) of, say, G/(n + 1) contain the 
representation (A') of G/(n) under the restriction 
G/(n + 1) ! Gl(n). This problem is essentially one of 
adding boxes containing an (n + 1) to the partition 
(A') in all possible ways. Such additions c~n only 
occur at the end of a column. This is essentially the 
converse of the problem described by Eq. (4) and in 
Fig. 1 (a). The solution is presented in Eq. (4' ) and 
Fig. l(b): 

Al ~ A{ ~ A2 ~ A~ ~ ... ~ A~ ~ An+! ~ O. (4') 

It is clear that all the representations A of Gl(n + 1) 
with this property are contained in the spectrum of 

(8') 

with the creation operator p! given by 

P~ = {(1 - Enrl ... (1 - EJ-1}t 

= (1 - Eirl(1 - EJ)-l ... (1 - E~)-l. (5') 

Referring to Table I, we easily construct Table II, 
which gives the spectrum of representations (A) of A 
which contain the representation (A') of the subalgebra 
A' under the restriction A ! A'. 

For example, let us determine the spectrum of 
representations of SU(3) which contain QJ of 

[,1.~ ... ,1.~_lA~]2"_1 == [A; ... A~_l]'''_l' A~ = 0, 1 

= 0, A~ > 1 

[,1.~ ..• ,1.~_lA~12n_. == - [A~ ..• A~-l].n-h A~ = 2 

[A~ ... A~_.I, 1 ] ... _. == + [A~ ... A~_.O]'''_2 
[A~ ..• A:_1,1.:]0,._1 = [AI' .. A~_l]."_l' A~ = 0, 1 

= 0, A~ > 1 

(A~ •.. A~_lA~).,._. = 0, A~ > 0 

Partitions with more or less than n - 1 boxes vanish 

SU(2) , under SU(3)! SU(2). The solution is as 
follows: 

= {2 + a, O}s, {2 + a, 1}s, {2 + a, 2}a. 

(29) 

We observe that all representations in this spectrum 
with a> 0 contain larger representations than [I] 
of SU(2). In fact, the largest representation of SU(2) 
contained in {2 + a, 0 or 1 or 2}a of SU(3) is {2 + a}2' 
By "larger" we are not referring to the dimension
ality of the representation, but rather to its dominant 
weight or partition to which it corresponds. We say 
«(J.) > (v) if the first nonvanishing term Iti - 'JI i is 
positive. 

TABLE II. Spectrum of representations (,1.) of A which contain 
(A') of A' under the subalgebra A.\.A'. 

Algebra 
extension 

A'tA 

A,._ltA .. 
D .. tB,. 
B"_ltD,. 
D"_ltD,. 
B"_ltB .. 
C .. _1tC .. 
S .. _lt S .. 

Spectrum of representations (A) 
of A containing 

(,1.') of A' 

P! {A'} .. +~
p![A']Z,.+l 
P![A'] ... 
P!P![A']. .. 
P!P! [A/]."4 1 

P!P!o.')O,. 
P!(A) .. _l 

(A') of A' as the largest subduced 
representation 

(1 - £!)-l{A'} .. +1 

[A'] ... +1 

(1 - £!)-l [A'la .. 
(1 - £!>-l [A'] ... 
(1 - E!>-l [A/]'''+1 
(1 - E!)-l(A')a,. 
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Let us also consider the following problem: What 

representations of A2 contain CD of Al as the largest 
of the subduced representations? What other repre
sentations of Al are subduced from each of these 
representations of A2? Referring to the last column 
in Table II, we obtain the spectrum 

(1 - Et}-l CD = OJ, EP' I I \. (30) 

To determine the spectrum of representations of Al 
subduced from each of these representations of A 2 , 

we merely apply the annihilation operator P2: 

P2 OJ = OJ + D + e (31a) 

P2 EP = EP + 8 + OJ + 0 

= 0 + e + CD + 0 (3Ib) 

=e+O+O=]· (3Ic) 

Equations (31) tell us that, under the canonical 
restriction SU(3)! SU(2), the 6 and (j representa
tions break up into a triplet, a doublet, and a singlet, 
while the octet breaks up into a triplet, two doublets, 
and a singlet. 

IV. CONSTRUCTION OF WEIGHT SPACES 

The examples of the last section show us that 
Tables I and II do not completely determine the 
structure of the representations (A) of A in terms of 
the representations (A') of the canonical subalgebra 
A'. For example, under the restriction SU(3) ! SU(2), 
the octet breaks up into two irreducible doublets and 
a four-dimensional representation which is further 
reducible into a singlet and a triplet (Fig. 2). 

(0,1,-1) 0,0-11 
0 0 

(-1,1.0) (0,0,0) (1,-1,0) 
0 0 0 

0 
(0,0,0) 

(-1,0,1) {Q,-I,n 
0 0 

FIG. 2. Reduction of the representation EFJ of Aa under the 

restriction to the algebra Al consisting of HI' HI' E±.'l-'I" Basis 
vectors with different ma values necessarily belong to different 
irreducible representations of Al • The shift operators E±.'l-'" 
can only connect basis vectors in the same horizontal row (fixed 
value of ma). 

Is it possible to extend Tables I and II in such a 
way that representations (A) of A are completely 
determined in terms of the representations (A') of A'? 

To answer this important question, we look in 
more detail at the structure of the simple algebras 
An, Bn, en, Dn' The algebras An consist of n + 1 
mutually commuting generators 

H = (H1> H2 ,'" • Hn, Hn+l)' (32) 

subject to the constraint 

o = HI + H2 + ... + Hn+l' 

together with the shift operators Ea.: 

(33) 

ex = ei - ej , 1::; i, j::; n + 1. (34) 

The canonical subalgebra An-I of An contains n 
mutually commuting generators 

h;=Hi' i=1,2,···,n, (32') 

together with the shift operator fa.: 

ex = ej - ej , 1::; i,j::; n. (34') 

Basis vectors for an arbitrary representation of An 
are described by n + 1 numbers Im1m2 ' •• mnmn+l>' 
These states are eigenvalues of the diagonal operators 
H: 

Hi Im1m2 ... mi , ... ,mn+I> = m. 1m). (35) 

The mi are subject to 

m1 + m2 + ... + mn+1 = O. (33') 

Basis vectors within the same irreducible subspace 
are connected by the shift operators E .. : 

Ee/_ej Iml'" . , mi.'" ,mi ,'" ,mn+1) 

~ Im l , ••• , mi + 1, ... , mj - 1, ..• , mn+l)' (36) 

Since shift operators of the form Ee--l> , Ee _ 
,--n+l n+l-i 

are not contained in the canonical subgroup A n- 1 of 
An, there are no shift operators in the subalgebra 
An_ l which are capable of changing the value of 
m n+1' We conclude, then, that bases 1m), 1m') with 
mn+1 :;f: m~+1 belong to different irreducible repre
sentations of An-I' Basis vectors with mn+l = m~+l 
mayor may not belong to the same irreducible 
representations of An_I' Analogous statements hold 
for 

Dn! Dn-l> Bn! Bn_1 , en! en-I' 

Representations of An can be described either by 
their dominant weights M or by the partition (A) to 
which they correspond. There is a simple relation 
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between A and M: 
n 

M; = Ai - (n + lr1!j(A; - Am), 
;=1 

i = 1, 2, ... , n + 1. (37) 

Therefore, the € operators, which act on partitions, 
should be closely related to the shift operators Ea , 

which shift dominant weights. In expressions of the 
form (8), the annihilation operators act on a repre
sentation of An to yield a spectrum of representations 
of An_I' They do this by severing the sublattices of 
constant mn+1 value from each other. Therefore, 

(38) 

Since the annihilation operators create smaller 
representations, they must act to decrease the 
dominant weights of (X). Thus, we make the associa
tion 

(39) 

Equation (39) now allows us to solve the problem 
suggested at the beginning of this section: Whenever 
the annihilation operator €i acts on a partition, it 
shifts the MnH value up by one unit. All representa
tions of A n_ 1 with the same value of M nH , under the 
restriction 

occur in the same representation sublattice of An. 
These representation sublattices are ordered according 
to M nH value. 

For example, let us determine the detailed structure 
of the representations 

ITJ, B=I, EB 

II] EP 
0 0 o II] 0 0 EP=o 

0 00 0 8 orn 
B=· 

o. 0 00 

of SU(3). The solution is as follows: 

P2+ IT.] = (1 - €2+)-1(1 - €1+)-lITJ 
o 1 2 

= ITJ + 0 + e, (40a) 

P2+ FP = (1 -. €2+)-1(1 - €1+)-1E]=J 

o 1 

= (1 - €2+)-1{E]=J + 8) 
o 1 1 2 

= E]=J + CD + B + 0 (40b) 

o I 2 
= D + {CD + e} + D, 

P2+ EB = (1 - €2+)-1(1 - €1+)-lEB 

o 2 

=EB+E]=J+CTI 

o 1 2 

= e + 0 + CTI, (40c) 

where the small integer over each partition describes 
the relative MnH = Ma value. It is equal to the number 
of annihilation operators €i which have acted on the 
partition. In Fig. 3 we show how these representations 
of SU(2) are "piled onto" each other to synthesize 
irreducible representations of SU(3). 

Let us also determine the general structure of the 
representations P'l' A2} of SU(3). The solution is as 

EE m3 

EB=· 0 FIG. 3. Explicit 
0 construction of the 

weight spaces for the 
representations 

0 0 EP=o CD, 

EP,EB 
of A2 ~ SU(3). 

0 0 orn 2 



                                                                                                                                    

follows: 
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o 1 Al - A2 
A2~Al 

P2{AI , A2} ) {AI' A2} + {AI - 1, A2} + ... + {A2' A2} 

1 Al - A2 + 1 
+ {AI' A2 - I} + ... + {A2' A2 - I} 

A2 
+ {AI' O} + ... + 

{AI - A2} 

= {Al - A2 + I} + {AI - A2 - I} 

{AI - I} + {AI - 3} + ... + {AI - 2A2 + 3} + {AI - 2A2 + I} 

{AI} + {AI - 2} + ... + {AI - 2A2 + 2} + {AI - 2A2} 

{AI - I} + {AI - 3} + . . . + {AI - 2A2 + 3} + {A - 2A2 + I} 

{A2 + I} + {A2 - I} 

{A2} 

o 
1 

519 

(41) 

(42) 

The general structure of {AI' A2} is shown in Fig. 4. 
The discussion of An! An_I is, in some ways, 

simpler, in other ways, more difficult, than the dis
cussion of the subalgebra restrictions Dn! Dn_I , 

Bn ! Bn_1 , en ! en-I' It is simpler because we have to 
apply the annihilation operator P n only once and 
also because we can make the unique association (39). 
It is more difficult because we are always operating in 
an n-dimensional hyperplane orthogonal to the vector 

The relation between the partitions (A) and 
dominant weights M, describing the irreducible 
representations of Dn, Bn, en, is simply 

R = e1 + e2 + ... + en+1 • 

x x x 

x x x 
FIG. 4. General struc-

ture of the representation 
{AI' Ails of A 2 • From 

X X X X 

Eq. (42) we see the 
weight degeneracy in- X X X X 
creases by 1 as we pro-
ceed by hexagons toward 
the center. Once we reach ~ X X X 
a triangular pattern, and 
within it, the weight 
degeneracy remains con- X X X 
stant. 

X X X 

X X 

x 

X 

X 

X 

A=M. (43) 

By arguments similar to those for An' we conclude 

(44) 

In terms of these annihilation operators, the repre
sentations (A') subduced from ()..), together with the 

x x {AI-AJ 
• x x 
• 

X X X • 2 

X X X {AI}" {AI-2A2} 

X X X • • 
• • 

X X 
• • 

X X • • 
X {A2} 
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appropriate M 11 ordering, are given by 

(A) -+ I (A') = P n-P n+(A) (45) 
;: 

for each of the three cases Dn t D n_1 , Bn t Bn_1 , 

en t en-I' For example, let us determine and con
struct the representations of Ds which contain 

EP of D2 

as their largest subduced representation. The solution 
is as follows: 

(1 - ·t)-' EP ~ EP. ~..J. 

Ps-Ps+ EP 

o +1 +1 +2 

=Ps-{EP + B + cr: + D} 

0-0 0-1 0-1 0-2 1-0 1-1 
=EP+B+ITJ+D+B+D 

1-0 1-1 1-2 2-0 2-1 
+ ITJ + D + • + D + ., (46a) 

PJ~~ 

o 2 

~PO-(~_I+ ~ +FP +1 I} 
0-0 0-1 0-1 0-2 1-0 1-1 

~{ff + § + EP + B + § + B 
1-0 1-1 1-1 1-2 2-0 2-1 

-I- EP + B + o::J + 0 + B + OJ 
(46b) 

Using the modification rules of Table I, 

~"ITJ. §=U 
we can construct the representations 

EP and ~ 

o 2 B 
ITJB 
EPDD-

EPDD 
O-ITJBBITJ 

ITJB -1 

o -2 

(a) 

EPDD 
B 

d(~r90 
(b) 

FIG. S. These representations of Dz are ordered as shown to 
construct the representations 

EP and ~ 

of Da. The dimensionalities are 

of Ds , shown in Figs. 5 and 6. The representations of 
Dn with An = Mn ~ 0 are not simple but compound, 
consisting of the two irreducible representations 
with dominant weights (.1.1.1.2'" An-I' +An) and 
(.1.1.1.2 ••• An_I' - An)· 

Finally, let us construct the irreducible representa-

tion ~ ofe2 : 

PJ'2+~ 

o 2 

= P2-{~ + EP + B + 1 
1 1 

2 3 

+ITJ +D} 

0-0 0-1 0-2 0-1 0-2 
=E]=TI+EP+B+' 1 II+o::J 

0-3 1-0 1-1 1-1 1-2 2-0 2-1 
+D+EP+E1+o::J+D+B+D 

1-0 1-1 1-2 1-3 2-0 2-1 
+IIII+CD+O+·+CTI+O 

2-2 3-0 3-1 
+·+0+·· 



                                                                                                                                    

/ • 7 • • m = 2 3 • 

• 

7 / .2 
4 

.2 

• • • m3= f .2 .2 

• 
• • -7 /- • .4 

.4 
.4 m -0 

.4 3-• 
• • 

• 

7 / 
.2 

4 
.2 

• • • m3=-f 
.2 .2 

• 

7 / • 
• • m3 =-2 

• 

FlG.6(a). Weight diagram for EfJ of Ds· 

7 / • .2 • 
m3 = 2 

• • 

• • -7 L • .4 
.4 

4 • m3 = f .4 • • • 
2 

/ 
• 7 2 .4 .4 

.2 • .6 m3=0 .4 
.2 

.4 

• • -7 L • .4 
4 .4 

.4 • m3=-1 
• • • 

7 / • .2 • 
m3=-2 

• • 
FlG.6{b). Weight diagram for W of Ds· 
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0 
ITJ + 

I I I I + 0 
ITJ + CD 

I I I + 0 
ITJ + 

0 

• 
+ 0 
+ • 
+ 0 

• 

ROBERT GILMORE 

m3 

-3 

-2 

-J 

-0 

-1 

-2 

-3 

use it to construct the weight space for 

of C2 in Fig. 8. Each of the basis vectors in any repre
sentation of C2 is uniquely described by its eigenvalues 
under the subgroup C2 i Cil! + C1 2), with the sub
groups Cil) and Ci2) consisting of the generators 
HI. E±2el and H2 , E±2ez' respectively. 

V. CONCLUSIONS 

FIG. 7. Representations of Cl> with ordering, synthesized into 
the irreducible representation B I I of Cz· A dimension check, 

Algebraic techniques for determining the branching 
rules for the representations (A) of the algebras An. 
Bn. Cn' Dn, under the restrictions An i An_t , 

Bn i Bn- I , Cn i Cn_ l • Dn i Dn_l , have been described 
and used to construct the weight spaces for arbitrary 
representations (A) of these algebras in terms of the 
weight spaces for (A') of their subalgebras. Since the 
weight spaces for the representations of Al = BI = CI 
are well known. this allows us, in principle as well as 

using d(O) = 2, d<CIJ) = 3, d(CIIJ) = 4, gives 

Using the modification rules of Table I, we reproduce 
this spectrum of representations of C1 in Fig. 7 and 

I ffD,-1,3; o. an) 
o 

IEfD.I,3; 0, an) 
o 

I g:o,-2,2; m CD) IIfO.O,2; m.m) 1IfO,2,2;m. co) 
o 

11fD;-3, I; o:::JJ.o) 
o 

o 

I 1jD, -2.O;CD .m) 0 
o I 1jD.-2.0;DJ ,0) 

I EfD,-3,-I;em,o) 
o 

IBTI,-2,-2;CD,m) 0 

HfD,O.2; o. co) 

lIfO, 3,1, o:::JJ, 0) I g:n.o,a:o,O) 

g 
IEfD,I,I,O.O> 

I EfD,-I,I.O:O, 0) 

g 
I g:n ,-1,1;0, 0) 

o 

I EfD,-I,I; 0, em) 11jD,I,I,O,cro) 
oIEfD·2.0;m.m) 

IEfD,i5;O,CD) JIfD'O' m,O) m::o,2,o;m, 0) 
len 0;0,0) 

I EfDg'.-I;em,o) I EfD.g',DD,O > 
lBTI,-I,-I;O,o) I g::o,I,-I, D, 0) 
IBTI,-I,-Io,em) I fpJ.I,-I, D,an) 

19:D,3,-I, aD,D) 
o 

x IBTI,O,-2;D:I, co) 0 Ig:o,2,-2; m,rn) 
I EfD,O, -2;0, m ) 

o 
Ig:o.-I,-3; D,CIJJ) 

o 
I EfD' 1,-3, [], ceo) 

FIG. 8. Complete labeling for the basis states of EJ=I=1 of C2 • 
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in practice, to construct the weight-space diagrams 
for arbitrary representations A of these algebras 
using bootstrap techniques. Equations (12') and (45), 
together with those of Table II, may be regarded as 
the analog of the Frobenius reciprocity theorem7 for 
Lie algebras. 

7 L. Jansen and M. Boon, Theory of Finite Groups (John Wiley 
& Sons, New York, 1967). 
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There are various possibilities in defining Born approximations for the evolution of density matrices. 
They differ, however, from the ordinary Born ap~roximatio~ for pure states by the fa~t that they d? 
not, in general, conserve the fundamental properties of phySical states. We shall descnbe these POSSI
bilities geometrically in the so-called Liouville space of Hilbert-Schmidt operators and investigate their 
significance in nonequilibrium dynamics. The results admit of an analogous interpretation in classical 
statistical mechanics. 

I. INTRODUCTION 

The mathematical concept of Born approximation 
is as follows: In a Hilbert space two continuous groups 
{VlO)} and {Vt } of unitary operators are given with 
generators HCO), Hand resolvents RCO)(z), R(z). The 
Laplace transform of the second resolvent equation 

R(z) = RCO)(z) - RCO)(z)(H - HCO»R(z) 

then yields the convolution integral equation 

V = V CO ) - iltdTUCO)(H - H(O»U 
t t t-r " 

° 
whose iterative solution 

UCv ) - U(O) - iitdTU(O)(H - H(0»U Cv- 1) (1) 
t-t t-r r 

° 
defines the Born series {V!v)}. 

In physics the Hilbert space is interpreted as the 
space of the physical states, the two families of unitary 
operators as their Schrodinger time propagators, and 
the generators as the Hamiltonians for the free and 
the "total" evolution, respectively. This can be done 
in two different ways: In ordinary quantum mechanics 
the elements "p of the complex Hilbert space Je corre
spond to pure states, while in statistical mechanics we 
may introduce the so-called Liouville space L of 
Hilbert-Schmidt operators in which all states p, 

pure and mixed, are represented on an equal basis 
as a convex subset. 

In both interpretations the Schrodinger evolution of 
the states "p (respectively, p) is induced by groups of 
unitary operators V t in Je (respectively, Ut in q and 
in both cases a Born series may be set up formally 
by (1). We shall call the Born series so obtained in L 
"statistical" in order to distinguish it from the 
"ordinary" series in Je. This statistical series has, for 
instance, been used by Kubo (see Appendix A). 

Besides these two fundamental interpretations of 
(1), one applying to the space Je of pure states and 
the other to the Liouville space L of the density 
matrices, one might also consider a true extension of 
the ordinary Born approximation from Je to L. This 
intermediate possibility is also briefly discussed in 
Sec. III. 

Although these different Born series have some basic 
mathematical convergence properties in common, 
their physical significance is entirely different. While 
the ordinary Born propagators map pure states into 
pure states, the statistical propagators not only change 
the entropy of the states, but may even destroy their 
positivity for sufficiently large times. 

The natural question then arises whether the 
statistical Born approximations give a correct infor
mation about the approach to equilibrium in statistical 
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in practice, to construct the weight-space diagrams 
for arbitrary representations A of these algebras 
using bootstrap techniques. Equations (12') and (45), 
together with those of Table II, may be regarded as 
the analog of the Frobenius reciprocity theorem7 for 
Lie algebras. 

7 L. Jansen and M. Boon, Theory of Finite Groups (John Wiley 
& Sons, New York, 1967). 
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There are various possibilities in defining Born approximations for the evolution of density matrices. 
They differ, however, from the ordinary Born ap~roximatio~ for pure states by the fa~t that they d? 
not, in general, conserve the fundamental properties of phySical states. We shall descnbe these POSSI
bilities geometrically in the so-called Liouville space of Hilbert-Schmidt operators and investigate their 
significance in nonequilibrium dynamics. The results admit of an analogous interpretation in classical 
statistical mechanics. 

I. INTRODUCTION 

The mathematical concept of Born approximation 
is as follows: In a Hilbert space two continuous groups 
{VlO)} and {Vt } of unitary operators are given with 
generators HCO), Hand resolvents RCO)(z), R(z). The 
Laplace transform of the second resolvent equation 

R(z) = RCO)(z) - RCO)(z)(H - HCO»R(z) 

then yields the convolution integral equation 

V = V CO ) - iltdTUCO)(H - H(O»U 
t t t-r " 

° 
whose iterative solution 

UCv ) - U(O) - iitdTU(O)(H - H(0»U Cv- 1) (1) 
t-t t-r r 

° 
defines the Born series {V!v)}. 

In physics the Hilbert space is interpreted as the 
space of the physical states, the two families of unitary 
operators as their Schrodinger time propagators, and 
the generators as the Hamiltonians for the free and 
the "total" evolution, respectively. This can be done 
in two different ways: In ordinary quantum mechanics 
the elements "p of the complex Hilbert space Je corre
spond to pure states, while in statistical mechanics we 
may introduce the so-called Liouville space L of 
Hilbert-Schmidt operators in which all states p, 

pure and mixed, are represented on an equal basis 
as a convex subset. 

In both interpretations the Schrodinger evolution of 
the states "p (respectively, p) is induced by groups of 
unitary operators V t in Je (respectively, Ut in q and 
in both cases a Born series may be set up formally 
by (1). We shall call the Born series so obtained in L 
"statistical" in order to distinguish it from the 
"ordinary" series in Je. This statistical series has, for 
instance, been used by Kubo (see Appendix A). 

Besides these two fundamental interpretations of 
(1), one applying to the space Je of pure states and 
the other to the Liouville space L of the density 
matrices, one might also consider a true extension of 
the ordinary Born approximation from Je to L. This 
intermediate possibility is also briefly discussed in 
Sec. III. 

Although these different Born series have some basic 
mathematical convergence properties in common, 
their physical significance is entirely different. While 
the ordinary Born propagators map pure states into 
pure states, the statistical propagators not only change 
the entropy of the states, but may even destroy their 
positivity for sufficiently large times. 

The natural question then arises whether the 
statistical Born approximations give a correct infor
mation about the approach to equilibrium in statistical 
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mechanics. More specifically, it may be asked whether 
certain typical oscillations found in the expectation 
values of "observables of interest" could be due to 
the approximation procedure rather than to physics. 
One of our aims is to answer this question. 

Section II gives a brief exposition of the geometry 
of states in Liouville space; in Sec. III, we shall 
compare their motions induced by the various kinds 
of Born approximations; in Sec. IV, the first statistical 
Born approximation is calculated explicitly in the 
simple example of a spin t and the result compared to 
the exact solution; and in Sec. V, we consider this 
system as part of a statistical ensemble in order to 
obtain some conclusions about the suitability of this 
approximation in nonequilibrium dynamics. 

Our treatment in this paper will be quantum 
mechanical. But we should note that the results could 
be interpreted in classical statistical mechanics as 
well (Appendix A). Using the translation code 

density matrix +-t density in phase space, 
trace operation +-t integration over phase space, 

commutators +-t Poisson brackets, 

we conclude, for example, that the analog to the 
statistical Born approximation in classical mechanics 
yields a stochastic process in which the distributions 
conserve their normalization throughout time, but 
not the positivity of their densities. 

II. DESCRIPTION OF STATES IN 
LIOUVILLE SPACE 

A. Definition of States as Elements of II 
Liouville Spacel 

General states in ordinary quantum mechanics are 
defined as positive a-additive normalized functionals 
f on the atomic lattice of the projectors in a separable 
Hilbert space Je. According to Gleason, these func
tionals are in a one-to-one correspondence to the so
called density operators P in Je (dimension Je > 2): 

p: Tr p = 1; p* = p; p > 0; 

f(A) = Tr pA V self-adj. A in Je. (2) 

Since the density operators are Hilbert-Schmidt, they 
form a subset C' of the real Hilbert space C of all self
adjoint operators A for which Tr A2 < 00, and in 
which the scalar product is defined by (A-+, B-+) = 
Tr AB. (We shall endow the operators A with an 
arrow if they are to be considered as elements of C.) 

1 For a more complete exposition see G. G. Emch, Helv. Phys. 
Acta 37, S32 (1964). 

B. Geometrical Characterization of States in !: 

We define the following objects in C: 

the hyperplane2 

r = {p .... , (r, p-+) = Tr p = I}, 

the sphere 

6 = {p .... 'llp .... 1I 2 = Tr p2 ::;;; I}, 

their intersection 

~ = r n 6 = {p .... , Tr p2 ::;;; Tr p = I}, 

its boundary 

1: = {p .... , Tr p2 = Tr p = I}. 

Furthermore, we note that the geometrical locus of 
convex combinations p-+ = Ap-;' + (1 - A)p;+ (0::;;; 
A ::;;; 1) of vectors p-;', p;+ is the segment of the straight 
line connecting p-;' and p;+. From (2) we now conclude: 

(1) The states are in ~. 

Proof' Tr p = 1, p > 0 implies that p has a 
discrete spectrum 0 ::;;; Ai ::;;; 1. Hence 

Tr p2 = 2 A: ~ 2 Ai = Tr p = 1. 
i i 

(2) The states form a convex set. 

Proof: Let Pi > 0, Tr Pi = 1. Then (cp, PiCP) > 0 V 
cP E:re. For a convex combination we have 0 ~ Ai =:;; 
1, 2i Ai = 1. So 

and 

( cpo t AiPiCP) = t At( CPo p,cp) > 0 

(3) All states are a convex combination of states on ~. 

Proof: Let "Pi denote a complete orthonormal set of 
eigenstates of p with eigenvalues Ai and Pi the corre
sponding one-dimensional projectors. Then p .... = 
~i AiP; is the desired convex combination, since P; 
are states and lie on 1:. 

(4) All states on ~ are extremal (= pure) states. 

Proof' Otherwise they would lie inside a segment, 
one of whose end points is outside ~ and cannot 
represent a state according to (I), 

(5) All extremal states are on 1:. 

Proof· Immediate consequence of (3) and (4). 

(6) Not all elements off- are states unless dim :re = 2. 

• Here we made a trivial abuse in notation since the unit operator 
I in Je is not Hilbert-Schmidt unless Je is finite dimensional. 
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Proof' Tr p2 = Tr P = I implies positivity if and 
only if dim Je = 2. 

If: 

~A~ = ~Ai = 1 
i i 

=> 1 = Ai + A~ = (AI + A2)2 - 2A1A2 = 1 - 2A1A2 

=> A1A2 = 0 

=> Al = 0 or 1, A2 = 1 or 0 => P > o. 
Only if: the matrix 

P = (t HI + ..)5) ) 
HI - ..)5) 

satisfies Tr p2 = Tr P = 1, but p is not positive. 

C. ScbrOdinger Evolution of States in I: 

Let H be the Hamiltonian of the system. Then the 
Schrodinger equation for density matrices reads in 
integral form 

Pt = UtPoUt !; Ut = exp (- iHt), (3a) 

in differential form 

E. Pt = -i[H, p], 
dt 

(3b) 

where {Ut } is a group of unitary operators in Je. In 
Liouville space we introduce the operators· f)p--> = 
[H, p]--> and Utp--> = (UtpU;1)-->,3 So (3) becomes 

P--; = UtP;; Ut = exp (-if)t); !! P--; = -if)p--;. 
dt 

(3') 

For the characterization of the evolution of the system 
in C we furthermore introduce the entropy of state P by 

S = -k In Tr l = -k In IIp-->\\2. 

Then we have: 
(7) Ut transforms states into states and leaves their 

spectrum invariant. 

Proof: UtpUt l is unitarily equivalent to P and thus 
leaves the spectrum and all properties characterizing 
a state invariant. 

(8) {U,} are rotations in C [leaving Y invariant 
according to (7)J. 

Proof: The scalar products (lengths and angles) 
of the vectors are conserved: 

(U,P!'", UtP;) = Tr UtP1UtlUtP2U;1 

= Tr P1P2 = (p!,", p;). 

• If C is infinite dimensional, ii may not be defined everywhere. 

(9) All rotations in C conserve the entropy. 

Proof' Immediate consequence of the definition 
and (8). 

(10) Not all rotations in Care Schrodingerian 
unless dim Je = 2 or the states are pure. 

Proof' For any two points on a sphere there exists 
a rotation transforming one into the other. But 

\\p-->\\2 = Tr p2 = ~ A~ = a ~ 1, Tr p = ~ Ai = 1 
i i 

does not uniquely define Ai > 0 unless dim Je = 2. 
So a rotation may change the spectrum of p in contra
diction to (7). On the other hand, any pure state is on 
~, any state on ~ is a projector, and all one-dimen
sional projectors are unitarily equivalent. 

(11) Not all rotations transform states into states, 
unless dim Je = 2. 

Proof' According to (6), the spheres do not contain 
only states unless dim Je = 2.4 

III. BORN APPROXIMATIONS 

Let us split the total Hamiltonian f) in C into a free 
part f)(O) and an interacting part m. In Liouville space 
both the free and the physical motion lead to ordinary 
rotations with rotation matrices U10) = exp (-if)(O)t) 
and Ut = exp (-if)t),respectively. Both rotations leave 
a hyperplane (f(O) and (f in Y invariant (in. the 3-
dimensional case these are simply die rotation axes 
n-(O) and n-); these fixed axes differ from each other 
except in the trivial case when f) commutes with f)(O). 

We shall now give a global description in C of the 
Born approximations mentioned in'the Introduction. 

A. Ordinary Born Approximation for Pure States 

The ordinary Born series is originally defined in the 
Hilbert space Je of pure states by the iterative formula 
(1). The {U:v)} are not unitary in Je, and they do not 
form a semigroup in t except, of course, for v = 0 
(free motion) and v = 00 (physical motion), if the 
series converges. We may now define the correspond
ing Liouville operators 

(4) 

where "0" denotes "ordinary," P", are the I-dimen
sional projectors on 'P, and U!v) is defined by (I), 

, It is not difficult to locate on the spheres in C the subsets of 
elements with identical spectrum. This problem is, in fact, equivalent 
to characterizing among all rotations in C those which are imple
mentable by unitary operators in .le. The particularity of the 
2-dimensional space in this respect is due to the fact that the dimen
sion of the sphere 1: = T n 6 (three) equals the number of genera
tors of rotations in 1:. 
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The operators °U:v) map the states of ~ (= pure 
states) into themselves, thus conserving their norm 
and entropy. But they are, in general, not rotations, 
since they do not conserve their angles. In fact, 
suppose (p";, P;) = O. It is easy to show that this 
is true if and only if (cp, 'IP) = O. But, since Uiv) is not 
unitary in Je, this does not imply that (U:v)cp, Uiv)'IP), 
and thus (Pliecv1rp, Pfj,Cv1tp), vanishes. 

In a slightly different fashion we could also start 
from the remark that oU!') is not implementable by 
unitary operators in Je, although all I-dimensional 
projectors are unitarily equivalent. In fact, we have 
PUtCv1rp = UcpPcpU;land PUtCv1tp = UtpPlpU;;\ where both 
Ucp and Ulp are unitary, but in general different. From 
this we immediately conclude that U:v) conserves the 
norm of P; but not its scalar product with P;. So 
we have: 

The ordinary Born approximation for pure states 
corresponds in L to a family of operators {Uiv

)} defined 
by Eqs. (4) and (1), which maps the stateS on ~ (= pure 
states) into themselves, conserving their norm (entropy) 
but not their angles (transition probabilities), 

B. Ordinary Born Approximations for Arbitrary States 

There is a straightforward extension of the ordinary 
Born approximation from pure states on ~ to 
arbitrary states in L by 

since, for pure states 

and 

(U!V»ik(P tp)k'( U!V)\m = (Ulv»ik'IPk1Jli( uiv»!, 

= (U!v)'IP)m(Uiv)'IP)i 

= (PUtCVltp),m . II U:v)'lPIIJe 

The transformations °U:v) do not, however, con
serve the norm of mixed states since 

unless Ulv) is unitary. In particular, the spectrum of 
these states (and possibly even its positivity) is not 
conserved. Hence: 

The extended ordinary Born approximation {oU~V)} 
defined by Eqs. (5) and (1) does not, in general, con
serve the norm (entropy) of states (and pOSSibly not 
even their positivity) except for the stateS on the 

boundary ~ (pure states) which are mapped into 
themselves. 5 

C. Statistical Born Approximation 

We now consider a totally different type of a Born 
approximation for density matrices where the idea of 
extending the ordinary approximation for pure states 
is abandoned and where we are guided instead by the 
formal analogy between the Hilbert spaces Je and L. 

The statistical Born series is the formal analog 
of (1) in the space L of the density matrices, i.e., 

U: v
) = uiO) (I - i fd'TU~:(~ - ~(O»U:V-l»). (6) 

This definition has been used by Kub06 (see Appendix 
A), and we shall now discuss it more thoroughly here 
and in the following sections. 

The statement that the ordinary Born approxima
tion U:v) is not unitary in Je implies immediately that 
the statistical Born approximation {U~v)} defined by 
(6) is not a rotation in L and thus does not conserve 
the norm (entropy) of the states. 

In order to obtain a more detailed qualitative 
picture of this nonconservation of the norm, let us 
restrict ourselves to the first Born approximation 

Uil) = U~O) (I - ifd'TU~~(Sj - ~(O»U~O»). 

In the trivial case where the interaction m = ~ - Sj(O) 
commutes with Sj(O), the integral reduces to (tm), i.e., 
to a term which increases linearly with time. The 
other extreme, in which the integral is periodic in t, 
arises if m generates a rotation perpendicular to 
U~O). So we might expect in the general case a Born 
approximation of the form 

U~l) = U~O)(I - it'll' + periodic term in t), 

where m' is the maximal part of m commuting wi th Sj(O). 
This guess is confirmed by the concrete example of 

a spin system treated in Sec. IV, in which it turns out, 
moreover, that 5B' is a multiple of Sj(O), so that the 
first Born approximation reads 

U!l) = U:O) ( I + it(! - A)Sj(O) 

- i it d'T U~~(Sj - A~ (0) )U~O») . (6') 

• One might think to replace definition (5) by 

ulV
) p- = (Uiv) pulv)-l)-

in order to preserve the norm. This is worse, however, since now 
the hermiticity of the states is destroyed and the propagators u~V) 
cease to be operators in the real Liouville space C. 

• R. Kubo, ~n .Lectures in Theoretical Physics, Boulder, Colorado, 
1958, W. E. Bnttm and L. G. Dunham, Eds. (Interscience Publ. Co., 
New York, 1959), Vol. I, p. 138. 
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Whenever the interaction m can be decomposed in 
this way, the following more stringent statements 
hold: 

The statistical first Born approximation U~ll defined 
by Eq. (6') is not a rotation in f:; the positivity of 
U~ll PO'" is not guaranteed for all times; in fact, for 
large t the norm II U:l)pO'" 112 becomes arbitrarily large, 
unless the initial state Po commutes with H(O), in which 
case the linear term in (6') vanishes and the entropy 
becomes a periodic function of t. 

We also remark that the propagator describing 
the evolution of the diagonal part of the density 
matrix in the basis in which H(O) is diagonal has no 
linear terms in t. In fact, if we introduce the "coarse
graining" operator 1) in f: which projects the states on 
their diagonal part, it is easily verified that 5(0)1) = O. 

Let us make this now more specific in the example 
of a spin-t system. 

IV. STATISTICAL BORN APPROXIMATION 
IN THE EXAMPLE OF SPIN t 

The i-integer spin is described in a 2-dimensional 
vector space Je in which the two eigenstates 1p+ and 
1p- of the spin in z direction may serve as a basis. The 
corresponding Liouville space f: is 4-dimensional and 
we may introduce the orthonormal basis 

V; = 2-i I;re; V; = 2-i O'i' i = 1,2,3, 

where O'i are the three Pauli matrices. The hyperplane 
1 of trace-one operators is defined by 

l' = {p-I (V; , p-) = 2-i Tr P = 2-i }, 

i.e., by the elements off: with identical zero-component 
2-i. So we may disregard the zero-component al
together as long as we consider only motions in 1, 
and we may work in the space spanned by the three 
traceless Pauli matrices. 

-c 
s ) 

From the 3-dimensional plane 1 the 4-dimensional 
sphere IIp->112 ~ 1 cuts out the 3-dimensional hyper
sphere :E with radius 2-i , and, according to Sec. II, 
we have the particularly simple situation that 

(1) all elements of :E are physical states7 ; 

(2) the boundary ~ contains exactly the pure states; 
(3) any trace-conserving rotation in f: is imple-

men table by unitary operators in Je and thus leaves 
the spectrum of p invariant. (See Appendix B.) 

A constant magnetic field may now serve "to 
define a z direction," i.e., to create a free-energy split 
in the levels of 1p+ and 1p-. The corresponding free 
Hamiltonian is H(O) = tM3 with unitary group 
U~O) = exp ( - tiMst). The most general form for 
the total Hamiltonian is H = tocniO'i and its unitary 
group Ut = exp (-iiOCni(1it). The corresponding Liou
ville operators in 1 are 

~.<O) • "!.)ik = I ex€ikS , 

(U~O»ik = cos ext . ()ik 

+ (1 - cos oct)()iS()kS + sin oct . €ik3, 

5ik = iex€ikln!, 

(Ut)ik = cos oct . tJik 

+ (1 - cos ext)nink + sin ext· €iklnl' 

(7) 

and we immediately verify that Ut induces [in agree
ment with remark (3)] the most general rotation in 1 
with arbitrary rotation axis n-> and constant speed ex, 
while U~O) is a constant speed rotation with axis 
n->(O) = (0,0, 1). 

In using (6) we first split 5(0) in two parts such that 
5 - A5(0) induces a rotation with an axis perpendic
ular to n->(O). This is readily achieved choosing A = 
(n->(O), n-» = ns; in fact, 5 - A5(O) then generates a 
rotation around n- - (n->(O), n-»n->(O) ..l n->(O). The 

result of the straightforward calculation of (6) is 

+ (,(1 -C) + n,S 

where C = cos oct, S = sin ext. 
The assertions of Sec. III can easily be verified: 

(1) For an arbitrary initial state PO'" = (PI' P2' Pa) 
the norm IIUlIJpO'"I1 2 oscillates in general with an 
amplitude increasing indefinitely in time, and U!l)-;';p 
does not represent a state at all times. 

(2) Only if Po commutes with H(O) does the linear 

---------------------------------------
term in (8) vanish and the norm (as well as the 
entropy) become periodic in time: 

II U?) p;1I 2 = t + p~ + 2p~(1 - n~)(1 - cos ext), 

with average t + p~. 
7 According to Gleason's theorem, there exist, in fact, many more 

physical states which cannot be described by density matrices in 
this case; but there is no need to consider them for our purpose. 
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(3) Even if the initial state commutes with H(O), its 
Born trajectory may lead periodically outside the 
sphere ~ of physical states. This is so in particular 
if p-; = 2-i (0, 0, 1) is pure; the two points A± of its 
spectrum develop according to 

A±(t) = HI ± [1 + (1 - n~)(1 - cos oct)]i}, 

and although its ergodic mean 

lim .!. fT dtU~l) p-; 
T-+<r; T Jo 

exists, it lies slightly outside ~ at 2-i (nl' n2 , 1). 

We also verify explicitly in (8) the following general 
property of the first Born approximation: 

(4) The derivative at t = ° of the first statistical 
Born approximation U:ll coincides with that of 

Ut • 

In order to give an idea of the evolution 
of expectation values in the first Born approxima
tion compared to their true evolution, we label the 
expectation values of spins S. and Sa: for the two 
initial states with spin in positive z (resp. x) 
direction: 

Initial state Observable True evolution 
Evolution in first Born 

approximation 

i (S.) 
(Sa:) 
(S.) 
(Sa:) 

t«1 - n:) cos oct + n~) 
t(n1ns(1 - cos oct) - n2 sin oct) 
t(n1n3(1 - cos oct) + n2 sin oct) 
Hcos oct + n~(1 - cos oct» 

t 
t(nl (1 - cos oct) - n2 sin oct) 
t(nl(1 - cos oct) + n2 sin oct) 
!(cos oct + oct(l - ns) sin oct). 

(9) 

We note that the general type of the oscillation coin
cides; but, while their amplitude differs in the first three 
cases by a constant factor only, the amplitude of the 
sine in the last case increases linearly in time. 

v. STATISTICAL BORN APPROXIMATION 
AND APPROACH TO EQUILffiRIUM 

If we want to visualize the typical effect of the 
statistical Born approximation (6) in calculations of 
the approach to equilibrium of certain variables in 
statistical mechanics, we should exhibit a model 
which is soluble both exactly and in first Born approxi
mation. We consider first the most primitive situation, 
where a single spin is coupled to a thermostat at infinite 
temperature whose state develops according to a semi
group of contractions admitting the vector p-;' = 
(0,0,0) of maximal entropy as its unique asymptotic 
state. Such a behavior could, for instance, be realized 
by assuming a sort of Stosszahlansatz for the spin
bath interaction. Mathematically, this would result in 
assigning an over-all decay factor exp (-At) to the 
expectation values labeled in (9). 

We see that in this naive model the Born approxi
mations would not modify the set of equilibrium 
states since the exponential convergence factor 
dominates all powers in t. However, if we are inter
ested in a detailed description of the approach to 
equilibrium at finite times, the situation is quite 
different. Even if we restrict ourselves to initial states 
which commute with H(O), the Born approximation 
may create [or wipe out, as in the first example (9)] 
oscillations. 

A slightly different situation which arises in statisti
cal mechanics should also be considered briefly. 

Suppose we are only interested in the popUlations of 
spin up and down in the z direction. Mathematically, 
this means that we consider only the I1s component of 
the states p - (or, in Je terminology, the diagonal 
elements of p). Let :t>ik = bi3k3 be the corresponding 
projection operator in r. The reduced evolution 
operator :t>Ut then satisfies the generalized master 
equation 

:!.. (:t>U t ) 

dt 

= -i:t>~!lUt - i!l~ exp [-i(1- !l)~. t](1-!l) 

- IdT:t>~ exp [-i(I - :t»~(t - T)](I - !l)~!lUT. 

If we restrict ourselves to initial states p- = :t>p-, 
the second term on the right-hand side vanishes and 
we can set up the iterative solution 

i ~ (!lU yv) 
dt t 

= -i:t>.D(:t>Utyv-ll - fdT:t>.D 

X exp [- i(I - :t».D(t - T)](J - !l).D(:t>U~v-ll), 

where (:t>Ut)(O) satisfies the equation 

i .!!:.. (:t>Utyo l = - i:t>.D(:t>Ut)(O). 
dt 

The series so obtained suffers, however, from the 
same defect as (1), namely, that the positivity of the 
states is not necessarily conserved during the evolu
tion, as can be verified in the example of spin. 
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APPENDIX A 

Here we establish the relation between our statistical 
Born approximation (6) and the formulation of 
Kubo .6 

Applying (6) on a state p~ and introducing the 
quantities 

p-;(O) = U~O) p.... and (6.ptf+ = (U~I) _ U~O»p"", 

we obtain 

(6.ptr = -ifdTU~~r(il - fJ(O»p-;(O) 

= -iitdTU(O) [V. p(O)]-t-r ,t , 
o 

and, inserting the time-dependent interaction V = 
-AF(t), we have 

(6.ptf+ = ifdTU!~r[A, p~O)rF(T). 
This corresponds to Kubo's formula (2.14) if the 
disturbance function F(t) has positive support. 

As mentioned in the Introduction, this statistical 
Born approximation has its analog in classical 
mechanics. Replacing Pt by the phase-space density 
It, we obtain 

6.ft = - fdTe·(t-r)L(A,f~O»F(T) 

[Ref. 6, formula (2.9)], where 

iLf= (H,f) = I (OH of _ oH Of), 
i oq. OPi OPi Oqi 

--o 
FIG. 1. Geometrical construction of the spectrum {A1 • As} of p. 

with qi and Pi being the canonical variables in phase 
space. 

APPENDIX B 

In the 2-dimensional case the density matrices 
satisfy the relations 

The spectrum {AI' A2) of p can then be constructed 
geometrically as in Fig. 1. It is also directly visible 
that the spectrum of any p~ off the sphere :E is not 
positive. 
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In. connection with renormaliz~tion problems in quantum field theory, Pfaffians and Hafnians are 
consldere~. A.notew?rthy expa~slOn ~f determinants and permanents is given, in terms of Pfaffian-like 
and Hafman-hke objects, that Immediately leads to the known reduction of a determinant to a single 
Pfaffian. FinaIly, some auxiliary results are presented. 

1. INTRODUCTION 

At the turn of this century algebraic objects similar 
to determinants, known by the name of Pfaffians, 
were studied in mathematical literature. These Pfaf
fians are related to antisymmetric determinants, and 
many results regarding these objects have been ex
pounded in detaiJ.1 

As stated in Ref. 1, these objects, which appear in 
form of arrays, were introduced by Pfaff in 1815 in 
connection with the solution of differential equations. 
The interest in these was revived by Caianiell02 in 
connection with renormalization problems in quantum 
field theory, where one deals with averages of anti
commuting operators. The fermion propagators can 
be arranged in terms of such objects and, then, related 
to determinants. However, boson propagators corre
spond to another algebraic object called Hafnian 
(introduced by Caianiello1), which may be arranged 
in arrays similar to that of a Pfaffian. Though these 
two objects look similar and possess an expansion rule 
which resembles that of a Pfaffian, there is an impor
tant proviso, that the signature of each term of the 
expansion of the new object is always positive. This is 
linked with the fact that boson operators obey com
mutation rules different from those of fermion 
operators. This brings to our mind the analogous 
situation between permanents and determinants: the 
expansion rule for permanents resembles that of 
determinants without the parity sign in front of the 
terms. 

There are many theorems concerning Pfaffians and 
determinants in the literature.2 Pfaffians have also 
been pressed into service in the descriptions of 

• Present address: Committee on Mathematical Biology, The 
University of Chicago, Chicago, III. 

t On leave of absence from the Institute for Mathematical 
Sciences. Madras, India. 

1 E. R. Caianiello, Nuovo Cimento 10, 1634 (1953). 
• E. R. Caianiello, Nuovo Cimento Suppl. 14, 177 (1959). 

problems relating the lattice statistics, e.g., the number 
of ways dimers can be placed on a 2-dimensional 
lattice. They have been also found to be of great use in 
the Ising-model problems and, in other contexts, of 
combinatorial mathematics. 3 

It is the purpose of this paper to establish relations 
between determinants and Pfaffians and between 
permanents and Hafnians in a new fashion by defining 
the elements of these objects in a particular way. It is 
well known that the square of the Pfaffian directly 
yields the value of an antisymmetric determinant, while 
there is no such relation between the Hafnian and 
the permanent. In Sec. 2, we show how any deter
minant can be expressed as a sum of Pfaffian-like 
objects whose elements are suitably chosen. Similar 
relations between Hafnians and permanents are also 
established. In Sec. 3, we derive a result of Brioschi' 
connecting a single Pfaffian with any determinant, 
starting from our standpoint. Some other auxiliary 
results are also worked out. 

2. A NOTEWORTHY EXPANSION OF A 
DETERMINANT AND A PERMANENT 

It is well known that the determinant of an anti
symmetric matrix can be equated to the square of a 
Pfaffian whose elements are the actual elements of the 
matrix. It is also well known that there is no simple 
relation between a permanent and a Hafnian as there 
is between a Pfaffian and a determinant. In this section 
we propose to express any determinant of even order 
as a sum of Pfaffian-like objects whose elements are 
defined in a particular fashion, e.g., as suitable com
binations of the elements of the matrix. Similarly, a 

a E. W. Montroll,in Applied Combinatorial Mathematics, E. F. 
Beckenbach, Ed. (John Wiley & Sons, Inc., New York, 1964), 
Chap. 4. 

4 F. Brioschi, Crelle's J. 52, 133 (1855). See also T. Muir, The 
Theory of Determinants (Dover Publications, Inc., New York, 1960), 
Vol. II, pp. 276-277. 
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permanent of even order will be expressed as a sum of 
Hafnian-like objects. 

We start with the definition of a determinant ~(A) 
of a given N x N square matrix A == lIa"kll, h, k = 
1,2,'" ,N, as 

~(A) = €;1'1" 'iNai,la;12 •.. aiNN' (2.1) 

where €i1i a'" iN is the Ricci indicator of the parity of the 
permutation of the indices, given by 

€i1i S"' i N = +1, for an even permutation of i1i2 ' •• iN 
with respect to 1,2, ... , N, 

= -1, for an odd permutation of the indices 
with respect to the natural order, 

= 0, if two indices are equal. 

The usual summation convention of repeated indices is 
implied in the above definition. 

Let us concern ourselves here with determinants of 
even order and put N = 2n. In this case the expression 
for the determinant (2.1) can be rewritten in another 
form given by 

i211:-1 < i 2k , for any k. (2.2) 
Setting 

[p, q](r.s) == a llraqS - aqra ll8> 

p, q, r, S = 1, 2, ... ,2n, (2.3) 

Eq. (2.2) can be rewritten in the following more 
compact form: 

n 
A(A) - it .. 'iln II [. . ](211:-1.2k) 
u - € 12k-I' 12k , 

k=1 

i 211:-1 < i 2k , for any k. (2.4) 

Let us note that, because of (2.3), 

[p, q](r.8) = _[q, p](r.8), 

[p, q](s.r) = _[p, q](r.8). 

We will now give an algorithm to write the deter
minant, making use of the Pfaffian expansion. 

It is easy to see that if we exchange the indices within 
a bracket with one in some other bracket, the upper 
pair of indices also change. Furthermore, for any 
permutation of pairs of indices the Ricci indicator 
does not change. If we also switch the upper indices 
correspondingly, the term does not change. Hence, it 
is possible to rewrite expression (2.4) in the following 
manner: 

n 
~(A) = 'l'Jilia'" i2n-tfE)i1i a"'i2n II [i211:-1 , i

2k
](l1k-1.ilk-1+!), 

k=1 

(2.5) 

where jl ,js, ... ,j2n-l are odd and 1J and 0 are defined 

as follows: 

1)hil" . in = 0, if two j's are equal, 

= + 1, otherwise, (2.6) 
and 

for il < i 2 , i3 < i" •• " i 2n- 1 < i2n 

and il < i3 < is < ... < i 2n- 1 , 

= 0, otherwise. (2.7) 

If we ignore the upper j indices, the sum of the prod
ucts of the brackets containing the i indices along the 
Ricci indicator can be denoted by a Pfaffian, where 
each element of the Pfaffian represents each bracket 
with the i indices. Having written out the terms of the 
Pfaffian, we assign the upper j indices in a particular 
order to each bracket of each term in the Pfaffian 
without repetition. Later, we write out the same 
Pfaffian, but permuting the order of upper j indices 
in each term, obtaining, thus, n! quantities, whose 
sum is identical to the determinant, term by term. 

It will be worthwhile to observe here that the number 
of single terms in the development of (2.5) will equal 
the number of terms in equation (2.1) for the develop
ment of the determinant. This is so because each 
Pfaffian-like quantity contains (2n - I)!! terms, each 
of which contains 2n single terms to yield the total 
numbers of n! x (2n - I)!! x 2n = (2n)! terms of 
determinant. Since by this procedure we have identi
fied the determinant ~(A) with the sum of n! Pfaffian
like quantities, with a suitable definition of its elements 
leading to their equivalence term by term, it requires 
little effort to extend the same procedure to equate any 
even order permanent with a sum of n! Hafnian-like 
quantities with a proper modification of the elements. 

As is well known, the permanent peA) of N x N 
even order matrix A is 

(2.8) 

with the definition of 'YJ given by (2.6). Similar to the 
procedure adopted in the case of determinant, we 
re-express (2.8) for a permanent of even (2n x 2n) 
order as 

n 
peA) = 1)i1i 2 ' oois n II {i211:-1 , i

2k
}(211:-1.2k), 

k=1 

i211:-1 < i 211:' for any k, (2.9) 

where, for any integer p, q, r, S, we set 

{p, q}(r .• ) == a llraq• + aqra ll •• 

By this definition 

{p, q}(r .• ) = {q, p}(r.B), 

{p, qrr.B) = {p, q}( •. r). 
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A similar algorithm for a permanent, making use of 
a Hafnian, can be arrived at by the following steps: 

The permanent can be expressed as 

" peA) = 1]11i3" '12n-l~ili2" 'i'n II {i2/c-1' i
2k

} (i2k-l,i2k-l+1 ), 

where 

ytli2' nitn _ it .. 'itn ., -1] , 

k=1 

(2.10) 

if i1 < i2 , is < i4 •• • " i2?>-1 < i2." 

and il < i3 < is < ... < i2,,-1' 

= 0, otherwise. (2.11) 

If we now ignore the upper j indices, the sum of the 
product of brackets of i indices can be expressed in a 
Hafnian-like fashion, with the definition of the 
brackets indicated above. After writing out the terms 
of the Hafnian, we assign the j indices to each term in 
a particular order. There are n! possible ways of 
permuting this order in each term. The sum of these 
n I Hafnian-like quantities equals the permanent, 
term by term. 

Let us now illustrate how this method works for the 
single case of a determinant or permanent of a 4 x 4 
matrix 

au a 12 a13 a14 

A== 
a21 a22 a 23 a24 

a31 a32 a33 a34 

au a42 a'3 au 

We consider the Pfaffian 

[12] [13] [14] 

[23] [24], 

[34] 

whose expansion is 

[12][34] - [13][24J + [14][23]. 

(2.12) 

Then, by means of our algorithm, the determinant 
d(A) of A can be written, in conformity with the ex
pression obtained (2.5), as 

A(A) = [12](12) [34](34) - [13](12) [24](34) 

where 

+ [14](12)[23](34) + [12](34)[34](12) 

- [13](34) [24](12) + [14](34) [23](12), (2.13) 

[r, S}!l2) == arla.S - a 81ar2 , 

[r, S }(34) == ar3a.4 - a.Sa r 4' 

It is remarkable that we can arrange (2.13) in a sum 
of two Pfaffians: 

[12J(12) [13](12) [14](12) 

[23](34) [24J(34) 

[34](34) 

[12](34) [13](34) [14](34) 

+ [23](12) [24}!l2) (2.14) 
[34](12) 

By actual multiplication of the brackets we can easily 
check that the determinant and the sum of the two 
Pfaffians (2.14) are identical with each other, term by 
term. In the case of a permanent of a 4 x 4 matrix, 
we consider the Hafnian . 

{I2} {I3} {I4} 

{23} {24} , 

{34} 

whose expansion is 

{I2}{34} + {13}{24} + {14}{23}. 

By means of (2.10) the permanent peA) of A can be 
expressed as 

peA) = {12}(23){34}(34) + {13}!l2){24}(34) 

+ {14}(12){23}(34) + {12}(34){34}(12) 

+ {13}(34J{24}U2) + {14}(34){23}(12), (2.15) 
where 

Let us note that the right-hand side of (2.15) can be 
written just as sum of the two Hafnians 

{I2}(12) {13}(12) {14}(2) 

{23}(34) {24}(34) 

{34}(34) 

{12}(S4) {13}(34) {14}(S4) 

+ {23}(12) {24}(12) • (2.16) 

{34}(12) 

Here also one can check that the permanent (2.15) is 
given, term by term, by the sum of the 21 Hafnian-like 
quantities (2.16). 

The a1?ove algorithm for the determinant and the 
permanent will hold for any even order. If a permanent 
or determinant of odd order is to be realized, it is a 
simple matter to make it even by adjoining to the odd 
matrix another column and a row Clok' with k = 
0,' .. ,N, and a"o. with h = 0, ... ,N. We have 
aoo = 1 and make all elements of the column and of 
the row zero. 
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We want to point out at this stage that in (2.5), 
expressing d(A), each Pfaffian-like object has the 
property that if the superindices of two brackets are 
the same, it vanishes. To prove this statement, let us 
write down (2.5) without the symbol 'YJ and with two 
j indices equal, say j21H = hl-l = j. We have 

ei" " i 2n[i1' i2](11.h+1)[i
3

, i
4
](;8.i3+1) ..• 

[i2"-1' i2,,](;·i+1) ••. [i2l-1, iu1<i,i+1) •.• 

[i2n- 1, i2n](;zn-loian-1+1). (2.17) 

In the above expression, let us fix the values of all the 
indices but (i21l- 1, i2,,) and (i21-l, i21 ). (2.17), with this 
condition, can be expressed as 

X [is, 14](i8.i8+1) •.• [i211-1 , i
2
,,](;·H1) .•. 

[i
21

-
1

, i
2
Si.i+1)· .. [i

2N
-

1
, i

2N
](:IIN-1.i2N), (2.18) 

where the symbol -, used to avoid confusion, means 
that the corresponding indices are not summed. It is 
evident that i21- 1 , i21 , i2"_I' i2" can range over only 
four values, say p, q, r, and s. Hence, (2.18), doing the 
summation explicitly over the four values, will sum as 
follows: 

where ;211-1, ;2", ;21-1, i21 go through the values p, q, r, 
and s, subject to the usual conditions implied bye. 
Equation (2.19) is just a Pfaffian given by 

[p, q)(;.i+1)[r, S){J·H1) 

_ [p, r]<i·i+1)[q, S](i';+1) + [p, s)(U+1)[q, r)(i.H1), 

if p < q < r < s. In terms of the elements of the 
original matrix A, this can be expanded as 

(a,,;aq.;+1 - aqia".f+l][arias.Hl - asiar.Hl) 

- [a"iar.Hl - aria".Hl)[aqia',i+1 - as;aq.Hl] 

+ (a"ias.Hl - aSia".i+1](aqiar.i+1 - aria'I.Hl)· 

(2.20) 

It can be easily checked that (2.20) equals zero. Also, 
it can be shown that this Pfaffian corresponds to a 
4 x 4 determinant with two columns having zero 
elements only, which means the Pfaffian is zero. Thus, 
we have seen that even if we do not take into account 
the restrictions on j indices implied by the definition of 
'YJ, the nature of expansion of each Pfaffian-like object 
makes it zero if it contains two or more equal j indices. 

However, the vanishing of the terms with two j's being 
equal is not valid for the case of the expression of the 
permanent in terms of the Hafnians. The presence of 
positive signs everywhere in the terms of the Hafnians 
will not make the terms add up to zero identically as in 
the case of the Pfaffians and determinants. However, 
the presence of'YJ symbol with its definition given above 
is such that such repetitions of j indices will make the 
expression zero. 

In view of the above deductions, it would be possible 
to express the determinant in terms of Pfaffians with a 
suitable modification of the elements instead of giving 
a blanket rule for putting in the upper indices, as is 
done in the algorithms presented above. 

We first write the elements of the Pfaffian with 
brackets containing i indices, ignoring the upper j 
indices. We give the first line of the Pfaffian one of the 
upper indices, say il' For all the other rows of the 
Pfaffian, each element is symmetrized with respect to 
all the other j indices. As an example, we write out a 
Pfaffian, fixingjl: 

(12){;1.11+1) (13)(;1.;'+1) . .. (1,2n)(;1.i1+1) 

.I (23)(j;,ii+1) ... .I (2, 2n)<i'.i,+1) 
ii ii 

... .I (2n - 1,2n){f/.ii+1) 

ii 

Now we write the other Pfaffians, described as above, 
with jl ranging through the other values. Hence, it is 
now possible to write the determinant as a sum of n 
such Pfaffians, with symmetrized elements for all the 
rows except the first one. Tfie j for the first row is fixed, 
and the elements in the rest of the rows are sym
metrized with respect to all the other j indices; such 
Pfaffians are obtained with the n values of j, fixed for 
the first row. It is not possible to derive such a pro
cedure for the permanents in terms of the Hafnians. 

3. REDUCTION OF A DETERMINANT TO A 
SINGLE PFAFFIAN 

In the previous section we equated a determinant to 
the sum of n! Pfaffians, with suitable algorithms. In 
this section we will express a determinant in terms of a 
single Pfaffian. To accomplish this, we recall Eq. (2.5): 

n 
d(A) = 'YJ i1i" .. is..-'ei,i2 ·· . i ... IT [i21<-1 , i:u,]<ilk-1.isk-1+1). 

k=1 

We will do the summation of j before doing the 
summation over the i's in the brackets, ignoring the 
command of the 'YJ symbol not to repeat the j values. 
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The expression now becomes 

The above expression is exactly a single Pfaffian, with 
its terms given by 

11'.j == [r, Sf2) + [r, s](a4) 

+ [r, S](56) + ... + [r, st211-1.211) 

2n-1 
= I [r, S]{JIk-l.i2k-l+1) 

i2k-l=l 
(3.2) 

When we write out this Pfaffian, we get exactly the 
n! Pfaffians given by the first algorithm of Sec. 2 and a 
number of other Pfaffians, whose expansion will 
contain brackets with repeated upper j indices. We 
have also deduced, in Sec. 2, that any such expression 
with repeated j indices becomes zero. Hence, the above 
single Pfaffian will actually give the value of the 
determinant. We wish to point out that the elements 
of the Pfaffian in (3.2) are exactly what Brioschi 
obtained4 by using another type of procedure. 

We can now easily extend this method to expressing 
a permanent as a single Hafnian, with elements given 
by 

A,s == {r, s rU ) + {r, s ra4) + ... + {r, s r2n-1.2n) 

2n-1 
= I {r, s }(;U-l.iu -l+1) (3.3) 

i2k-l=1 

However, when expanding the terms of the Hafnian, 
we have to impose the condition that we avoid all 
those terms in which upper j indices repeat themselves. 
This separate injunction is necessitated by the fact that 
in the expansion of a permanent, as well as of a 
Hafnian, no parity signs appear and also the brace is 
a sum of two terms and not a difference, as in the case 
of bracket for a Pfaffian. The determinant, therefore, 
is 

Ll(A) = 

and the permanent is given by 

A12 Ala 

(3.4) 

AI •2n 

that any determinant can be written out as a sum of 
n! Pfaffian-like quantities. With the definitions given 
in (2.5), we first write out a Pfaffian with the i brackets, 
ignoring the upper j indices, and then permute the 
upper indices over the terms of the Pfaffian in all 
possible ways, thus obtaining the n! quantities. To 
any 2n x 2n matrix A == \\ahk \\, h, k = 1,2, ... ,2n, 
let us associate the matrix 

Ah •h+1 -
12 = 

an : .• au a1.h+1··· a1.2n 

a21 ••. a 2h a 2.h+1 ••· a2.2n 

aa1 '" a 2h a2.h+1··· aa.2n 

In the above we have in the hth and (h + I)th columns 
after the second row, the elements a2h , a2h+1 being 
repeated up to the end of the columns. 

Ifwe now calculate the determinant Ll(A~:ih+!) of the 
previous matrix, making use of the algorithm (2.5), 
we obtain a sum (with respect to j indices) of (n - I)! 
quantities: 

Ll(A~r1) = 'Y}"i3'" i~n-l 

X 0 1i2 '''i 2''[I, i 2](Ii.Ii+1)[ia , iSi3.i3+!) ••• 

[;2n-1, ;2n](;2,,-loi2n-l+1), 

since all the terms containing [i2k' i2k+1](h,hH) with 
i2k oF I are vanishing. Because of the properties 

01i2i3'" i2" = (_1)i20i3i4" 'i211, 

[1i
2

J<h.h+l) = [12](h.h+l" 

for any fixed index i2 , the previous expression can be 
written as 

[12](1i.1i+1)( l)i2'\ (l.is) _ [12](".1i+1 ) (l.i2) 
- UIi.Ii+! - (l,li,Ii+1 , 

where Ll (lis) and (I,(}i2) are respectively the com-h.h+l h.h+1' , 
plementary minor and the algebraic complement of the 
minor determined by the I, i2 rows and h, h + 1 
columns. Therefore, we can write 

2n 
A(AU+1) = [12](1i·1i+1) I 1X~~~~1 • (3.6) 

p=2 

In the case of a matrix, 

peA) = A23 A2.2n (3.5) an '" aU. ... au ... a1•2n 

A2n-l.2n 

with the condition that in the expansion of the 
Hafnian (3.5) we ignore the terms containing two 
repeated upper indices. 

In conclusion, we will derive some auxiliary results 
from the first algorithm developed in Sec. 2. We saw 

a21 ••• a 2h ••. a 2k •.. a 2•2n 

aal •. , a 2h ••• a2k • . • aa,2n 
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in which in the hth and kth columns, after the second 
row, the elements a2,., a2k are repeated up to the end 
of the columns, we have 

where the matrix A~2"+l is obtained from A~2k by a 
cyclic permutation of the columns h + 1, h + 2, ... , 
k. By (3.6), we can write 

2n 

= (_1)k-Ji+l[12](~)i+l) L ~~~i.~1 
p=1 

2n 

= [12J"·A:L(Xk~p). (3.7) 
p=2 

Now if we do the sum of all these determinants with 
hand k ranging on all possible values, with h < k, we 
obtain by means of (3.7) 

1·· . 2n 1 .. · 2n 2n 

2 ~(A~2k) = L [12](h.k) 2 (X~~p) 
".k II.k p=2 
h<k h<k 

2n 1· .. 2n 

= L L [12](h.k)(X~~p). (3.8) 
p=2 h.k 

h<k 

Now the quantity 
1'" 2n L [12rh.k)(Xk~P) 

h.k 
h<k 

is always zero, except when p = 2, in which case it 
equals ~(A). Therefore, (3.8) becomes 

2n 

L <5p2~(A) = ~(A). 
p=2 

In any case, we can write 
I·' '2n 

~(A) = L ~(A~2k). 
h.k 
h<k 

(3.9) 

Hence, the determinant of the original matrix can be 
written as a sum of n(2n - 1) determinants of the 
matrices A~2k. To derive (3.9), we have fixed the rows 
12; but, naturally, this procedure can be generalized 
whatever the choice of the pair of rows is. Let us 
observe that the result (3.9) differs from the one that 
could be obtained by using the Laplace rule. In fact, 
in this case, in the matrix A~r we would have to put in 
the columns hand k, after the second row, all zero 
elements. 

We can find a result similar to (3.9) in the case of the 
permanent peA) of A, but here A~2k has all zero 
elements in the hand k columns after the second row; 
this result is, obviously, a trivial consequence of the 
Laplace rule for the calculation of a permanent. 
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For theories featuring n scalar fields and an interaction energy density that converges rapidly for 
large field magnitudes to the form representative of a linear theory, we present exact physical solutions 
to the SchrOdinger stationary state equation. These solutions show that such quantum field theories are 
effectively linear with no interaction and scattering between the quanta. 

Consider the class of local relativistic field theories where the cp-dependent part satisfies the eigenfunc-
based on Lagrangian densities of the form tional equation 

C = icP . cP - i(Vcp). (Vcp) - u 

(1) 

where cp = (CP1' ... ,CPn) denotes an n-tuple of real 
scalar fields which are coupled through the interaction 
energy density u = u(cp), a real I-tuple function of cpo 
With the momentum density n-tuple for such a theory 
denoted by 1T == of.jocP = 1>, we obtain the canonical 
Hamiltonian 

H = H[cp, 1T] = f [i1T' 1T + i(Vcp)' (Vcp) + u] d3x. 

(2) 

Quantization can be effected in tht( Schrodinger 
picture [with cp = cp(x) and 1T = 1T(X) independent 
of time] by evoking the "coordinate-diagonal" 
representation, in which the n real scalar fields CPi(X) 
are diagonalized for all x, their conjugate momentum 
densities are represented by the functional differential 
operators 1Ti(X) = -iMjbcpi(X), and the quantum 
Hamiltonian is the second-order functional differential 
operator 

H = H[CP(X), -iii _b_J 
bcp(x) 

=f (-11i2 _d_ . _b_ + tCP(x) 
bcp(x) dcp(x) 

• (_V2)CP(X) + U(CP(X») d3x. (3) 

For (3) to give rise to physically realizable dynamics, 
the interaction energy density must be such that the 
eigenvalue spectrum of H is bounded from below. 
A stationary state of the quantum field is represented 
by a wave functional of the form 

• Work supported by ~ National Science Foundation grant. 

(4) 

with Ell the constant energy eigenvalue. Physically 
admissible solutions to Eq. (4) are such that IU,,[cp]i2, 
the relative probability density for locating the state 
at the n-tuple cp = cp(x), vanishes for unbounded 
field magnitudes: 

lim 1U,,[AcpW = 0, for continuous cp = cp(x) ¢ O. 
;. .... 00 (5) 

The vacuum-state eigenfunctional solution to (4) is 
associated with the energy 

Eo == min {E,,}; 
Il 

once the vacuum-state eigenfunctional Uo[cp] has been 
obtained, the general stationary-state eigenfunctional 
problem reduces to solving the equation 

1i2f i ( 1 J
2
0" b(ln U o[ cp]) JO,,) 3 

i=1 - 2 Jcpb)2 - bcpb) bCPi(X) d x 

for 
= (Ell - Eo) Oil , (6) 

nil = Q,,[cp] == U,,[cp]/Uo[Cp], 

because the left-hand side of (6) gives 

/i2f ~ ( t U-1 b
2
U p. 1. u;;-2 b

2
U 0) 3 

i~ - 0 Jcpb)2 + l! 0 Up. J c/>lX)2 d x 

= Uo2(UoHUp. - U"HUo), (7) 

with H prescribed by (3) . 
Approximate physical solutions to Eq. (4) with the 

Hamiltonian operator (3) have been obtained for 
certain generic classes of entire analytic u(cp) by 
applying the Rayleigh-Ritz procedure for functional
ities.1 Our purpose here is to report a class of non
linear field theories for which exact physical solutions 
to Eq. (4) are obtainable in closed form. These 
theories feature an interaction energy density that 

1 G. Rosen, Phys. Rev. Letters 16, 704 (1966); Phys. Rev. 173, 
1680 (1968), and works cited therein. 
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converges rapidly for large field magnitudes to the 
form representative of a linear theory of uncoupled 
scalar fields, a u = u(rp) expressible as 

n 

U = t ~ m~rp~ + v, 
i=l 

where v = v(rp) is a continuous real I-tuple function 
such that 

lim [rp2v( rp)] = 0, if n = I, 
1</>1-+ <Xl 

lim [( rp . rp)(ln rp . rp)v( rp)] = 0, if n = 2, (9) 
(</>.</» -+ <Xl 

lim [( rp . rp)v( rp)] = 0, if n ~ 3. 
(</>.</»-+ <Xl 

For a continuous v(rp) that tends to zero for large 
field magnitudes with an asymptotic behavior con
sonant with (9) we have the existence of the function 

f(rp) == - L:lrp - rp'l v(rp') drp', for n = 1, 

== - ~ J[ln (rp - rp')' (rp - rp')]v(rp') d2rp', 
21T 

for n = 2, 

_ r(tn - 1)J v( rp') dnrp' 
= 21T!" [( rp _ rp') . (rp _ rp,)]!n-1 ' 

for n ~ 3, (10) 

which is the singularity-free solution to the Poisson 
equation in n-dimensional Euclidean rp space 

i O~(t) = -2v(rp). (11) 
i=l Orpi 

The asymptotic behavior of f(rp) for large field 
magnitudes follows from" (9) and (10) as f(rp) oc Irpl 
if n = 1, f(rp) oc [In (rp' rp)] if n = 2, and f(rp) oc 
(rp' rp)l-!n if n ~ 3. In terms of the function (10), the 
fl = 0 vacuum-state solution to (4) with (8) in (3) is 

U o[ rp] = lim U~£)[ rp], (12) 
£-+0+ 

u~£)[rp] == exp (-1..f i rpi(X)(-V 2 + m~)irpi(X)d3x 
21i i=l 

- ;2 J f(rp(x» d3X) , (13) 

where the E ---+ 0+ limit in (12) is understood to be 
taken as the final step in a computation involving 
Uo[rp], in conjunction with a limit representation of 
the 15 function, lim 15(£)(x) = l5(x) as E ---+ 0+, such 
that2 

(14) 

I For example, we have the wavenumber cutoff representation 

d(£)(x) == J'kl:o;K (exp ik • x) d"k/(21T)1 with K == (67T"/£)l. 

In order to verify that (12) is an exact solution to (4), 
we first compute the functional derivatives of (13): 

b2U~d[ rp] 

brp;(x)2 

(15) 

= (- ! [( _ V2 + m~)!b(x)]x=o _ EI5(£);O) o~(t) I 
Ii Ii Orpi </>=</>(x) 

+ ~2[(-V2+mn!rpi(X)]2+0(E»)U~£)[rp], (16) 

and then make use of (11) and (14) to obtain, in the 
limit E ---+ 0 + , 

J [-tIi2 i 152Uo[~] + (t i [( -V2 + m:)lrpi(x)]2 
i=ll5rp;{x) i=l 

+ V(rp(X») Uo[rp]J d3x = EoUo[rp], (17) 

where the (unobservable) vacuum-state energy appears 
as the infinite constant 

Eo = tli it [( -V2 + m~)!I5(x)]x=o J d3x. (18) 

It is important to observe that (9) and (10) imply 
dominance of the summation terms in the exponential 
(13) over the E-proportional term for all rp = rp(x); 
as a consequence, the terms represented by O(E) in 
(16) are uniformly small for all rp = rp(X).3 By sub
stituting (12) into (6), we find the excited-state eigen
functional equation 

lim J i [-tIi2 15
2

°"2 + (lirp;(x)( - V2 + mi)! 
£-+0+ i=l I5rplx) 

+ E of( rp) I ) 150" J d3x = (E" - Eo)O,. (19) 
Orpi </>=</>(x) I5rp;(x) 

for E" > Eo. Since the solutions to (19) are continuous 
in E about E = 0, the limit E ---+ 0+ obtains validity 
in the equation itself, and the solutions for 0" = 
O,,[rp] are polynomial functionals in the n-tuple of 
scalar fields. Thus, for the I-particle and 2-particle 
states we have 

0 1 = f ~(x) • rp(x) d3x, 

[Ii( _V2 + mDl - (E1 - EO)]~i(X) = 0 (20) 

8 That the uniform relative smallness of the E-proportional term 
in (13) is essential to the solution is easily shown by examples. One 
such example is given in the Appendix. 
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and 

112 = t f c/>(x) • ~(x, y) • c/>(y) d3x d3y .- t1i2(E2 - EO)-1 

X J i~ ~ii(X, x) d
3
x, (21) 

~i;CX, y) == L(y, x), 

[( -V! + m~)l + (-V; + m~)l 
- 1i-1(E2 - EO)]~i:i(x, y) = 0, 

with higher-order polynomial functional solutions to 
(19) representing multipartic1e states. No interaction 
between the quanta appears in (21) or in the higher
order polynomial functionals that represent the 
multipartic1e states. Hence, Lagrangian densities of 
the form (1) with an interaction energy density that 
satisfies (8) and (9) lead to effectively linear quantum 
field theories with no interaction and scattering 
between the quanta. This is in agreement with the 
Rayleigh-Ritz procedure results for a generic entire 
analytic Class A interaction energy density in the 
theories with n = 1 4 and n = 2.5 

« G. Rosen, Phys. Rev. 160, 1278 (1967); EI6S, 1934 (1968). 
• G. Rosen, Phys. Rev. 167, 1395 (1968). 

APPENDIX 

It is readily seen by the way of example that the 
uniform relative smallness of the I:'-proportional term 
in (13) is essential to the solution. For instance, 
consider the specialized form of the quantum 
Hamiltonian (3) for a simple linear field theory with 
n = 1: 

H =J(~tIi2~ + t¢(X)(_V2 + mDC/>(x)) d3x 
~c/>(X)2 

and the functional 

A(£)[c/>] == exp [ -f (;Ii c/>(x)( _V2 + m2)1c/>(x) 

+ _E_ (m2 _ mDc/>(x)4) d3X] , m2 ~ m~. 
121i2 

Clearly lim A(£)[c/>] as I:' ~ 0+ is an eigenfunctional 
of H only if m2 = m;, but a computation that ignores 
the actual dominance of the 0(1:') terms for large field 
magnitudes would give 

lim (H - tli[(_V2 + m2)1~(x)]x=oJd3x)N£)[c/>] 
£~o+ 

equal to zero for all m2 ~ mi. 
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The Morse index is studied in the theory of canonical quantization of dynamical systems. Standard 
results on the Hodge index and vanishing theorems are translated into the language of quantizable 
dynamical systems. 

INTRODUCTION 

From asymptotic theory in quantum mechanics it 
has been noted by several authorsl - s that the Morse 
index arises in the same way as the Bohr-Sommerfeld 
quantum numbers. In this paper it is shown by means 
of the techniques of canonical quantization,6.7 that the 
Morse index occurs naturally. For the classes of 
homogeneous quantizable dynamical systems, the 
Morse index can be evaluated. 

The language of modern algebraic geometry is 
natural for the presentation of the results. In Sec. 1 we 
review the elementary objects of algebraic geometry8(a) 
and Hermitian (Kahler) geometry,9-11 and we set the 
vocabulary in terms of the theory of G-structures. 
Another aim of this paper is to act as a foundation 
for the treatment of Kodaira-Spencer deformation 
theory (of G-structures) in the theory of quantizable 
dynamical systems. (This is completed in Sec. 4.) In 
Sec. 2 we review the theory of canonical quantization 
lifted to manifolds modeled on Banach spaces. Here, 
examples arise from the theory of algebraic Lie 
groups. We have not gone into detail on blowing up 
(or compactification), which is a mathematical method 
for the construction of examples (proofs) in this theory, 
that has been used recently in the Pham-Leray anal
ysis of Feynman integrals. In Sec. 3, the Morse index 
is introduced and studied for Hermitian (Kahler) 
symmetric spaces, which are used in canonical 

1 V. P. Maslov, U.S.S.R. Compo Math. Math. Phys. 1, No. I, 123 
(1961); No.2 744 (1961), and references in Ref. 3. 

2 M. V. Fedoryuk, U.S.S.R. Compo Math. Math. Phys. 3, No. I, 
162; (1962); 4, No.2, 66 (1964). 

3 V. I. Arnol'd, J. Fnal. Anal. Appl. 1, I (1967). 
4 M. C. Gutzwiller, J. Math. Phys. 8, 1979 (1967). 
~ J. B. Keller, Ann. Phys. 4, 180 (1958). 
6 N. E. Hurt, Nuovo Cimento 55A, 534 (1968). 
7 N. E. Hurt, Nuovo Cimento 58B, 361 (1968). 
• (a) F. Hirzebruch, Topological Methods in Algebraic Geometry 

(Springer-Verlag, New York, 1966); (b) Symp. Intern. Topological 
Algebra (Universidad de Mexico, Mexico City, 1956), p. 129; 
(c) F. Hirzebruch and A. Borel, Am. J. Math. 80 (1958) 458ff. 

• (a) A. Wei!, Introduction a l'etude des varietes kiihleriennes 
(Hermann & Cie, Paris, 1958); (b) Am. J. Math. 74, 865 (1952). 

10 S. Helgason, Differential Geometry and Symmetric Spaces 
(Academic Press Inc., New York, 1962). 

111. Goldberg, Curvature and Homology (Academic Press Inc., 
New York, 1962). 

quantization construction. In Sec. 4, the Hodge index 
and vanishing theorems are presented in the language 
of quantizable dynamical systems. 

1. PRELIMINARy8-20 

A. Cohomology 

Let M be a paracompact manifold (modeled on a 
Banach space). The cohomology is given by covariant 
functor H*(M, F) in sheaf F with HO(M, F) "-' 
reM, F) = sheaf of sections of M which are valued in 
F. If F is fine, then HU(M, F) = 0 for all q ;;::: 1. A 
resolution of sheaf F is the exact sequence of sheaves 

O_F_Ao_Al_. ··_An_ ... , (1.1) 

such that Ha(M, An) = 0 for q ;;::: 1, n ;;::: 0, e.g., when 
An is fine. From (1.1), the induced sequence 

0- reM, F) - reM, AO) - reM, Al) - ... 

is called a complex. There is a natural isomorphism 

For the case where M is a Coo manifold, modeled on a 
separable Hilbert space, take for AP the R- (or C)
module of APT*(M) - M, which is the vector 

12 J. Eells, Bull. Am. Math. Soc. 72, 751 (1966). 
13 S. Lang, Introduction to Differentiable Manifolds (Interscience 

Publishers, Inc., New York, 1962). 
14 (a) R. S. Palais, "Lectures on Differential Topology of Infinite 

Dimensional Manifolds," Brandeis University, Waltham, Mass., 
1964; and papers in Topology; (b) Seminar on the Atiyah-Singer 
Index Theorem (Princeton University Press, Princeton, N.J., 1965). 

15 (a) S. Kodaira, Proc. Natl. Acad. Sci. (U.S.) 39, 1269, 1273 
(1953); (b) Ann. Math. 60,28 (1954). 

16 (a) R. Bott, Ann. Math. 66, 203 (1957); (b) 70, 313 (1959); (c) 
R. Bott and H. Samelson, Am. J. Math. 80, 964 (1958); (d) R. Bott 
and S. Chern, Acta Math. 114, 71 (1965); B. Kostant, Ann. Math. 
74, 329 (1961). 

17 (a) E. Calabi and E. Vesentini, Ann. Math. 71, 472 (196); 
(b) E. Calabi, Am. Math. Soc. Proc. Symp. Pure Math. 3, ISS 
(1961). 

18 (a) A. Andreotti and E. Vesentini, Acta Math. 112,249 (1964); 
(b) I.H.E.S. 25 (1965). 

19 (a) P. A. Griffiths, Trans. Am. Math. Soc. 109, 1 (1963); 
(b) Acta Math. 110, 115 (1963); (c) J. Math. Mech. 14, 117 (1965); 
(d) Am. J. Math. 88, 366 (1966). 

20 (a) S. Kobayashi, Tohoku Math. J. 8, 29 (1956); (b) S. Kobay
ashi and J. Hano, Trans. Am. Math. Soc. 94, 233 (1960); (c) S. 
Kobayashi, Ann. Math. 74, 570 (1961); (d) S. Kobayashi and T. 
Nagano, J. Math. Mech. 16, 875ff (1964). 
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bundle of p-covectors over M with the fiber being the 
Banach space of continuous alternating p-linear 
forms on the tangent space of M. The space 'lV = 
'\1(APT*(M» of COO-sections forms a complex 
reM, A) of Coo p-forms on M. Let H*(f(M, A» = 
Ker (d)/Im (d), where d:'\1P -+ '\1P+l. Then (1.2) is 
just the generalized deRham isomorphism 

H*(M, R (or C) '" Ker (d)/Im (d). (1.3) 

B. G-structures 

Let M be a Coo manifold modeled on a Banach 
space E. Let GL(E) -+ B -+ M be the principal 
bundle of the tangent bundle T(M) of M, where, 
geometrically, B is the bundle of all tangent frames on 
M. Let BIG be the bundle B x aGL(E), where 
G = G(E) is a closed linear subgroup of GL(E) , 
with fiber GL(E)IG. A G-structure on M is a cross 
section s:M -+ BIG, i.e., M has the G-structure iff 
the structural group of tangent bundles of M can be 
reduced to G. 

C. Examples 

M has the Sp-structure iff M is a Hamiltonian 
dynamical system; i.e., M has the antisymmetric 
nondegenerate bilinear form (2-form S). Let i(X) be 
the inner product; then the I-parameter (pseudo-) 
group H t of diffeomorphisms of M with Sp-structure 
is called Hamiltonian iff i(X)S = Wo for some closed 
I-form wo, where X is the infinitesimal generator of 
Ht • By the Cartan identity, £(X) = i(X) d + di(X), 
H t is Hamiltonian iff £(X)S = 0, where £ is the Lie 
derivative. The sheaf of germs of the Hamiltonian 
vector fields forms a Lie-algebra sheaf with respect 
to the Lie bracket.2l This is naturally interpretable in 
terms of the Poisson bracket. 

M has the SU-structure iff M is almost complex. 
Furthermore, M is torsionless iff M admits the 
Kahler metric whose Ricci tensor vanishes (see below). 
Alternatively, M is almost complex if it carries a real 
Coo tensor field J of type (l, 1) such that J2 = - I. 

M has the 1 x U-structure iff M is an almost contact 
manifold (cf. Refs. 22-24). 

M has the O-structure iff M has the COO Riemann 
structure to be defined. Let ;: E -+ M be the Coo 
vector bundle whose fibers are Hilbert spaces. For the 
vector bundle SP(E, R) -+ M whose fiber over any 
point m of M is space of continuous symmetric bilinear 

It I. M. Singer and S. Sternberg, J. Anal. Math. 15, I (1965). 
•• (a) W. M. Boothby and H. C. Wang, Ann. Math. 68, 721 (1958); 

(b) W. M. Boothby, Am. Math. Soc. Proc. Symp. ~ure Math. 3, 144 
(1961); (c) Proc. Am. Math. Soc. 13,276 (1962). 

18 J. W. Gray, Ann. Math. 99, 421 (1959). 
14 S. Takizawa, Tohoku Math. J. 15, 227 (1963). 

forms on fiber ;-l(m) = Em, a Coo Riemann structure 
on ; is a Coo section of SP(R, R) -+ M which is 
positive definite at every point m and which, since it is 
the inner product on Em' determines its Hilbert-space 
structure.12- 14(a) If M has a continuous assignment 
of a norm to each tangent space compatible with its 
Banach-space structure, locally uniform on M, then 
M is called a Finsler manifoldY(a) Finsler structures 
arise naturally in fibration of dynamical systems.25 

Taking M to be modeled on a separable Hilbert 
space E, a Riemann structure on M is a Coo Riemann 
structure on the tangent bundle T(M) -+ M. 

M has U-structure iff M is Hermitian. Alterna
tively, M is Hermitian if M (connected) is almost 
complex and there is a real bihomogeneous, every
where-positive, and nondegenerate (I, I)-form S on 
T(M) , which, when identified with its projection on M, 
is given locally in the family wl , ... ,wn of (1, 0)
forms by 

where h,.p is C-valued, of class Coo, and where h,.p = 
hp,.. The fundamental 2-form is called S and it deter
mines a Coo Riemann structure on M, 

(1.5) 

for which J is an isometry. If dS = 0 and if the 
almost-complex structure is integrable, then M is 
called Kahler. Note that if the symplectic manifold M 
admits a Riemann structure h such that J is an isom
etry, then M is Hermitian, admits S as the funda
mental 2-form, and J is determined by h, S:h(X, 
Y) = SeX, JY). 

D. Metric and Curvature 

Given any holomorphic (or COO) vector bundle 
;:E -+ M, we may define a metric or norm on E, i.e., 
a positive-definite Hermitian scalar product h(u, v): 
E -+ R, where u, v E ;-l(m), which is a Hermitian 
metric on each fiber and depends analytically (or COO) 
on mE M. Any real Hermitian (1,1) form A [£ 
ALl (End (E», see below] which is positive definite at 
each point defines a Hermitian metric on E. Locally 
on the covering {U,.} of M, let hu be the representation 
of h(u, v). In terms of hu, we define the connection 
and curvature of the vector bundle. 

More generally,28 for any holomorphic (or COO) 
G-bundle E over M, 

G ---+ E ---+ M, (1.6) 

.5 (a) G. Reeb, Colloq. Top. Strasbourg (1951); Compt. Rend; 
(b) Acad. Roy. Bel. Class Sci. Mem. 27, No.9 (1952). 

2. M. F. Atiyah, Trans. Am. Math. Soc. 85, 181 (1957). 
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let Q(E)m = T(E)/G be the space of vector fields on 
Em which are tangent to E and invariant by G; let 
gm be the usual representation of Lie algebra as 
vector fields on Em invariant by G, which is the bundle 
associated to E by adjoint representation of G on gm' 
L(E) = E X adGg. From (1.6) we have the exact 
sequence of (holomorphic) vector bundles over M, 

0---->- gm ---->- Q(E)m ---->- T(M)m ---->- 0, 

which is equivalent to 
;. 

0---->- L(E) ---->- Q(E) ---->- T(M) ---->- O. (1.7) 

The holomorphic (or COO) connection on E is a homo
morphism w: T(M) ---->- Q(E) such that w 0 it = 1. The 
curvature form of connection w is a g-valued 2-form on 
E given by 

E = dw + Hw, w] E Hl(M, T(M) @o L(E». (1.8) 

Sequence (1.7) gives the exact sequence of vector 
bundles 

p ;. 
0---->- Hom (T, L) ---->- Hom (Q, L) ---->- End (L) ---->- 0 

and also the associated exact cohomology sequence 

p" 
~ HO(M, Q @o L) ---->- HO(M, L @ L) 

,," ~ Hl(M, T@o L): w ~ 1 ~ b*1 = c(E), (1.9) 

where (') = 0° is the sheaf of germs of holomorphic 
functions on M and 0 1 = T*(M). Thus, the obstruc
tion to the existence of a connection is the class of 
extensions of holomorphic fibrations c(E). In the Coo 
case, this is always trivial. 

For the above case, E ---->- M, which is a Hermitian 
(C*-) bundle [L is a trivial bundle, E(E) E Hl(M, ( 1)], 

and c(E) = [( -1)~/27T]E(E) is representative; locally, 
the connection of the principal bundle associated with 
E is a system of (I, O)-forms Wu = h-r}CJhu ' The 
curvature form of this connection is the system of 
(1, I) forms 

Eu = Bwu = B(h[}-ahu ), 

which is the obstruction of this connection to be 
holomoryhic. In components, we have E: = Ra.p"y x 
dzP 1\ dzY and [27T( _1)~]-lR"p dz" 1\ diP is repre
sentative of the first Chern class, where R p = -RPp 

" " P is the Ricci tensor with 

(27T( _l)~)-I I R"n dz" A dzP 

= - [27T( -1)~]CJd log det h"p' 

If the tangent bundle T(M) is given a Hermitian 
metric h, then h induces a Hermitian metric on M, 
usually represented as 

ds2 = 2 I h"p dz" . diP. 

The corresponding a-connection is given by 

w = "h,fYCJh- =" cP dz Y .f.- y" k ay , 
y 

the curvature by 
acP 

E = BwP = --!!! dia A dzP 

"aia ' 

and the torsion tensor by 

S!y = HC!y - C~,,}; 

thus dw = (-I)~ Re (IS I\w). S vanishes iff the 
Hermitian metric is Kahler. 

E. Sheaves 

Let OP, 'U,p,q be sheaves of germs of holomorphic 
p-forms [respectively, COO (p, q) forms] on M. Recall 
that d splits as d = CJ + B and the kernel of B: 'U,p,q ---->
'U,p,q+l is the sheaf Op. The sheaf of germs of holo
morphic sections of E ---->- M is a coherent, locally free, 
analytic sheaf. The sheaf of germs of holomorphic 
p-forms on M, OP(E), with coefficients in E, is the 
sheaf of germs of holomorphic sections of E @ 

APT*, 

OP(E) = OP @ E @ APT* = O(E @ APT*), 

where @ = @o. Similarly, 

'U,p,q(E) = 'U,p,q @ E @ APT* @ A q'*. 

The exact sequence 

0---->- 021(E) ---->- 'U,P,O(E) ---->- ClL21,l(E) ---->- ' .. 

is due to Grothendieck and Dolbeault. Let 

AM(E) = HO(M, 'U,M(E». 

The Dolbeault-Serre isomorphism is 

HM(M, E) = Hq(M, OP(E» 

"-' H*(r(M, AP,q(E» = zP,q(E) 
BAM-I(E) , 

where the co homologies are given with respect to an 
arbitrary family tI> of closed or compact subsets of M. 
Recall that if M is Stein, then Ha(M, 021(E» = 0 for 
all q -:;f:. O. 

Assume that E ---->- M has a positive-definite Hermit
ian scalar product [which is the case, e.g., if T(M) has 
a Hermitian metric]. We review briefly the standard 
operations: 

(i) exterior multiplication by curvature E, where 
e(E) = E 1\ cp for cp E AM(E), is given by 

e(E): A"'·(l(E) ---->- A2>+I,a+1(E); 
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(ii) anti-isomorphism for E to dual E* is given by 

#: AP'(/(E) - Aq,P(E*) 

for #rpu = nuifJu; 
(iii) star isomorphism is given by 

*: AM(E) _ An-v.n-p(E); 

(iv) covariant differentiation on local sections of E 
is given by D = D' + ~, where D' = 0 + e(ro); the 
Ricci identity is D2 = (D'~ + ~D') = e(E); the 
formal adjoint ~ = -*D'* gives 0 = ~~ + ~d 
(see below); so there is differential operator 

o~ + dO: AM(E) _ AP+1.Hl(E), 

where (o~ + dO)rp = e(E)rp for rp E AM(E); 
(v) the formal adjoint to d is b = -"*d*; let D = 

d + b (elliptic), then the Laplacian adjoint is defined 
by D2 = d = M + db (strongly elliptic), where 
b = ~ + ~; ~ is formal adjoint to d, where ~ = 
-*b* = -*#~#* and is defined by 

~: AM+1(E) _ AP.tl(E); 

let D = ~ + ~ (elliptic) then the Laplace-Beltrami 
operator (strongly elliptic) is given by 

D2 = D = ~~ + ~~: Ap,q(E) - AP,q(E); 

an (almost) Hermitian manifold is called pseudo
Kahler if 0 = 2d; these operators are formal 
adjoints with respect to the scalar product (1.10) 
below. 

For rp, 1p E AM(E), 

(rp, "P) dM = trp A *#"P 

is a C-valued Hermitian scalar form, where dM is the 
volume element of ds2• With respect to the compact 
family «D on M, 

(rp,"P}=fM(rp,"P)dM (1.10) 

is finite and defines a complex pre-Hilbert structure 
on AM. Let AM also denote the completion with 
respect to norm Ilrpll = (rp, rp)l. . 

The product A gives the map 

AM(E) x Ar.8(E*) _ AP+r·q+S(l). 

By the Dolbeault-Serre isomorphism, the inner 
product (1.10) induces the Serre duality 

HM(M, E) x Hn-p,n-q(M, E*) - C, 

The subspace JeM(E) of elements rp E AM(E) for 
which D rp = ° is called the space of complex har
monic forms. Since Drp = 0 iff ~rp = ~rp = 0, by the 

Doibeault-Serre isomorphism we have the Kodaira 
isomorphism 

HP,q(M, E) '" JeM(M, E), 

Kodaira proved that JeM(M, E), hence HM(M, E), 
is finite dimensional, since 0 is a strongly elliptic 
operator. 

F. Kahler Metric 

If a Hermitian metric on the tangent bundle of M is 
a Kiihler metric, i.e., ds2 is a Kahler metric, then the 
fundamental (1, I)-form E represents an element of 
H2(M, R) and, in terms of E, two more operations are 
defined as follows: 

L: AM(E) _ AP+1.H1(E), 

given by Lrp = EArp, and 

A = *-lL*, 

which is the formal adjoint of L. For M compact, by 
the Kodaira isomorphism we have that L is multi
plicative on harmonic forms. 

2. REVIEW OF CANONICAL QUANTIZATION 

A. Quantizable Dynamical Systems 

Let M be a Coo or a complex analytic manifold 
(suitably modeled), let E be a Coo or analytic symplec
tic 2-form on M, and let H t be a I-parameter (pseudo-) 
group of diffeomorphism such that £(X)E = 0, where 
X is the infinitesmal generator of Ht • The triple 
(M, E, H t ) is called a dynamical system (developed by 
Poincare, Birkhoff, and Reeb25(b). From Refs. 6 and 7, 
canonical quantization is the construction of the exact 
sequence 

T-E-M, (2.1) 

where E(M, T) is the principal toral T bundle over 
M which carries a "regular" (or "dynamic") contact 
form. A contact form on E(M, T) is called "dynamic" 
if it defines a connection on E(M, T). A dynamical 
system for which (2.1) holds is called a quantizable 
dynamical system (QDS). 

B. Review 

We review the following facts.22-24 From exact 
sequences of Abelian groups 

;. 
O_Z_R_Sl = R+-O, 

O-Z-C-C*-O, (2.2) 

there are exact sequences of sheaves of Abelian 
groups 

0- Z - R = '\1(R) - S1 = '\1*(S1) - 0, (2.3) 

0- Z - C = n(C) - C* = n*(c*) - 0 (2.4) 
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for sheaves of germs of Coo (respectively, holomor
phic) functions on M, valued in Z, R, Sl (respectively, 
Z, C, C*). In associated cohomology sequences, 
Jl1(M, G* (respectively, G*» represents the iso
morphism classes of G*- (respectively, flat G*-) 
bundles over M. Since R is a fine sheaf, the coho
mology sequence associated with (2.3), 

0- Jl1(M, Sl) .!.:- H2(M, Z) - 0, 

~ f--+ X( ~), 

gives a bijection of representative ~ and class c5* ~ = 
X(~), that is, the Euler-Poincare class of the Sl-bundle 
~. Then the constant-coefficient (flat) sequence 

Hl(M, Sl) _ H2(M, Z) _ H2(M, R), 

X(~) f--+ E, (2.5) 

associates X(~) with the curvature form E of connec
tion on the Sl-bundle structure. [Recall that the 
Cartan structure equation (1.8) reduces to dw = E 
for the Abelian Sl case and that we identify E with its 
projection on M.] Thus, by the deRham isomorphism 
(1.10), E from (2.5) represents a cohomology class, 
that is, E E H2(r(M, '\1» ~ H2(M, R). The converse 
is evident. Thus: 

Proposition 1: There exists a canonical quantization 
for a Coo dynamical system (M, E, H t), i.e., a COL 
toral bundle E(M, T) over M, and a Coo dynamic 
contact form w on E such that dw = E, iff E repre
sents an integral cohomology class of M. 

C. Existence of Canonical Quantization 

In the complex analytic case, the cohomology 
sequence from (2.4), 

~ Hl(M, C*) ~ H2(M, Z) ~ H2(M, C), 

~ f--+ Cl(~)' (2.6) 

maps the representative ~ of an analytic C*-bundle 
structure to the class c5*~ = CIa), which is the Chern 
class of ~. For a Coo dynamic contact structure with 
thecurvatureformE = dw,theform0 = (21T(-I)!)E 
is a complex-valued closed (I, I)-form which repre
sents the Chern class c5* ~ in the sense of the deRham 
isomorphism, that is, 

o E H2(M, Z) ->- H2(M, C) ""' H2(r(M, '\1, C). 

In this case, A. *E is represented by the (0, 2) component 
0°2 in sense of Dolbeault and Kodaira, namely 

0°2 E H2(M, C) ""' H2(r(M, '\1, C). 

From Sec. Ie [cf. Refs. I5(a), 8(a), and I9(d)] for 
any real (1, I)-form representing the (1,1) cohomol-

ogy class c5*~ E H2(M, Z), there exists a Coo C*
bundle E such that c1(E) = ~*~ and conversely. 
Furthermore, given a Coo C*-bundle E represented by 
~ and a Coo connection form 0 on E, then there exists a 
global I-form rp E '\11(M, C) on M such that drp = 
E - dO [since closed 2-forms E and dO represent the 
same cohomology class 21T( -I)ic1(e) E H2(M, C)]. 
Thus, w = 0 + rp E'\11(E, C) is a connection in Ewhose 
curvature dw = E is of type (I, 1), which means that 
E is a holomorphic bundle and that w is a Coo dynamic 
contact structure on E. E is holomorphic if Ell = 
E02 = 0 and d"E = 0 (which implies dNw = Ell = 0). 
In summary, we have the following proposition. 

Proposition 2. There exists a canonical quantization 
for the complex analytic dynamical system (M, E, H t) 

iff (21T( _1)!)-lE determines an integral cocycle on M. 
If Hl(M, C) = 0, e.g., if M is a Stein manifold, then w 
is a global dynamic contact form on E. 

D. Abelian Varieties 

The standard examples are Abelian varieties. 
[Note that Hl(M, C*) is the class of divisors with 
respect to linear equivalence.] A complex manifold, 
where dimc M = n, is called (complex) parallelizable, 
if there exists n globally defined linearly independent 
holomorphic vector fields Xi on· M. A compact 
(complex) parallelizable manifold has the complex Lie 
group as the universal covering space of M; so M is 
holomorphically isomorphic to Mj'D; where'D is the 
fundamental group of M. Thus M is isomorphic to the 
complex (compact) quotient space GC/H, where GC 

is the complex Lie group and H is the discrete sub
groups; that is, the connected component HO of the 
identity is invariant by GC .27-29 If the Lie algebra 
generated by the Xi is Abelian, then M is Kahler with 
a locally flat metric. Let V be a complex vector space 
with real form Vo, with dima Vo = 2n. Let 3 be the 
lattice of V, i.e., the discrete additive subgroup of Vo 
with the 2n generators of Vo. Then Vj3 is a complex 
torus [locally flat, (complex) parallelizable]. A compact 
(complex) parallelizable manifold is Kahler iff it is a 
complex ("multi"-) torus. According to Tits,29 if GCjH 
is compact, N(Ho) is a parabolic subgroup of GC and 
there is one and only one fibration 

N(Ho)/H _ GCjH _ GCjN(Ho) 

with complex parallizable fiber over a flag manifold; 
when H is connected, this reduces to Wang's theorem 
(cf. Sec. 3C). 

.. (a) H. C. Wang, Am. J. Math. 76, 1 (1954); (b) Proc. Am. Math. 
Soc. 5, 771 (1954) . 

• 8 J. P. Serre, Sem. Boubaki, Exp. 100 (19S3/S4). .1 J. Tits, Commun. Math. Hel. 37, 111 (1962). 
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A complex torus whose rank is equal to its complex 
dimension is called an Abelian variety. This is equiv
alent to the existence of a Riemann form on the torus, 
i.e., the existence of a nondegenerate Hermitian form 
whose imaginary part is integral on 3. A complex 
torus is an Abelian variety iff it is a Hodge variety. 
The complex torus with Riemann form is a nonsingular 
algebraic variety embedded in complex projective 
space, where the imbedding isomorphism is given by 
the theta function. In the future, polarized Abelian 
varieties, Picard varieties, duality, cusp forms, etc. 
will be studied in the context of QDS.30 

3. MORSE INDEX10.12.14.16.19.31-33 

A. Definition 

Let M be a Coo (complete Riemann) manifold 
modeled on a Banach space (e.g., a separable Hilbert 
space). Let /:M -- R be a differentiable function 
defined on M. A critical point of / is a point m E M 
such that the differential X/ = d/m(X) = 0, for 
dim E T(M)!, where X is the directional derivative in 
T(M)m' If M admits a Riemann structure (norm) 
( , ), then dim = (V/m' ), where V/ E 'l1(T(M» is the 
gradient field off Also, m is a critical point, if, for 
trajectory Yt(m) , 

E-ytCm)/ = -Vj(ytCm»/ = o. 
dt t=o t=O 

In terms of the connection co, 

VI' = D'y = 01' + co 1\ y. 

A critical point m is nondegenerate if t~e Hessian 
d2f(m) is a nondegenerate bilinear form. The Morse 
index of m is the supremum of dimensions of linear 
subspaces of T(M)m on which d2f(m) is negative 
definite. 

Let/be the energy function 

E(y) = t filOYI12 dt = tlloyll~, 
where I' is the path [0, 1] -- M [space of paths = 
SCM)]. I' is a critical point of E(y) , dECy) = 0, iff I' is a 
geodesic, that is, Vor = O. Define the linear trans
formation, in terms of the curvature tensor R, as 

(3.1) 

where 
d v = - 1'(0) = ay(O) 
dt 

30 P. Cartier, Am. Math. Soc. Proc. Symp. Pure Math. 9, 361 
(1966). 

31 J. Milnor, Morse Theory (Princeton Univ. Press, Princeton, 
N.J., 1963) . 

• 2 (a) H. I. Eliasson, J. Diff. Geom. I, 169 (1967); (b) Preprint. 
33 M. Takeuchi, J. Fac. Sci. Univ. Tokyo 12, 81 (1965). 

is the velocity vector and ~ (parallel) E TS(M)y along 
y. Then the Hessian of E(y) is 

d2E(y)(~, 'rj) = (V~, V'rj)o 

+ (aI', R 0 (~, aI', 'rj»o = (Ay 0 ~, 'rj), 

where Ay = 1 + (1 - Ll)-l 0 (Ky - 1) is a self-adjoint 
Fredholm operator and Ll = V2 is the Laplacian 
operator. There is a decomposition Ty = ry + 
T:; + Ti of eigenspaces of Ay corresponding to zero, 
negative, and positive eigenvalues A., respectively; 
these are 

T; = Ker (-Ll + Ky), 

Ty = I Ker «A. - l)Ll + Ky - A.), (3.2) 
;. ~o 

where Nullity (I') = dim T~ and M-index(y) = dim T:; 
are finite since (A. - l)Ll + Ky - A. is an elliptic differ
ential operator. The M-index(y) of d2E(y) is equal 
to the number of points 1'(1), with 0 < t < 1, such 
that yet) is conjugate to 1'(0) along 1', where each 
one is counted with its multiplicity; in terms of Jacobi 
fields, 

V 2J + R(v, J)v = (~ - Ky)J = O. 

More generally, a closed connected submanifold N 
of M is a nondegenerate critical manifold of/if every 
n EN is a critical point of / whose tangent space 
T(N)n C T(M)n coincides with the null space of the 
Hessian of/at n. 

B. Decompositions 

For (Hermitian) Riemann symmetric (involutive 
automorphism) spaces M, there is considerable 
simplification. The conjugate points are the points 
Y(7Tn/(ei)!)' where n is a nonzero integer and ei is any 
positive eigenvalue of Ky. 31 If we realize M as the coset 
spaces of Lie groups, then every point of M lies on a 
maximal torus, maximal tori are geodesically im
bedded in M, and all maximal tori are "conjugate" to 
each other by inner automorphisms. For Hermitian 
(therefore, Kahler) homogeneous symmetric spaces, 
the coset spaces of (semi-) simple Lie groups are of 
two types (in the irreducible case): 

(A) G is a noncompact simple Lie group with 
center the identity and K is a maximal-connected 
compact subgroup (a one-dimensional center), so that 
G/K is complex and analytically equivalent to the 
irreducible bounded homogeneous symmetric do
mains of Cartan, 

(B) G is a compact group and K is a subgroup of 
maximal rank (a one dimensional centralizer). These 
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spaces were classified by Cartan as follows: Blm,m' 
U(rn + rn')!U(rn) x U(m'), BIIm SO(2m)!U(m), BIIIm 
Sp(m)/U(m), BIV m SO(rn + 2)/SO(m) x (SO(2) = 
]'1), BV Es/Spin(lO) x (SO(2) = ]'1), BVI E7/E6 x 
(SO(2) = 1'1). These spaces are rational algebraic 
varieties. Spaces of type A can be imbedded naturally 
in open subsets of spaces of type B and there is a 
one-to-one correspondence between the two typeS.3 

Let M be a symmetric space of noncompact type. 
M is generated by products of geodesic isometries. 
The largest connected group of isometries IoCM) = G 
is semisimple and contains no compact normal 
subgroups except for {e}. Let K denote the isotropy 
group of G. Let go, ko denote the corresponding Lie 
algebras and let IDo be the orthogonal complement of 
ko in go with respect to the Killing form B of go, that is, 
go = ko + IDo, where B is strictly positive definite on 
IDo and negative definite on ko. Let exp: go ---+- G, 
Exp: T(M)o ---+- M(diffeomorphism), and 7T: G ---+- G/K, 
thus, d7T:IDO ~ T(M)o and 7T(exp X) = Exp (d7T(X» 
for X E IDo. Let g denote the complexification of go 
with Lie group GC

, where go is noncompact form of 
g. GC (center reduced to identity) has a connected 
closed complex subgroup U with no closed normal 
nondiscrete subgroups of GC• MU = GU/U is a com
plex compact symmetric Hermitian space (the compact 
form or Cartan dual of M). g~ = leo + (-l)tIDo is 
the compact real form of g. Thus MU = GU/K, K = 
GU n U. 

If I = rank M, then M contains fiat, totally geo
desic submanifolds of dimension I, which are called 
hyperplanes. Let P be the hyperplane containing 
origin 0 and let hroo be the maximal Abelian sub
algebra of vectors X E IDo for which Exp (d7T(X» C P. 
The Cartan subalgebra of M is hroo' Let Aroo be the 
analytic subgroup corresponding to hroo' An element 
H E hroo is called regular if its centralizer Z H in rno 
equals ~o. The critical or singular elements are those 
H for which dim ZH > dim hro . Let 1.* denote the o • .... 0 

set of regular elements in ~ . The, connected com-
ponents of h!o are called theO Weyl chambers of hmo ' 
Fix a Weyl chamber D in ~o and let ~ be the set of 
linear maps oc: hmo ---+- C. By the transformation exp 
linear forms oc are in one-to-one correspondence with 
characters Hom (Am., C*), and Hom (Amo ' C*) ~ 
Hl(A~o' Z) by oc ---+- (27T( _l)t)-IOC. The dual space of 
hroo is 

~R = {oc E ~ I oc(~o) C R}. 

The element oc E ~R is called positive if oc(H) > 0 for 
all H ED. For oc E ~R let 

g~ = {X E go I [H, X] = oc(H)X for H E hro}' 

Then oc is called a root of M with respect to hroo if 
dim g~ -:j:. O. (The algebra nri = ~IX>O g~ is nilpotent 
and we have the Iwasawa decomposition go = ko + 
hmo + nri or G = KAmN+, as discussed below.) 

Let ho be the maximal Abelian subalgebra of go 
which contains ~o and let g be as above. Thus h, the 
subspace spanned by ho, is a Cartan subalgebra of g. 
Let LH) be the set of (positive) roots of g with respect 
to h. There is a direct-sum decomposition 

g = h EEl I glX. 
IXEI 

According to Weyl, for every oc E L, there are vectors 
elX E glX and HIX E h such that B(elX , e_p) = blX,_p, HIX = 
[elX , e_IX ], B(HIX , X) = oc(X) for X E h, etc. The restric
tion of the Killing form B induces a nondegenerate 
bilinear form (,) on (-l)tho and also on h* = 
hroo + (-l)t(h n ko). All roots are real on h*; for 
any root oc on h* there exists an HIX E h* such that oc(X) 
= (HIX , X) for all XE h*. Let (oc, fJ) = (HIX , Hp). Let 
Hp be the element of h such that 

oc(Hp) = 2(oc, fJ)(fJ, fJ)-l. 

The Weyl chamber of g is 

D(O)(g) = {oc E h* I (ex, fJ) = oc(Hp) ~ 0 (> 0), 

for all fJ E L+}, 
and it is divided by the hyperplanes 

PIX = {ex E h* I (oc, fJ) = 0, fJ E L+}. 

D(g) is the fundamental domain for the Weyl group 
W(g) which is generated by reflections rlX(fJ) = fJ - nplXoc 
about the hyperplanes for ex, fJ ELand 

nlXP = 2( oc, fJ)(fJ, fJ)-l. 

W(g) is the quotient of the normalizer of h by the 
centralizer of h in GC

, that is, 

W(GC
) = Nac(H)/Zac(H) = Nac(H)/H. 

An element ex E h* is called integral if 

2(oc, fJ)(fJ, fJ)-l E Z for fJ E L. 

oc is integral on a discrete lattice Z(g) of maximal rank. 
Let h # = (Z(g»Q' A linear form oc on h is called a 
weight of a representation p: GC 

---+- V (where V is a 
vector space) if there is a nonzero vector v E V such 
that p(H)v = ex (H)v , for HE h. Thus oc is a weight if 
oc(Hp) is integral for all simple roots {Ji , for i = 1,'" ,I. 
For each weight ex, we set 

VIX = {v E V I p(H)v = ex(H)v, for all HE h}; 

this gives the decomposition of the representation 
space into weight spaces V = EEl P. (The weights of 
the adjoint representation of g, other than 0, are just 
roots of g and we have the decomposition g = EElglX , as 
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given above with gO = h.) The weight Ot is called 
dominant if Ot > r(Ot) for every r E W(g). The weights 
Ai' i = 1," . ,I, such that 

. 
for all simple roots Pi' j = 1, ... , I, are the funda-
mental dominant weights [they form a basis for Z(g)]. 
2l;i Ai = tJ = total sum of positive roots. The 
highest weight with respect to the lexicographic 
ordering on h* of an irreducible representation of g 
is a dominant integral form, by the fundamental 
theorem, giving a one-to-one correspondence between 
irreducible representations and dominant integral 
forms. If g is simple, the adjoint representation is 
simple and the corresponding highest weight is. the 
maximal root of (g, h). 

The tensor field J, defining a complex structure, 
induces a decomposition of m = n+ + n- corre
sponding to the eigenvalues ±( -1)( Furthermore, 
there exists an element Z in the center of ko such that 
[Z, YJ = ±(_I)tY for any YEn±. (J= adZ is a 
complex structure on mo.) There is a subset TIl c: TI = 
set of simple roots, such that (Z, Oti ) = 0(1) for 
Ot E (¢) TIl' Then n± is just the sum of positive (nega
tive) eigenspaces of ad Z and is nilpotent. k is the 0 
eigenspace of ad Z. Let 

l;K = (TI)z Ill; 

and 

Then 

A root Ot is called complementary if elZ E n+ + n-. 
Roots may be ordered such that the roots of'f are 
all positive. 0 = k + n+ contains a Borel subalgebra 
of g and is the normalizer of n+ in g and UC =. K C 

• N+ 
(where the semidirect product is meant). 

C. Homogeneous (QDS) 

Let M = GCtu = GjK be a complex (respectively, 
real compact) form of a (Kahler) C-space. Let 2u = 
rank G - rank K. Every C-space is a principal toral 
1'2"-bundle, where 1'2",....., O/U - G/U - G/O, over a 
C-space of positive Euler characteristic. 1'2" is the 
identity component of the center of the group of all 
complex analytic homeomorphisms of M. M is 
Kahler iff Mhas a positive Euler characteristic; thus, 
M is a rational algebraic variety. In Ref. 7 we 
used the rational splitting of Wang, Borel, and Weil. 
In review, let ko == ko ®a g, such that g == it,. 
From the above discussion, the root system l;1( c: 1: 
of ko is described as follows. For a Cartan subalgebra 

h of g, we have h = c + hx and c = p EEl p, where 

p = 0 iff rank 9 = rank K. Also Ii;, = hI( EEl (!lZetx glZ) 

and n± is given above; u = pEEl ko EEl n- and pEEl hK 
lies on no rational hyperplane. If Ot E h#, then Ot(H) = 
o for all HE P EEl hK implies Ot = 0; Z is given above . 
There is a maximal root A such that Z = HJ,(eJ,) and 
u = h EEl !(IZ.;');:::O glZ [the nonnegative eigenspaces of 
ad (H;.)]: 

u = {XE UI B(X, If;.} = O} = z(e;.) 

= {XEO I [X, H;.J = O}; ko = g (') u, 

and [0, H;.J = {H;.}. 

Since u contains a Borel subgroup of g, it is parabolic. 
Thus, M is a compact simply connected Hodge 
manifold. 

For a homogeneous QDS, i.e., a homogeneous 
contact manifold, there is a unique fundamental 
field Z, which is given in terms of the contact form on 
GCjU. Let w* be lifted to GC ; then there is a unique 
Z E g with w*(X) = B(Z, X), for X E g, where B is a 
Killing form and where B(X, Z) = 0 for X E u. From 
the preceding discussion, we have that there is unique 
maximal root A and B( e;., X) defines an ad (0)
invariant linear form on GC/O, which we realize as a 
contact form. Thus, the Boothby structure theorem22(b) 

is the following. 

Proposition: If GC is a complex simple Lie group 
and U is a parabolic subgroup, such that 

u=hE13 1 glZ 

and 
(1Z.;.)~o 

u = z(eJ,) = {X E g I B(X, H;.) = [X, e;.J = O}, 

where A is a maximal root, then 

0tu - E = GCtu - M = GCtO (3.3) 

is a homogeneous QDS, where E is a Kahler C-space. 
Conversely, if E(M, T) is a homogeneous QDS with 
E a Kahler C-space, then E(M, T) is given by the 
sequence (3.3). 

As a corollary we gave in Ref. 7 the classification of 
homogeneous QDS for compact complex simple Lie 
groups. The irreducible (Kahler) symmetric spaces S 
of type B (and their noncompact duals) of quatern
ionic type are put in one-to-one correspondence with 
homogeneous C-space QDS by the result of Wolf34(&): 

Proposition: Let G"/K be a compact complex simply 
connected irreducible Riemann symmetric space of 

84 (a) J. A. Wolf, J. Math. Mech. 14, 1033 (1965); (b) J. A. Wolf 
and A. Koranyi, Am. J. Math. 87, 899 (1965). 
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type B, GU compact form of GC
; then 

K/L = Al/Tl--E = GU/L = Ll x TI __ M 

= S = GUjK = Ll x AI, 

where Al = Sp(I) gives quaternionic structure, I = 
u ""' gU = 11 EEl {( -I)IH;.} is the real form of 

hEEl! g",ll = U ""' g" 
(",).)=0 

= {H E gil A h I J.(H) = O} EEl ~ g" ""' (g" + g-") , 
,,>0 

(",,\)=0 

and A is the maximal root. Realizing gU as ko + rno, 
such that the noncompact dual is g = ko + ( -1 )lrno 
with Lie group G, we have then E = G/L and M = 
G/K gives the noncompact dual fibering. 

D. Morse Index 

In review, for symmetric spaces M = GC/U = G/K, 
the critical points are those oc E h # for which (IX, fJ) = 0 
for some fJ E ~+. The Morse index Ind oc of oc is the 
number of roots fJ E ~+ such that (oc, fJ) < O. Define 
mappings (t.(A) = seA + t6) - t6, for A E Z(g), and 

(t: D(ko) -- D(g) U {O}, given by (t(A + t6) = 0 if 
A + t~ is singular in h #. If A + t6 is nonsingular, 
then there exists a unique s E W(g), such that 

seA + t6) E DO(g), 

and (t(A) = (t.(A) E D(g). An element S E W(g) has 
the expression S = Si

1 
••• Sir of length r. If this length 

is a minimum, n(s), then the length is the index of s. 
Let 

<1>. = s(~-) ""' ~+ = {oc E ~+ I .r1oc E ~-}. 

Thus, Ind (s) = n(s) = Ind <1>., where the index here 
is the cardinality of the set <1>., i.e., the number of 
roots which "change sign" under s. If oc is nonsingular, 
then there exists a unique $" such that s,,(oc) E DO(g) 
and Ind oc = Ind s" . 

Remarks. The minimum path from DO (g) to 
s-IDO(g) meets n(s) hyperplanes, which is the number 
of linear forms in s-IDO(g) for oc E ~+ which take 
negative values [that is, oc(X) = OC(S-IX), for X E h#]. 
.r1 is Il'iven as S-1 = s" '" S"I' where $ is a o· 11. "ii 
reflection across the root plane of the simple root 
OCi and 

I 

WI = {s E W(g) I S-I~tc c ~+} 
= {s E W I <1>. c 'Y = ~+ - ~~} 
= W(g)/W(ko). 

Let A be the highest weight of irreducible representa
tion P of GC

; then the weight J. of PAis extreme iff 
J. + IX or A - at is not a weight of PA' WI is set of all 

extreme weights of PA' Let n;= = {e±" I oc E <I>.}c, for 
SEW, with group N:. The generalized Bruhat 
decomposition is 

GC = U N;_IS-1K cN+ 
SE~Vl 

and the cellular decomposition is 

G
C = U V" 

IEWl 

where Vs = N"j:-lS-1 • O. Thus, VB is homeomorphic to 
Nt-I and has complex dimension n(s). 

Every closed invariant form 'Y} on a compact form of 
the Kahler C-space G/O may be written in the form 

'Y}p = ! p(H,,)w" A ro" 
"e'!' 

at the origin, where H" E h* is orthogonal to 

h1 = {H" IIX E ~ - ~ K lc 
and where the w±,,(w-" = ro") are duals of the root 
vectors ell E g". The metric is 

ds 2 = ~ p(oc)w'" ro" 
cze'l' 

and, as usual, (21T( -I)I)-l'Y}p = c1(E) represents the 
first Chern class. Thus we may refer to the Morse 
index in terms of number of negative eigenvalues of 
the curvature form, Ricci tensor, or first Chern class. 

Let g = k + rn for a C-space G/K and let h.n be the 
maximal Abelian subalgebra of rn; now X E m is 
conjugate to the origin 0 if d exp X = 0' or is such that 

det (f[(adX)2],,) = IT sinoc«-l)*H) = 0, 
° (2n + 1)! "eI>O IX« -1)tH) 

for HE h* [that is, Ro(X,') = -(ad X)2]. Thus 
X = ad (k)H is conjugate to 0 jff oc(H) E 1T( -1)1 x 
(Z - 0). The Tm = exp h.n are the geodesicaUy 
imbedded tori. For x E h.n, the Morse index of the 
geodesic segment x(t) = exp (tx), 0 ~ t ~ 1, is 
Ind (x) = 2n" II oc(x) II , where oc E ~>o restricts the 
index nIl times to some real linear form ± OCi on h.n. 
Thus n,. is the multiplicity of the critical point of the 
geodesic at the hyperplane. The greatest integer less 
than I I is denoted by II II. From Bott,16(b) the space 
of geodesics S M is a coUection of nondegenerate critical 
manifolds C) M' Two geodesics lie in the same V E C) M 

iff they are conjugate under the Weyl group. Let A be 
the maximal root. If Xy E h.n with Xy E SM, then 
x E Xy + A has a unique critical manifold V:Il c SM. 
V:Il is homeomorphic to KOjZ:Il(K) , where KO is the 
identity component of K and Z:Il(K) is the centralizer 
of x in K. Bott (cf. Milnora1) evaluates the Morse 
index for U(n) , SU(n), and lower bounds Ivl of 
positive integers E Ind (y) for various cases (to prove 
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Bott periodicity). From the discussion in Sec. 3A, the 
conjugate points of the geodesic t -+ exp (tA), where 
A E su(n) = T(SU(n)h, are determined by the positive 
eigenvalues of KA(W) = R(A, W)V = ![[A, W]A]. 
If W = (Wii) and 

= (irr~l ) 
A . ., 

irrkn 

then KA(W) = !(rr2(ki - ki)2Wii) has eigenvalues 
for e = lrr2(ki - ki) and conjugate points t = nrrj(e)!, 
n E Z+. The index of the geodesic is Ind (y [ - I, In = 
2k,>k (ki - ki - 2). For U(n), let ni be the number 
of' tithes the integer k i occurs. Then, Ind (y) = 
2i>i nini(ki - k i - 1). The critical manifold in this 
case is Vxy = U(2n)IU(n) x U(n) , Iyl = 2(n + 1). In 
other cases, Vxy = SO(2n)IU(n), Iyl = 2(n - 1); Vxy = 
Sp(n)IU(n), Iyl = 2(n + 1); Vxy = U(2n)ISp(n), Iyl = 
4n - 2; etc. 

E. Homogeneous Bundles 

Associated to any C-space M = GC I U there is a 
natural principal fiber bundle U __ GC -+ GCIU (with 
G-invariant connection w). U is the semi direct prod
uct U = K C

' N-; thus, every representation p E 

Hom (KC
, GL(m, C» can be extended naturally to a 

holomorphic representation of U over cm (rm or the 
finite C-module Epu), say, pU E Hom (U, GL(m, C». 
Define a homogeneous principal-bundle space Epu = 
G Xu Cm(rm or E) by the equivalence -relation U 0 

(g, ~),...,., (gu-l, p(u)~) for g E G, ~ E Cm (etc.), and 
U E U. Thus, Epu is a homogeneous holomorphic 
vector bundle over GCIU with fiber em (etc.). Let 0 
be the kernel of p. Thus 0 is a closed subgroup of U. 
The principal fiber bundle 

Cm (etc.) __ Epu -+ GCjU 

is equivalent to the principal fiber bundle 

OIU -+ GIO -+ GIU. 

In Sec. 4 we examine the sheaf of germs of hoi om orphic 
cross sections of Epu -+ M, and therefore GIG -- M, 
which is Q(Epu). We have omitted ~ discussion of the 
case of Ep 0 J defined by automorphic forms of type p, 
although it is very pertinent, especially for a discussion 
of Abelian varieties, cusp forms, etc. 35

-
39 

85 M. Ise, Am. J. Math. 86, 70 (1964). 
86 S. Ramanan, Topology 5, 159 (1966). 
37 (a) A. Borel, Proe. NatI. Aead. Sei. (U.S.) 40, 1140 (1954); 

(b) Ann. Math. 71,509 (1960). 
38 Y. Matsushima and S. Murakami, Ann. Math. 78, 365 (1963); 

Proe. Sem. Dift'. Geometry Kyoto, 82 (1965); Osaka Math. J. 14, 
1 (1962); Osaka J. Math. 2, 1 (1965). 

89 M. S. Raghunathan, Am. J. Math. 87, 103 (1965); J. Math. 
Meeh. 13. 97 (1964). 

4. HODGE INDEX AND VANISHING 
THEOREMS8. 9.15-20. 23.33-39 

A. Hodge Index of Inertia 

Given a real-valued symmetric bilinear form 
A(x, y), the associated quadratic form is q(x) = 
A(x, x), where A is determined by q:A(x,y) = 
t[q(x + y) - q(x) - q(y)]. The index of inertia 
(Hodge index) of a ("normalized") real-valued 
symmetric bilinear form A on a real finite-dimensional 
manifold is defined as Ind A = s - t, where s is the 
number of positive eigenvalues and t is the number of 
negative eigenvalues; A is then said to have signature. 
or type, (s, t). 

The natural bilinear form for compact manifolds 
is that induced from the bilinear form of the Serre 
duality. It is immediately evident that (1.10) induces 
the cup product 

Hq(M, QP(E» x H~-q(M, Qn-p(E*» 

-+ H~n(M, C(or R», (4.1) 

which is the bilinear map u U [M], where U E H~n(M, 
C (or R». 

The standard object which we are treating is the 
Hermitian holomorphic bundle E -+ M. Any real 
Hermitian (1, 1) form 

A = H-l}!2a"pw<XA(!.l, 

where a"p + tip" = 0, defines an endomorphism of 
T(M) given by (Ae" , ep) = a"p' where the el( are dual 
to WI(' for K = 1, ... ,n. Since A = tA', the frames 
may be chosen such that 

A = H -l)! 2 A"w« A iii', 
where the AI( are real. Then, if A has signature (s, t), we 
may assume that A is of the form 

A = i( -1)!t~~sA"w" A of-

2 ApwP A rop
}, AI( > O. 

n-t~p~n 

For the case E -- M, A E A1.1 (End E) is said to have 
signature (s, t) if the corresponding real (1, I)-form 
A{e} = t( -I)!(Ae, e) has signature (s, t) for all 
e :F 0 in E. The natural real Hermitian (1, 1) form is 
the curvature E of the metric connection, because we 
see from the discussion in Secs. 1 C and 2A that the 
Chern classes can be calculated in terms of the curva
ture of the bundle. For QDS, E is T*(M) with the 
Kahler (Hodge) metric identified with the Kahler 
metric on M. The operations L and A are defined, and 
there are two Hermitian forms A(tp, tp) = (Atp, tp) 
and A#(tp, tp) = (AA /\ tp, tp) which satisfy 

A#(tp, tp) + (Tr A)(tp.tp) - A(tp, tp) 

= A(*cp. *cp) = A(#tp, #tp), (4.2) 
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for ffJ E Ao.o(E) and the metric (1.10). From Ref. 19(d) 
we quote 

Lemma: If A has signature (s, t), then there exist 
Hermitian metrics on M such that A ( q;, q;) is negative 
definite on Ao.a for q>n-t and A#(ffJ,ffJ) is 
positive definite on Ao.a for q < s. For A = 3, we 
have 

3#(q;, q;) = (-I)!(Ae(3)ffJ, q;>. 

B. Signature and Eigenvalues 

Define the signature of E to be the signature (s, t) 
of 3. If 3 has signature (n, 0), E is said to be weakly 
positive. E is called weakly negative if E* is weakly 
positive. E is called negative if, for A = S in (4.2), 
S#(q;, cp) is negative definite for 0 ~ q ~ n - 1. This 
agrees with Kodaira's definition that a C*-bundle E is 
positive if c1(E) E Hl.l(M, Z) is positive, i.e., iff its 
induced element from sequence (2.5), namely A*c1(E) E 

Hl.l(M, R), is a fundamental class of the Kahler 
metric. M is called a Hodge manifold if HI·l(M, Z) 
contains at least one positive element, i.e., the 
fundamental 2-form is integral S E H2(M, Z). We 
noted previously6.7 and in Secs. 2 and 3 of this paper 
that Hodge manifolds are "canonical" QDS; the 
homogeneous QDS which we constructed are Hodge 
and therefore algebraic. 

For homogeneous C-spaces the Cartan-Killing form 
gives a Hermitian geometry on a Kahler C-space M; 
this is a Kahler geometry iff M is a Hermitian sym
metric space. According to Koszul, Kahler C-spaces 
are Einstein spaces, i.e., the Ricci tensor is given by 
Rl1.p = (R/2n)hl1.p, where R = 2 ! R: is the scalar 
curvature of the metric h of M. In this case, E = T* (M) 
has fiber CN, N = in(n + 1). Then the Nakano 
identity 

« -1)f(e(S)A - Ae(3»cp, ffJ) 

= (-l)t(Ae(S)cp, cp), cp E Ao.I1(E) 
reduces to 

S#(cp, ffJ) = (-1)l(Ae(3)cp, ffJ) 

-R 1 
= 2n (cp, ffJ) + (q _ l)!!R .... ffJ ... ffJ":· 

A new Hermitian form may be defined as 

3 #( cp, cp) + (R/2n) ( q;, ffJ). 

Then we define E to be sufficiently negative if this form 
is negative definite on Eo.a, 0 ~ q ~ n - 1. Thus one 
is led to investigate the eigenvalues of the equation 

P(xo): cp"p ----+- !R/Py(xo)Cp!lP' CPl1.p = q;p". (4.2) 
!l.p 

P(Xo) has N eigenvalues; let !5(xo) be the smallest. If 
!5(xo) ~ 0, then 

~# R (q + 1) 
.::. (cp, cp)(lO + 2n (cp, q;)",o ~ !5(xo) 2 

and 

Therefore, if M is a Kahler-Einstein space with 
R < 0, then 

!5(xo) ~ R/n(n + 1) < O. 

From Ref. 17a, Ha(M, nee»~ = 0, for 

o ~ q < inf [(Rjn)!5(xo) - 1] = y(D) - 1 = M-index 
"'0 

(see below). 

C. Theorems in Terms of QDS 

Call the QDS negative if E(M, T) is negative. The 
standard theorems can now be restated in terms of 
QDS. From Refs. 15, 8(b), 8(c), 19, and 20(b), we 
have the following proposition. 

Proposition: If a compact Kahler (C-space G/K 
with p = 0) QDS is a Hodge QDS, then the fact 
that the Ricci tensor is positive definite implies that 
the first Chern class is positive definite; thus the 
Kahler QDS is algebraic and simply connected. The 
canonical bundle K = AnT*(M) of symmetric spaces 
of type A are positive definite, which implies K-l is 
positive definite for symmetric spaces of type B. 
Thus G/K, the canonical bundle of C-space QDS, is a 
negative line bundle. 

Proposition: If E(M, T) is a negative QDS (where 
M is a Kahler C-space), then 

W(M, Q(E(M, T» = 0 = Hn-Il(M, n(Kx E*(M, T», 
o ~ q ~ n - 1, 

where K is a canonical bundle. 
The Hodge index of inertia is given by the quadratic 

form (1.10) as 

I( ffJ, 1]) = r cp A 1], for CP,1] E Hn(M, R) (4.3) JM 
[cf. Eq. (4.1)]. When we identify indices,we have,by 
definition,S(a) the following proposition: 

Proposition: The index of inertia of a compact 
Kahler QDS is given by the index of (4.3) and is 

T(E(M, T» = s - t = I (-1)W'·Il(E(M, T» 
",,(I 

" = I X"'(E(M, T» = Xl(E(M, T», 
o 
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where h1M = dim HP''1 and XP(E ® APT*) = XP(E) is 
the Euler-Poincare characteristic. 'T has been evaluated 
for spaces type B by HirzebruchS(a.b); see Ref. 19(b). 

This is generalized by Hirzebruch and Thorn to any 
compact oriented manifold M of dimension.4n and 
holomorphic vector bundle E. Here, the signature is 
identically zero, if dim M is not divisible by four. In 
the "Atiyah-Singer" formulation: 

signature I( cp, 'fJ) = signature (cp, 'fJ) 

= analytic index D = T(D) 

= dim Ker D - dim Ker D* 

= ! (-1)P dim HP(M, E) 

=X(M,E) 

where D = a + ~ (or D = d + b) and the topolog
ical index is equal to the analytic index. 

From Refs. 31, 16(a), and 19, we have the propo
sition: 

Proposition: If E(M, T), a compact Kahler QDS, 
has curvature form E with (X positive and {3 negative 
eigenvalues, then there exists flo such that, for fl ~ flo, 

H'1(M, nEI'(M, T» = 0, 

° ~ q ~ {3, n - (X ~ q ~ II, 

where EI' is the flth symmetric power and {3 is the M
index of the Chern class cl(E), i.e., h or E. A negative 
line bundle has only negative eigenvalues. In this case, 
if {3 ~ 1, then HO(M, n(E» = O. I 

From calculation on eigenvalues of (4.2), we quote 
the res,ults of Calabi and Vesentini 17(a) and Borel,37(b) 

Proposition: For every compact symmetric complex 
manifold M whose universal covering space is the 
Cartan domain D (type A), then H'l(M, neE = 
T(M») = 0 for all 0 ~ q ~ y(D) - 1, where 

Alm•m, Allm AIIIm AI V", 

y(D) - 1: m + m' - 1 2m - 3 m m - 1 

AV AVI 

11 17 

g simple has unique simple root 1'1 E'¥, y(D) = 
(1'1,1'1)-1. 

Let A be an element of the interior of the space of 
maximal weights. Then from Bore}37(a) we have the 

following proposition: 

Proposition: The QDS E A (M, T) corresponding 
to A is positive in the sense of Kodaira. 

Let M be the (irreducible) Kahler C-space GC/U. 
Then from (1.7), the Atiyah exact sequence for the 
case U -.. GC 

-.. M, one finds that 

and 

for all q. Thus, we have the following proposi
tion.1&(a).19(b) 

Proposition: We have 

Hq(M, n (E = T(M») = 0, 

for q > 0. For M an irreducible compact symmetric 

Kahler manifold, 

dimc HO(M, n(E» = dimc GC(M) = dimR G(M), 

where GC(M) is the complex Lie group of all holo
morphic transformations of M onto itself and where 
G(M) is the compact Lie group of all isometric 
transformations. 

Note: The space of Kodaira-Spencer deformations 
is Hl(M, nee»~ or Hl(M, n(L»; see below. 

Furthermore, from Bott16(a) [cf. Refs. 17(a), 19, 29, 
30], if p E Hom (KC

, GL(M, C) is an irreducible 
representation [and thus is represented by the maxi
mal (dominant) weight A], Epu is the homogeneous 
vector bundle, and tb is the half-sum of the positive 
roots of GC

, then we have the following result. 

Proposition: For every QDS represented by M = 
GC/U, if A + 115 is singular [i.e., there exists a root (X 

such that (A + 115, (X) = 0], then 
(i) Hi(M, n(Epu» = 0 for all q ~ 0; 
(ii) if A + ib is regular (see Sec. 3C), there exists a 

unique s E W(g) such that seA + !(5) E DO(g) and 
H'l(M, n(Epu» = 0 for q ¥= Ind s; the action of GC 

on Hfl(M, n(Epu» (i.e., the "induced representation") 
is irreducible and has the highest weight seA + !(5) -
tc5. If the highest weight of p is not the highest weight 
of any irreducible representation of GC

, then HO(M, 
n(Epu» = O. 

These results have been presented, since they lead 
directly to the study of Kodaira-Spencer deformation 
theory,16-2I.23.35-39 which has recently been studied by 
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Hermann40 with quantum physics applications. Details 
in this direction, a study of calculus of variations for 
quantum field theory, and relations to Morse theoretic 
techniques will be studied in later publications. 

'0 R. Hermann, Commun. Math. Phys. 2, 251 (1966); 3, 53, 75, 
(1966). 
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The s-wave Klein-Gordon equation of a particle in an electriclike, spherically symmetrical, local, and 
energy-independent potential is studied with the aim of deriving exact relationships between the potential 
and the experimental data. We obtain the value of the potential and of all its derivatives at the origin as 
explicit functionals of the phase shift of the particle and the antiparticle and of their bound-state param
eters. Furthermore, we find a set of infinitely many nonlinear sum rules for the phase shift and the bound
state parameters of both the particle and the antiparticle; these sum rules embody the requirement that 
the potential be electriclike. This restriction on the potential is also briefly discussed in the framework of 
the Gel'fand-Levitan approach to the inverse problem. 

1. INTRODUCTION 

This paper is one of a series on the inverse problem 
in quantum potential scattering theory. The aim of 
this investigation is to derive exact relationships be
tween the parameters which characterize the scattering 
process and the interaction which causes it. In the 
first paper expressions for the value of the potential 
and of its derivatives at the origin were derived in 
terms of the s-wave phase shift and bound-state 
parameters corresponding to that potential via the 
SchrOdinger equation.1 In the second paper, varia
tional bounds for the potential were established in 
terms of the s-wave phase shift and bound-state 
parameters.2.3 In I it was shown that different tech
niques can be used to derive explicit relationships 
between the potentials and the scattering parameters, 
and we emphasized the convenience and the elegance 
of the method based on the asymptotic expansions of 
the scattering parameters and their analyticity prop
erties. In this paper we apply this method to the 

• This work has been partially supported by the U.S. Army 
Research Office, Durham, North Carolina. 

1 F. Calogero and A. Degasperis, J. Math. Phys. 9, 90 (1968). 
Hereafter referred to as I. 

I F. Calogero, O. D. Corbella, A. Degasperis, and B. M. De 
Stefano, J. Math. Phys. 9, 1002 (1968). 

a Simultaneously with this work, an analogous investigation has 
been devoted by O. D. Corbella to the potential scattering of Dirac 
particles (J. Math. Phys.) (to be published). 

simplest relativistic case, the s-wave radial Klein
Gordon4 equationS 

(:;2 - M2 + [E - V(p)]2 )9'(E; p) = O. (Ll) 

Here M is the mass of the scattered or bound particle 
and the interaction is completely described by a single 
function of the modulus of the radius p, the spherically 
symmetric, local, and energy-independent potential 
yep) (regarded as time-component of a 4-vector), 
which is assumed to be holomorphic (and vanishes 
asymptotically). This assumption says that the value 
of the potential and of all its derivatives at the origin 
determines the potential everywhere. 

As a consequence of the relativistic kinematics, 
Eq. (1.1) has positive-energy as well as negative
energy solutions; moreover, the potential is supposed 
to be such that Eq. (1.1) does not possess complex 
energy solutions.6 The stationary KG equation is not 
a usual eigenvalue equation, but it could be con
sidered a Schrodinger equation with an energy
dependent interaction. As is well known, we are, 

, KG will be used as an abbreviation for Klein-Gordon. 
5 Throughout this paper we use units such that h = c = 1. 
6 The appearance of these unphysical solutions has been investi

gated for a square-well potential by L. I. Schiff, H. Snyder, and 
J. Weinberg, Phys. Rev. 57, 315 (1940). 
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'0 R. Hermann, Commun. Math. Phys. 2, 251 (1966); 3, 53, 75, 
(1966). 

ACKNOWLEDGMENTS 

The author was a NATO postdoctoral fellow 
1966/67 at Universite Libre de Bruxelles during which 
period this research was completed. Presently the 
author is a Visiting Member at Courant Institute of 
Mathematical Sciences where this paper materialized. 

JOURNAL OF MATHEMATICAL PHYSICS VOLUME II, NUMBER 2 FEBRUARY 1970 

On the Inverse Problem for the Klein-Gordon s-Wave Equation* 

ANTONIO DEGASPERIS 

Physics Department, Indiana University, Bloomington, Indiana 47401 

(Received 3 March 1969) 

The s-wave Klein-Gordon equation of a particle in an electriclike, spherically symmetrical, local, and 
energy-independent potential is studied with the aim of deriving exact relationships between the potential 
and the experimental data. We obtain the value of the potential and of all its derivatives at the origin as 
explicit functionals of the phase shift of the particle and the antiparticle and of their bound-state param
eters. Furthermore, we find a set of infinitely many nonlinear sum rules for the phase shift and the bound
state parameters of both the particle and the antiparticle; these sum rules embody the requirement that 
the potential be electriclike. This restriction on the potential is also briefly discussed in the framework of 
the Gel'fand-Levitan approach to the inverse problem. 

1. INTRODUCTION 

This paper is one of a series on the inverse problem 
in quantum potential scattering theory. The aim of 
this investigation is to derive exact relationships be
tween the parameters which characterize the scattering 
process and the interaction which causes it. In the 
first paper expressions for the value of the potential 
and of its derivatives at the origin were derived in 
terms of the s-wave phase shift and bound-state 
parameters corresponding to that potential via the 
SchrOdinger equation.1 In the second paper, varia
tional bounds for the potential were established in 
terms of the s-wave phase shift and bound-state 
parameters.2.3 In I it was shown that different tech
niques can be used to derive explicit relationships 
between the potentials and the scattering parameters, 
and we emphasized the convenience and the elegance 
of the method based on the asymptotic expansions of 
the scattering parameters and their analyticity prop
erties. In this paper we apply this method to the 

• This work has been partially supported by the U.S. Army 
Research Office, Durham, North Carolina. 

1 F. Calogero and A. Degasperis, J. Math. Phys. 9, 90 (1968). 
Hereafter referred to as I. 

I F. Calogero, O. D. Corbella, A. Degasperis, and B. M. De 
Stefano, J. Math. Phys. 9, 1002 (1968). 

a Simultaneously with this work, an analogous investigation has 
been devoted by O. D. Corbella to the potential scattering of Dirac 
particles (J. Math. Phys.) (to be published). 

simplest relativistic case, the s-wave radial Klein
Gordon4 equationS 

(:;2 - M2 + [E - V(p)]2 )9'(E; p) = O. (Ll) 

Here M is the mass of the scattered or bound particle 
and the interaction is completely described by a single 
function of the modulus of the radius p, the spherically 
symmetric, local, and energy-independent potential 
yep) (regarded as time-component of a 4-vector), 
which is assumed to be holomorphic (and vanishes 
asymptotically). This assumption says that the value 
of the potential and of all its derivatives at the origin 
determines the potential everywhere. 

As a consequence of the relativistic kinematics, 
Eq. (1.1) has positive-energy as well as negative
energy solutions; moreover, the potential is supposed 
to be such that Eq. (1.1) does not possess complex 
energy solutions.6 The stationary KG equation is not 
a usual eigenvalue equation, but it could be con
sidered a Schrodinger equation with an energy
dependent interaction. As is well known, we are, 

, KG will be used as an abbreviation for Klein-Gordon. 
5 Throughout this paper we use units such that h = c = 1. 
6 The appearance of these unphysical solutions has been investi

gated for a square-well potential by L. I. Schiff, H. Snyder, and 
J. Weinberg, Phys. Rev. 57, 315 (1940). 



                                                                                                                                    

552 ANTONIO DEGASPERIS 

therefore, forced to introduce an indefinite metric in 
the space of the two-component representation of the 
KG solutions and to write down the usual orthog
onality and completeness relations in this twofold 
set of solutions. The physical interpretation lies in the 
fact that the KG equation describes two different 
processes, particle scattering as well as antiparticle 
scattering, whereas in the nonrelativistic picture two 
different equations are required for these two processes. 
In fact, it is well known that the infinite-light-velocity 
limit of the KG equation turns out to be a pair of 
SchrOdinger equations with potentials V(p) and 
- V(p) , respectively, for the particle and for the 
antiparticle. 

We now consider the inverse problem. Let the 
experimental data be characterized by the scattering 
phaseshift 'fJ(k) for all Jhe energies (k is the modulus 
of the linear momentum), the binding energies En' 
and the norm of the bound-state functions C;:;-l (see I). 

A 1-to-1 correspondence between these quantities 
and the potential V(p) can be proved in the nonrela
tivistic case using the Gel'fand-Levitan integral 
equation.7 However, the KG equation determines the 
dynamics of both the particle and the antiparticle, so 
that the question arises: Are experiments with particles 
alone sufficient, or do we have to perform experiments 
with both particles and antiparticles to get all the 
information on the potential? In other words, we have 
to find out what the minimum experimental informa
tion is for completely reconstructing the potential. 
This aspect of the inverse problem does not appear in 
the previous literature on the KG equation. The papers 
by Corinaldesi8 and Verde9 are devoted to a relativistic 
generalization of the Gel'fand-Levitan10 approach to 
the inverse problem, while a paper by De Alfaroll 

gives the mathematical tools for conveniently inserting 
the experimental data in the Gel'fand-Levitan for
malism. In this formalism the input data are condensed 
in the so-called spectral function. As we show in 
Appendix B, the latter can be expressed in terms of 
the phase shifts 'fJ+(k) and 'fJ_(k), respectively, of the 
particle and of the antiparticle, of the energies 
En > 0 (Em < 0) of the bound states of the particle 
(antiparticle), and of the normalization constants Cn 

of the bound-state functions. In Appendix A we sketch 
briefly the mathematical situation connected with the 
Gel'fand-Levitan integral equation, and we show that, 

7 R. Jost and W. Kohn, Kg\. Danske Videnskab. Selskab, Mat.
Fys. Medd. 27, No.9 (1953). 

8 E. Corinaldesi, Nuovo Cimento 11,468 (1954). 
• M. Verde, Nucl. Phys. 9, 255 (1958). 

10 I. M. Gel'fand and B. M. Levitan, Iz. Akad. Nauk SSSR 15,309 
(1951). 

11 V. De Alfaro, Nuovo Cimento 10, 675 (1958). 

for the construction of the potential, the quantities 
{'fJ+(k), 'fJ_(k), En' Cn} are redundant. That is to say, 
if arbitrarily given, they generally do not lead to a 
potential in the KG equation (Ll). To avoid this 
redundancy, we start from the more general equation 

( 

d2 
dp2 + k

2 + V1(p) + EV2(p) )Y(k, E; p) = 0, (1.2) 

which reduces to the KG equation (1.1) with the 
particular choice 

V2(p) = -2V(p), V1(p) = V2(p), k2 = E2 - M2. 

(1.3) 

In Sec. 2 we apply the method of asymptotic ex
pansion to Eq. (1.2), and in Sec. 3 we give the exact 
relations between the potential and its derivatives at 
the origin in terms of the parameters {'fJ+(k) , 'fJ_(k) , 
En' Cn}. Furthermore, we obtain in a quite natural 
way the relations that these parameters must satisfy 
in order to be caused by a single potential via Eq. (1.1). 
These relations turn out to be an infinite number of 
nonlinear sum rules. Appendices C and D are devoted 
to developing the mathematical technique used in the 
asymptotic expansion method, in complete analogy 
with Paper I. Finally, we note that the present paper 
contains the main results of I, because the usual 
Schrodinger equation can be obtained by putting 
V2(p) = 0 and V1(p) = - yep) in Eq. (1.2). 

2. THE ASYMPTOTIC EXPANSION METHOD 

Every solutiony(k, E; p) ofEq. (1.2), regarded as a 
function of the linear momentum k in the complex k 
plane, has the two branch points k = ± iM because of 
the relativistic expression of the total energy as a 
double-valued function of the momentum 

E(k) = (k2 + W)t. (2.1) 

The complex k plane will be considered cut along the 
imaginary axis from iM to +ioo and from -iM to 
-ioo, so that the solution12 y(k, E; p) is defined on 
the corresponding two-sheet Riemann surface. We will 
frequently use the fact that a function F(k, E), which is 
an entire function of the variable E as in. our present 
situation,9 can be written in the following convenient 
way to handle the discontinuity introduced in the 
k plane by the relation (2.1): 

F(k, E) = t[F(k, E) + F(k, -E)] 

+ E[F(k, E) - F(k, -E)]/2E 

= Fl(k) + EF2(k), (2.2) 

11 We assume, of course, that the boundary conditions do not 
introduce any other cut in the k plane. 
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where the functions Fl(k) and F2(k) have no branch 
point at k = ±iM. This notation has the advantage 
of explicitly showing the analytic structure caused by 
the relativistic kinematics; furthermore, the dispersion
relations technique shall be applied directly to the 
functions Fl(k) and F2(k). 

We now consider the "Jost solutions," i.e., those 
solutions of Eq. (1.2) defined by the ingoing- and 

As in I, we introduce the function 

g(k, E; p) = :P {In [eikPf(k, E; p)]} 

= gl(k, p) + Eg2(k, p); (2.9) 

then Eq. (1.2) implies the following system of two 
nonlinear equations: 

outgoing-wave asymptotic conditions 

lime±ikPf(±k, E; p) = 1. (2.3) :p gl(k, p) + V1(p) - 2ikg1(k, p) + g~(k, p) 

The Jost function + (k2 + M2)g~(k, p) = 0, (2. lOa) 

f(k, E) =f(k, E; 0) (2.4) :p g2(k, p) + V2(p) + 2g1(k, p)g2(k, p) 
is a holomorphic function in the half-plane 1m k ~ 0, 
excluding the relativistic cut from -iM to -ioo on - 2ikg2(k, p) = 0, (2.10b) 

the imaginary axis. The zeros, if any, of the Jost with the boundary conditions 
function can be there only on the imaginary axis and, 
by assumption, with 1m k > -M. It is well known, 
furthermore, that the zeros which lie on the positive
energy Riemann sheet {kn = -ipnl n = I, ... , N+} 
and on the negative-energy Riemann sheet {k! = 
-ip, II = N+ + 1, ... , N+ + N-} correspond, re
spectively, to the bound states of the particle and of 
the antiparticle 

f(-iPn, En) = 0, M> Pn > 0, IEnl = +(M2 _ p;)t, 

- M < EN++N-,·· ·,EN++1 < 0 < EN+'··· ,EI < M. 

(2.5) 

On the other hand, on the real axis the phase of the 
Jost function is just the scattering phase shift 

f(k, E) = II(k, E)I exp i'f}(k, E) 

= II(k, E)I exp i['f}l(k) + E'f}2(k)], 1m k = 0, 

(2.6) 

so that the scattering phase shift 'f}+(k) for the particle 
and 'f/_(k) for the antiparticle are 

'f/±(k) = "h(k) ± lEI 'tJ2(k), 1m k = O. (2.7) 

As we show in Appendix B, the analyticity properties 
of the J ost function can be used to obtain an expression 
for the modulus II(k, E)I as a functional of the 
phase shift 'f/(k, E) and ofthe energies En of the bound 
states: 

If(k, E)1 2 

= (E + M)N+-N- Nr:r-(E - En) (1 + p;) 
E - M n=1 E + En k2 

X exp (~2 P 100 

q; ~qk2 {'tJ+(q) + fJ-(q) 

+ :~:~ [fJ+(q) - fJ-(q)]}), 1m k = O. (2.8) 

(2.11) 

The property ofholomorphy of the solutionf(k, E; p) 
for 1m k < 0,9 excluding the relativistic cut, implies 
the meromorphy of the functions gl(k, p) and g2(k, p) 
in the half-plane 1m k < O. The assumed holomorphy 
of the potentials then leads to the asymptotic ex
pansions 

N 
gl(k, p) = I gin)(p)(-2ik)-n-l + O(k-N- 2

), (2.l2a) 
n=O 

N 
g2(k, p) = I g~n)(p)( _2ik)-n-l + O(k-N- 2). (2. l2b) 

n=O 

Inserting these expansions in the system (2.10), we 
obtain the recursion relations 

n n+2 
X I g~n-m)(p)g~m)(p) - t! g~n-m+2)(p)g~m)(p) = 0, 

m=O m=O 

(2. l3a) 

d
d g~n+1)(p) + g~n+2)(p) + 2 i gin-m)(p)g~m)(p) = 0, 
p m=O 

n ~ O. (2.13b) 

These equations, together with the initial conditions 

giO)(p) = HV~(p) - 4V1(p)}, 

d d 
gill(p) = dp V1(p) - V2(p) dp V2(p), (2. 14a) 

g~O)(p) = - V2(p), 

d 
g~ll(p) = dp V2(p), (2. 14b) 
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are sufficient to express by recursion all the real 
functionsg:n)(p) in terms of the potentials and of their 
derivatives, using only the derivative operation. On the 
other hand, it is easy to prove by induction that the 
pth derivative of the potentials has the- folIowing 
expression: 

:;'P ~(p) = F:'D)[g~i)(p), g~il(p); M2], 1 = 1,2. 

(2.15) 

Here, the functions F:'P) , 1= 1,2, are sums of products 
of the arguments shown, the functions gii)(p) and 
g~i)(p) entering in the expressions (2.15) for i up to p, 
with the obvious restriction that each term of these 
sums must have the dimensions {k'D+3-1}. We want to 
direct attention to the fact that all these products 
appear in each sum (2.15) multiplied by a numerical 
coefficient which is independent of the potentials. In 
fact, these coefficients come just from the structure of 
Eqs. (2.10) and could be computed once and for alI. 
The values of these coefficients for p up to 5, given in 
Appendix D, have been obtained by computer with a 
program in FORMAC language. 

The next step of this method consists in taking the 
expressions (2.15) for p equal to zero, because,as we 
show in Appendix C, the values at the origin of the 
functions g:i)(p), 

gw = gW(O) 1 = 1 2 l - l' , , (2.16) 

are explicit functionals of the scattering and bound
state parameters of the particle and antiparticle, 
{1'J+(k), 1'J_(k) , En' Cn}. To construct these functionals, 
we use the fact that the function 

g(k, E) == g(k, E; 0) 

. 1 d 

Furthermore, the definition (2.17) implies that the 
two branches of the functiong(k, E) have simple poles 
corresponding to the binding energies En (see Appen
dix C) in such a way that the function 

N++N-

g(k, E) = g(k, E) + t ~ 2 en 2 (1 +~) (2.21) 
n-I k + Pn En 

has no pole (1m k ~ 0). The real positive numbers 
C n , which are simply related to the residues of the 
function (2.17) at the poles, are given by the expression 
(A2b), as we show in Appendix C. On the other hand, 
the properties (2.18) and (2.21) can be written down 
for the functions gl(k), 1= 1,2, as folIows: 

Imgl(k) = Imgl(k) = k(1 - SI(k», 

1m g2(k) = 1m g2(k) = -kS2(k) , (2.22) 

Imk = 0, 

where we have introduced for simplicity the function 

S(k, E) = SI(k) + ES2(k) = li(k, E)I-2, (2.23) 

which is a known functional of the phase shift and the 
bound-state energies [see Eq. (2.8)]. Therefore, the 
real part of the functions gl(k) and g2(k) is also a 
known functional of the scattering phase shift and of 
the binding energies, because of the dispersion rela
tions 

Re gl(k) = - P dq 2 q 2 [SI(q) - 1], 
1 f+oo 2 

17 -00 q - k 

1m k = 0, (2.24a) 

1 f+oo q2 
Re g2(k) = - P dq 2 2 S2(q), 

17 -00 q - k 

1m k = O. (2.24b) 
= lk + f(k, E) dpf(k, E; p)lp=o 

= gl(k) + Eg2(k) 

is such that, for real k, 

We note, incidentally, also for future reference, that 
(2.17) the function S(k, E) and, hence, the functions SI(k) 

and S2(k), are even, 

Img(k, E) = k(1 -li(k, E)I-2), 1m k = O. (2.18) 

This follows from the Wronskian relation 

f(k, E; p) ~ f( -k, E; p) 
dp 

- f( -k, E; p) ~ f(k, E; p) = 2ik, (2.19) 
dp 

together with the reflection property 

f(k, E; p) = f*( -k, E; p), 1m k = O. (2.20) 

SI(k) = SI( -k), I = 1,2, 1m k = 0, (2.25) 

while the phase shift (2.7) is odd, as implied by the 
reflection property (2.20): 

1'Jz(k) = -1'Jz( -k), I = 1,2, 1m k = O. (2.26) 

Furthermore, the property (2.25), together with the 
expressions (2.22) and (2.24), implies 

Reg,(k) = Reg,(-k), Imgz(k) = -Img;(-k), 

1= 1,2, Imk = O. (2.27) 
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The integrals (2.24) are convergent because, at large k, 

Sl(k) = 1 + O(k-2), S2(k) = O(k-2), 1m k = 0, 

(2.28) 

and they imply for g/(k) the asymptotic behavior 

Reg/(k) = O(Jc-2), Img,(k) = O(k-l), 

Imk = 0, 1= 1,2, (2.29) 

which is already a consequence of expressions (2.12), 
(2.17), and (2.21). It should be emphasized that the 
function g(k, E) is known once the phase shift 'YJ(k, E) 
and the bound-state energies En are given, because of 
Eqs. (2.8), (2.23), (2.22), and (2.24). To know the 
function g(k, E), it is further necessary to fix the 
values of the bound-state parameters Cn . The de
pendence on these parameters is explicitly shown by 
Eq. (2.21). 

We are now in the position to go back to the 
quantities (2.16) that define the asymptotic expansion 

N 
g,(k) = I gln)( -2ik)-n-l + O(k-N- 2) (2.30) 

n=O 

and to find their expression in terms of the scattering 
parameters {'YJ+(k), 'YJ-(k), En' Cn}. As in Paper I, we 
use a dispersion-relation technique of Roberts,13 that 
we develop in Appendix C. We find that the coeffi
cients g:n) , I = 1, 2, can be expressed in terms of these 
four kinds of "building-block" quantities 

n ~ 1 

(2.31) 

(2.32) 

J~2n+l) = _ 22n+l(_I)n2 
n 7T(2n)! 

X 1"" dk[D:nH + (2nM)2 D:n- l ]['YJ2(k)] 

(2.33a) 

11 M. J. Roberts, Proc. Phys. Soc. (London) 80, 1290 (1962). 

N++N-

- 2 I Em + 2M(N+ - N-), (2.33b) 
n=l 

(2.34) 

It turns out that the even coefficients g:2n) are expressed 
as sums of products of Ji2m), J~2m+l) and of positive 
powers of M2 (see Appendix C where we give such 
explicit expression for n up to 2), while the odd 
coefficients g~2n-ll are given simply by the relations 
(2.32) and (2.34). We finally substitute the coefficients 
g~n) with these expressions into the equations (2.15) 
with vanishing p to get our relationships between the 
potentials, the scattering phase shifts and the bound
state parameters. We condense our results in the 
formulas 

= I rvCn, m, Il' 12 ; S2"", SI1H; t1 ,"', tlz)M
2m 

/1+1 I. 

X II [Jiilyi II [J~i)]ti, P ,= 1, 2. (2.35) 
j=2 i=1 

This sum extends over the integral values of m be
tweenm = ° andm = in ifn is even andm = ten - 1) 
if n is odd, and over all the nonnegative integral values 
of 11' 12 , S2' ••• 'SI

1
H' t1 , ••• , t I. satisfying the 

dimensional condition 

h+1 I. 

2m + I jSj + I iti = n + 1 + <5,,1, P = 1,2, 
j=2 i=1 

(2.36) 

with the convention that SI
1
+1[tl.] can be zero only if 

all the Sj[t;] are zero. We formally indicate this case 
putting 11 = 0 (12 = 0). However, the vanishing of 
both S1

1
+1 and t I. can never occur because of the 

maximum value of m. Thus, the maximum value of 11 
and 12 appearing in Eq. (2.35) is 

Iq max = n + q - d,,2' q = 1,2, P = 1,2. (2.37) 

We note that the numerical coefficients r ,,(n, m, 11' 
12 ; S2' ••• , SllH; 11"'" I I.) are independent of the 
potentials and could be computed once and for all. 
They are given for n up to 3 in Table I. 
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TABLE I. The coefficients r,,(n, m, It,ll; S3,'" S/I+1; t , ,'" t l .) of Eq. (2-35) for n ~ 3. 
Only the nonvanishing coefficients are given. 

r,(O,O, 1,0; 1; ... ) = t, 
rIO' 0, 0, 2;"'; 11) = 2, 
r I (2,0, 1,0; 2; ... ) = -t, 
r I (2 0 0 1····· 4) - ll. 

rId l' 0' 1:"': 2) :: §.~' 
r l (2: 0: 1: 1; 1;1) = -3: 

rl(O' 0, 0,1;"'; 1) = 2 
r ,(1, 0, 2, 0; 01;"') = 1, r l (1, 0,0, 2;·' ';0 1) = 1 
r ,(2,O, 1,1; 1; 2) = -7, r ,(2,0, 3,0;00 1;"') = t 
r ,(2, 0,0, 3;"'; 1 0 1) = 1.'1., r ,(2, 0, 0, 2;·"; 02) = ~ 
r l (2,0,0,1;"';3) = ... , r.(2,0,0,3;···;001) =! 
r l (2, 1,0,1;"'; 1) = s .. 

r I (3, 0, 0, 2;···; 31) = 30, 
r I(3,O,1. 2; 1; 11) = _So" 
r ,(3,O,4,O;0001;"') = I, 
r l (3,o, 1,2; 1; 0 1) = -1, 

r,(3, 0, 0, 3;"'; 0 11) = 6, r,(3, 0, 0, 4;"'; 1 0 0 1) = 4 
r ,(3,0, 2,0; 1 1;"') = -1, r,(3,0,2,1;01;2) = -16 
r ,(3,1,0,2;''';11) =40, r 2(3,0,0,4;"';0001) = 1 
r l (3, 0, 2,1; 0 1; 1) = -8 

3. REMARKS ON THE KG EQUATION 

Provided the solution of the Gel'fand-Levitan 
equation exists and is unique (see Appendix A), the 
two potentials appearing in Eq. (1.2) can be obtained 
from the scattering phase shifts and the bound-state 
parameters {1'}+(k), 1'}_(k):En, Cn} by the method dis
cussed in Appendix A. This means that special rela
tionships between the potentials VI (p) and V2(p) must 
be reflected in a relationship between the scattering 
and bound-state parameters, and vice versa. The 
simplest example is the case V2(p) = 0, which corre
sponds to the relationships 1'}+(k) = 1'}_(k), N+ = 
N- = N, Em = -EN+m and Cm = CN+m, for m = 
1,2, ... ,N.14 

The other case of interest is the KG equation of a 
spinless particle in an electriclike potential; this 
equation is obtained with the relation (1.3). In the 
Gel'fand-Levitan formalism, using two comparison 
potentials Vo,(p) and Vo.(p) satisfying the same rela
tionship as VI(p) and V2(p), we express the two pre
vious cases as a relation between the two components 
of the solution of the integral equation (A6). In the 
case V2(p) = 0, we obtain K1(p, p) = 0 so that the 
expressions (AS) reduce to the well-known nonrela
tivistic formula 

(3.1) 

In the case of the KG equation, the following expres
sion can be easily obtained: 

d 
K 1(p, p) - arctan K 1(p, p) = 2K.,,(p, p), (3.2) 

dp 

while the potential is given by 

yep) - Vo(p) = 2K2(p, p)/K1(p, p). (3.3) 

It When V.(p) = 0, Eq. (1.2) does not contain any relation be
tween the momentum k and the energy E, so that we can formally 
define as energy any function of k. If we choose the nonrelativistic 
Ikfinition E = kl/2M, Eq. (1.2) with V,(p) = - yep) reduces to the 
SctIrOdinger equation, so that the results of Paper I are implicitly 
contained in this paper. 

Before going to the asymptotic-expansion method 
developed in Sec. 2, we mention a simple theorem that 
can be proved with the Gel'fand-Levitan formalism. 
Let us call "physically equivalent potentials" two 
potentials that produce, via the KG equation (1.1), the 
same phase shifts 1'}+(k) and 1'}_(k), the same energies 
En of the bound states, but different normalization 
constants Cn • Then, the theorem states that the 
parameters Cn cannot change continuously in the set 
of the "physically equivalent" potentials. To prove 
it, we make use of the partial derivative of the 
potentials V1(p) and V2(p) with respect to the param
eters Cn , following the same procedure used by 
Newton,16 to show that there is no direction «(Xl' 

(X2 ••• (XN+ +N-) in the space of the N+ + N- variables 
Cn , such that 

N++N- a 
I (Xn -a [Vl(P) - tv~(p)] = O. (3.4) 
n=l Cn 

Using the following expressions for the partial deriv
atives, 

av2(p) = ~ .!!.. [ (E . )]2 ac E d cP n' P , 
n n P 

av1(p) = (1 + V2(p»).!!.. [ (E . )]2 ac E d cP n' P 
n n P 

(3.5) 

and the relations (1.3) which define the KG equation, 
we get the condition 

which can never be satisfied. 
We now apply the results obtained in the previous 

section to the KG equation. The expressions of the 

16 R. G. Newton, Phys. Rev. 101, 1588 (1956). 
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potential yep) and of its derivatives at the origin, in 
terms of the phase shifts and bound-state parameters, 
are given by the formula (2.35), for p = 2: 

dn 

d
- V(p)\p=o pn 

= -t~r2(n,m, 11 ,12 ; S2"', SI1+1; fl'" til) 
11+1 II 

X II [J~j)]'1 II [J~i)]ti. (3.7) 
;=2 i=l 

The potential and its first derivative for vanishing p 
are, for example, 

2 (00 d (k ) YeO) = - ;. Jo dkk dk E [rJ+(k) - rJ_(k)] 

N++N-

- 2 ~ En + 2M(N+ - N-), (3.8) 
n=l 

The same formula (2.35), for p = 1, gives us the 
square of the potential and its derivatives at the origin 
in terms of the scattering and bound-state parameters. 
Substituting in these expressions the derivatives of the 
potentials given by Eq. (3.7), we get nontrivial rela
tions between the phase shifts, the binding energies, 
and the normalization constants. To calculate these 
sum rules, it is more convenient to use the fact that the 
function giO)(p), defined by the asymptotic expansion 
(2.t2a) and explicitly given by the formula (2.l4a), 
vanishes in our case. We set g~O)(p) = 0 in Eq. 
(D2a) and let p go to zero, obtaining 

gin) = (-lr+1Ain )[gio), gil), ... , gin- 2 ); 

(0) (1) (n). M2] g2 ,g2 , ... ,g2, ,n ;;:: 1. (3.10) 

These relations can, in principle, be solved recursively, 
giving all the coefficients gin) in terms of the coefficients 
g~m) for m up to n. Our sum rules are now obtained 
using the expressions (2.32), (2.34), (C49) , (C47) , 
(CSt), (2.31), and (2.33). For example, the first four 
of such sum rules read 

Ji2
) - 4[J~1)t = 0, 

Ji3
) + J~l)J~2) = 0, 

Ji') + 8J;3)J~1) + 20[J~1)]4 - 14Ji2)[J~1)]2 

(3.11) 

(3.12) 

- ![Ji2)]2 + 3[J~2)]2 + 64M2[J~1)]2 = 0, (3.13) 

JiG) + 3J~4)J~1) + 4J~3)J~2) + 16J~2)[J~1)t 
+ 6A2)Ji1)Ji2

) - 24M2J~2)J~1) = O. (3.14) 

These equations can be used to express the energies 
and the normalization constants of the bound states 
in terms of the phase shifts. If only one positive-energy 
bound state exists, the normalization constant is 

(3.15) 
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APPENDIX A 

In this Appendix we summarize the Gel'fand
Levitan approach to the inverse problem for the wave 
equation (1.2). The main features of this equation are 
well known: the energy spectrum consists of a con
tinuous part lEI;;:: M plus a finite number of discrete 
energy values -M < E z < M. The corresponding 
solutions !peE; p) may be arranged in such a way to 
form a basis in a two-component function space 

epeE; p) = !peE; P)(E + ~Vlp»)' 
lim p-l!p(E; p) = 1, (AI) 
p"'O 

satisfying the quasi-orthogonality relations16 

L"'ep+(E; p)E1ep(E'; p) dp 

= i 1!llf(k, E)1
2
b(E' - E), lEI> M, (A2a) 

Looep+(Em ; p)Elep(En ; p) dp = 2EnC;1!5mn , 

-M < Em, En < M, (A2b) 

16 The relation (A2a) is not correct for E' = -E because the 
scalar product is given by 

J;'cp+(-E; p):E1 cp(E; p) dp = (2Ek)-1If(k, E)f(k, - E)I 

X sin [lI+(k) - lI_(k)]. 
This,however, has no effect on the considerations that follow. 
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where l:1 is the Pauli matrix (~ ~) and !(k, E) is the 
Jost function [see definitions (2.3) and (2.4)]. Note 
that the equation (A2b) defines the bound-state param
eters Cn • The completeness relations are1? 

L:"'dT(E)q>(E; p)q>+(E; P')l:1 = ~(p - p')(~ '~), 
(A3) 

where the spectral function is 

d~~) = ~ 1!llf(k, E)I-
2

, if lEI> M, 

d () N++N-

~ =! Cn b(E - En), if lEI < M. (A4) 
dE n=1 2En 

The connection between the spectral function (A4) 
and the potentials VI (p) and V2(p) is given by the 
Gel'fand-Levitan integral equation. The best way to 
derive this equation is the dispersion-relations tech
nique of Verde9

; so we refer to that paper for a de
tailed derivation of the integral equation. We limit 
ourselves to writing down the extension of Verde's 
results18 to Eq. (1.2). Let V01(p) and V02(p) be two 
given potentials. The regular solution is 

rp(E; p) = cos [t J:(V2(X) - V02(x» dX] 

X [rpo(E; p) + J:dtq>t(E; t)l:1k(p, t)J 
(AS) 

where the two-component kernel function k(p, t) is 
the solution of the Gel'fand-Levitan integral equation 

k(x, t) = k(x, t) + dyK(t, y)k(x, y = , - LX - ) - (K1(X, t») 
o K 2(x, t) 

x ~ t ~ O. (A6) 

The term k(x, t) and the 2 X 2 matrix function 
K(x, t) are obtained from the spectral function through 
the integrals 

k(x, t) = L+oo"'(dTO(E) - dT(E»rpo(E; x)q>o(E, t), 

K(x, t) = L+","'(dTO(E) - dT(E»CPo(E; x)cpt(E; t)l:l' 

(A7) 

17 The completeness relations can be obtained by standard methods 
constructing the Green's function for the nonstationary equation 

«iJ2/iJtt ) - iV'<p)(iJ/iJt) - V,(p»'J'"(p. t) = «iJ2/iJp2) - M2)'J'"(p, t). 

18 Our results do not agree completely with the formulas given by 
Verde, Ref. 9. In addition to Eq. (AS). he obtains a second equation 
for the function !P(E; p) that we believe to be incorrect. Further
more. we do not find the mass-dependent term appearing in his 
relation between the potential and the kernels k , (p. p) and k 2(p. p). 
Our corresponding formula is Eq. (3.3). 

The differences with the comparison potentials are 
found to be 

V1(p) - V01(p) 

= [:p arctan K1(p, p)r 
d 

- V02(p) - arctan K 1(p, p) 
dp 

+ ~[Kl(P' p) ~ arctan K 1(p, p) - 2K2(p, p)], 
dp dp 

(A8a) 

d 
V2(p) - V02(p) = -2 - arctan K1(p, p). (A8b) 

dp 

In Appendix B we show that the modulus of the Jost 
function for real k is a known functional of the phase 
shift 'YJ(k, E) and of the binding energies, so that the 
spectral function (A4) is in a 1-to-1 correspondence 
with the scattering and bound-state parameters {'YJ+(k), 
'YJ_(k), En, Cn}. Furthermore, the expressions (A8) 
show that these parameters allow us to construct the 
two potentials, provided the solution of the integral 
equation (A6) exists and is unique. However, the 
conditions that the phase shift and the bound-state 
parameters have to satisfy, in order that the Gel'fand
Levitan equation (A6) has a unique solution, are still 
not known. Because of the non-self-adjoint-ness of the 
differential equation (1.2), the standard method used 
for the Schrodinger and Dirac equations cannot be 
applied. However, it is possible to prove, using the 
behavior for large k of the regular solution rp(E; p), 
that Eq. (A6) can be transformed into a Fredholm 
integral equation for every fixed x. On the other hand, 

the kernel k*(x, t) of the adjoint integral equation is 

given by l:1k(X, t)l:1' so that if k(x, t) is a solution of 
the homogeneus integral equation [i.e., Eq. (A6) 

without the term k(x, t)], then l:1k(X, t) is a solution 
of the adjoint homogeneous equation. This means that 
it remains to prove only that such a solution of the 
homogeneous integral equation is identically zero for 
every positive x. We note that in the nonre1ativistic 
case, in addition to the usual conditions on the k 
dependence of the phase shift and on the values of the 
bound-state energy, the condition Cn > 0 guarantees 
the uniqueness of the solution of the Gel'fand
Levitan equation; this condition is quite natural 
because the numbers C;:;-l are the norm of the bound
state wavefunctions. We do not expect such a general 
condition in our case. In fact, we find, for example, 
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that, for V01(p) = V02(p) = 0, to the spectral function as shown by Eqs. (2.5), so that the function 

!i. T(E) = kE (k2 + P~)-1[k2 + p~ + C1 + C1E J, 
dE 7T lEI 4Pl 4Pl El 

IEI>M, 

.0. beE - El ), lEI < M, E1 > 0, (A9) 
2El 

corresponds an integral equation (A6) that has a 
unique solution only if 0 < C1 < 8pIE:. The corre
sponding potentials for C1 > 8PlE: have a simple pole 
at a certain value of p. The function g(k, E), intro
duced in Sec. 2, is, in this case, 

g(k, E) = _ iCl 1 (1 + E). (AIO) 
4Pl k + iP1 E1 

In the nonrelativistic limit this corresponds to the 
Wigner-Eckart potential, and the constant C1 can 
take on any positive value. (Its upper bound 8p1E: 
goes to infinity in the nonrelativistic limit.) 

APPENDIX B 

In this Appendix we prove the relation (2.8) between 
the modulus and the phase of the Jost function. This 
formula, for the case in which there are no bound 
states, can be found in a paper by Corinaldesi.8 To 
take into account the contributions of the bound-state 
energies, we follow the same procedure used in the 
nonrelativistic case,IS with the only difference being 
that now the Jost function is defined in a two-sheet 
Riemann surface. To look at the asymptotic behavior 
of the Jost function we note that the definitions (2.4) 
and (2.9) imply 

I(k, E) = exp (J~g1(k, p) dp + E J~gik, p) dp), 

1m k :s; 0, (B1) 

which together with (2.12) and (2.14) give the well
known relativistic property (Parzen20 theorem) 

iim/(k, E) = exp (ti foo V2(p) dp lim E(k») , 
k-+oo Jo k-+oo k 

1m k :s; O. (B2) 

We begin by introducing the function P(k) = 
f(k, E)f(k, -E), which is holomorphic in the lower 
half-plane with simple zeros21 on the imaginary axis, 

It See the review article by R. G. Newton. J. Math. Phys. 1, 319 
(1960). 

10 G. Parzen, Phys. -Rev. 80, 261 (1950). 
II As in the nonrelativistic case. these zeros are simple because the 

expression (e2) holds. 

(B3) 

is regular without any zero for 1m k :s; O. We then 
apply the Cauchy theorem to the regular function 
In P(k), for which the limit (B2) guarantees the 
asymptotic behavior 

lim In P(k) = O. (B4) 
k-+oo 

Taking as integration contour a large semicircle in the 
lower half k plane and the real axis, we get 

In I/(k, E)f(k, - E)I 

1 1+00 dk' = - - P -,- [?J+(k') + ?J_(k')] 
7T -00 k - k 

?J+(k) + ?J-Ck) 

= .; P L:ook,d~' kIn I/(k', E')/(k', -E')I 

N++N-
+ 2 ~ arctan Pn, 1m k = O. (B6) 

'11=1 k 

Let us consider now the function R(k, E) = f(k, E)/ 
f(k, -E),which has simple zeros and poles because of 
the zeros of the Jost function, so that the function 

N++N- . 

R(k, E) = II (Enk - ~PnE)R(k, E) (B7) 
n=1 Enk + IPnE 

is regular in the two Riemann sheets for 1m k :s; 0 and 
satisfiestherelationR(k, E)R(k, -E) = 1. This means 
that the function (k/ E) In R(k, E) has the same analytic 
properties as the function In P(k) except for the high
energy limit 

lim ~ In R(k, E) 
k'-'oo E 

= 2i ~ arctan Pn + t V2(p) dp = iy. 
(

N++N- 1(0) 
n=l En 0 

(BS) 

We now use the same contour used before to write 
down the Cauchy theorem for the function 
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(kjE) In R(k) - iy; for the real part we obtain 

~ In I f(k, E) I 
E f(k, -E) 

2 1+<Xl dk' [k' 
= - :; P -<Xl k' - k 2E' ('YJ+(k') - 'YJ-(k'» 

- !1<Xl V2(p) dp] 

+ ~[N+~:-In (E - En) 
E n=1 E + En 

- (N+ - N-) In (; ~ :)]. 1m k = O. (B9) 

It is possible, however, to avoid the subtraction con
stant appearing in the dispersion integral by using the 
reflection property (2.26) of the phase shifts 

In I f(k, E) I 
f(k, -E) 

= _ ~ p1+<Xl dk' [(k') - (k')] 
7r -<Xl (k' _ k)E' 'YJ+ 'YJ-

+ N+fN-ln (E - En) 
n=l E + En 

+ (N+ - N-) In (E + M), 1m k = O. (B10) 
E-M 

For the imaginary part, we get the dispersion relation 

E J+<Xl dk' I f(k', E') I 
r/+(k) - 'YJ-(k) = ; p -<Xl (k' _ k)E' In f(k', -E') 

N++N- E 
+ 2 I arctan Pn , 1m k = O. 

n=l kEn 
(Btl) 

We note finally that the relations (B5) and (B10) are 
equivalent to the functional expression (2.8) quoted in 
Sec. 2. 

We also remark that the asymptotic normalization 
of the phase spifts 

lim 'YJ±(k) = 'YJ±(oo) = ± (<Xl V2(p) dp, (812) 
k-+<Xl Jo 

which follows from (B2) and (2.6), implies the relation 
between the phase shift at zero energy and the number 
of bound states 

lim 'YJ±(k) = 'YJ±(O) = N±7r. (813) 
k"'O+ 

This is the form taken by Levinson's theorem in the 
present case. Considering that the modulus of the 
Jost function is an even function of k, Eq. (B13) is 

simply the k = 0 limit of the dispersion relations (B6) 
and (BII). 

APPENDIX C 

We now derive the expressions of the asymptotic 
constants g:n), I = 1,2, n = 0, 1, ... , ct:J, defined by 
Eqs. (2.16), (2.12), and (2.9), in terms of the scattering 
phase shift 'YJ±(k) and the bound-state parameters En 
and en [see Eqs. (2.5)-(2.7), and (A2b)]. We begin by 
proving the holomorphy of the functions gl(k), 1= 
I, 2, for 1m k :s;; 0 stated in Sec. 2. As we have seen, 
their definition is 

g(k, E) = ik + [J(k, E)t1 .!{ f(k, E; p)lp-o 
dp 

N++N-
+! I (1 +~) en 

2 n=l En k2 + P~ 
= gl(k) + Eg2(k), (C1) 

which is equivalent to Eq. (2.9) together with Eq. 
(2.21). In the lower half of the k plane, excluding the 
relativistic cut, the meromorphy of the function 
g(k, E) easily follows from the known holomorphy of 
the function f(k, E; p) and its derivative. What re
mains to be proved is the fact that the poles owing to 
the zeros of the Jost function (2.5) are exactly canceled 
by the poles explicitly contained in the sums in the 
definition (C1). Thus, it is required to show that 

. a. (a )-1 
en = 21Pn opf( -lPn' En; p)lp=o okf(k, E)I~.;3.." . 

(C2) 

This formula can be proved using the Wronskian 
relation 

a ( 02f af af ) 
ap f(k, E; p) apak (k, E; p) - ap (k,E; p) ok (k, E; p) 

= -2k( 1 + V;~») [f(k, E; p)]2, (C3) 

which is easily derived from the differential equation 
(1.2). We now set k = -ipn and integrate from p = 0 
to p = + ct:J, taking into account that the normaliza
tion condition (AI) implies that 

f(-ipn, En; p) = aO f(-iPn, En; p)1 !PeEn; p). 
p p=o 

(C4) 

The relation so obtained, together with the definition 
of the bound-state parameters en (A2b), is just our 
thesis (C2). 

As a direct consequence of the fact that the function 
g(k, E) has no poles, we obtain the holomorphy of the 
functions g(k) for 1m k :s;; 0 that allowed us to write 
down the dispersion relations (2.24). The asymptotic 
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constants gin), defined through the asymptotic be
havior 

N 
g,(k) = ~ g~n)( - 2ik)-n-l + O(k-N- 2), I = 1, 2, 

n=O 
1m k ~ 0, (C5) 

are all real as required by the parity relations (2.27); 
on the other hand, on the basis of the dispersion 
relations (2.24) we can anticipate some general features 
of the expressions for g~n). From (C5), we obtain for 
real k 

N 
Re g/(k) = ! g:2n+1)( -2ikr2n- 2 + O(k-2N-4), 

n=O 
1m k = 0, (C6a) 

N 
1m g,(k) = -i! g:2n)( _2ik)-2n-l + O(k-2N- 3

), 

n=O 

1m k = O. (C6b) 

Furthermore, Re g/(k) and 1m g,(k) are known func
tionals of the scattering phase shift and bound-state 
parameters, whose expressions we now write explicitly, 
using Eqs. (2.24), (2.22), (2.23), and (2.8): 

2 100 
q2 Re gl(k) = - P dq 2 2 [Sl(q) - 1], 

7T' 0 q-k 

2 100 
q2 Re g2(k) = - P dq 2 2 S2(q), 1m k = 0, 

7T' 0 q - k 

From the relations (C7) and (C6a), we expect, for the 
odd coefficients g~2n+l), integral expressions involving 
the functions S/(k), I = 1, 2, and from (C8) and 
(C6b), for the even coefficients gi2n ), integral expres
sions involving the functions 'YJ,(k), I = 1,2, in addi
tion to a contribution depending only on the energies 
of the bound states. Furthermore, Imgl(k) = Imgl(k), 
/ = 1, 2, so that the even coefficients g!2n), / = 1, 2, 
do not depend on the bound-state parameters Cn , 

while the odd coefficients gi 2n+l) depend on the Cn in 
the following simple manner: 

N++!V 
g12n+1) = g12n+l) + 22n+l ! Cmp!:, 

m=l 

N++N- C 
g~2n+1) = g~2n+1) + 22n+1 m~l E: p!:, (C9) 

as can be easily derived from the definition (2.21). 
We now proceed to apply Roberts method to get 

the expressions for the odd coefficients gl2n+l). We 
integrate the functions 

FI(k) = k2n+1[gl(k) - :~lg:2»( -2ik)-2>-} 1 = 1,2, 

(C10) 
along a contour composed of a large semicircle in the 
lower half k plane and of the real axis indented at 
k = 0 and, using the holomorphy and the asymptotic 
expansions of the functions g,(k), we get 

g:2n+1) = (_l)n+l 22n+2f+00 dkk2n+1 (1m g,(k) 
7T' -00 

- ~0(_l)mg:2m)(2k)-2m-l). (C11) 

It is possible to write these equations in a more com
pact form, eliminating the subtraction terms in the 
integral by (2n + 3) partial integrations; using the 
operator 

d 
D = k-k 

k dk' 
(C12) 

whose properties are discussed in Appendix D of 
Paper I, to which we refer for details, the expressions 
(C 11) also read 

gN(2n+1) = (_1)n+12
2n

+
3 roo dkD2n+3[k-lS (k)] 

I 1T(2n + 3)! Jo k I, 

1 = 1, 2. (C13) 
Our final result for the odd coefficients is so obtained 
inserting (C13) in (C9) 

g(2n+1) = - dkD2n+3[k-lS (k)] ( 1)n+122n+3100 

I 7T'(2n + 3)! 0 k I 

+ 22n+1 N~N- (bll + Eb/2 ) Cmp!:, I = 1, 2, 
m-l m 

(C14) 
where bli is the Kronecker symbol. 
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Let us proceed now to discuss the even coefficients. 
From (C6b) and (2.22), we see that we have to study 
the asymptotic behavior of the functions SI(k), 1= 
1,2, for large k: 

N 
SI(k) = bn + 2 I g:2n)( _2ik)-2n-2 + O(k-2N- 4). 

n=O 

(C15) 

However, the exponential dependence on the phase 
shifts of the function S(k, E), implied by the definition 
(2.23) and the dispersion relations (2.8), forces us to 
derive the functional expression for the even coeffi
cients g:2n) by two steps. First, we find the expressIOn 
of the asymptotic coefficients of the function 

d 
H(k, E) = -In (f(k, E» = HI(k) + EH2(k), 

dk 

1m k ~ 0, (CI6) 

as functionals of the phase shifts and bound-state pa
rameters, and then we give the relation between these 
coefficients and the coefficients gl2n). Our starting 
point is the meromorphy of the functions HI(k) and 
H2(k) for 1m k ~ 0, so that we apply the Roberts 
method to the functions 

HI(k) = ~ :k In [f(k, E)f(k, -E)], 

E2H (k) = §: .!LIn [ f(k, E) ] 1m k < O. (C17) 
2 2 dk f(k, -E) , -

To this end, let us introduce the asymptotic expressions 

N 
HI(k) = I Hin)k-n- 2 + O(k-N- 3), 

n=O 

N 
H2(k) = IH~n)k-n-3 + O(k-N-4), (C18) 

n=O 

as implied by the asymptotic expansions (2.12) and by 
Eq. (CI6), that can be written, together with the 
definition (BI), 

(0 d fO [d 
H(k, E) = Joo dk gl(k, p) dp + E 00 dk g2(k, p) 

+ 2 k 2 g2(k, p)] dp. (CI9) 
k+M 

We may now proceed along the same lines as above 
for the functions gl(k); we obtain expressions for the 
asymptotic coefficients of the real part, for k real, of 
the functions HI(k) in terms of the generalized 

moments of the imaginary part, plus a contribution 
resulting from the poles lying in the half plane 1m k ~ 
0, just as shown by the formula (CI4). By integrating 
the function 

k2n[ HI(k) _2%:HifJ)k- fJ- 2] 

along the same contour as the function (CIO), we 
obtain the expressions 

N++N-
+ (_l)n+1 ~ p~+2. (C20) 

m=l 

Now let us perform the integration along the same 
contour of the function 

k2n ( h(k) _ :~1 hfJk-fJ ) , 

where h(k) is the function 

E2H (k) = §:..!!. In ( f(k, E) ) 
2 2 dk f(k, -E) 

which behaves asymptotically as implied by (CI8): 

N 
h(k) = ~ hnk-n + O(k-N- 1

). (C2l) 
n=l 

The odd asymptotic coefficients are then given by 

h2n+1 = 1. f+oo dkk2n (~ .!L [1J+(k) - 1J_(k)] 
7T -00 2 dk , 

n ) N++N-+ i~Ih2fJk-2fJ + (_I)n ~1 EmP~. (C22) 

We can now write the integral appearing in (C22) in a 
more compact form integrating by parts and taking 
into account, in the case n = 0, the normalization 
(B13) of the phase shifts. In fact, in this case the 
relation (C22) is 

where we have used the behavior for large k implied by 
(B2): 
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The relation between the value of the phase shifts for together with their asymptotic expansions 
k = 0 and the number of bound states allows us to 
give the following expression for hI: 

N++N-
+ L Em - M(N+ - N-). (C2S) 

m=1 

Performing the same steps for the other coefficients, no 
contribution comes from the k = 0 limit of the phase 
shifts because of the factor k 2n , and our final formula 
reads 

n > 0, (C26) 
where 

In = 1 (+oo dkD~n+l['fJ+(k) - 'fJ-(k)]. 
7T(2n + 1)! 1-00 E 

(C27) 

Now it remains to give the relations between the 
coefficients (C20) and (C26) and the coefficients 
g:2n), using Eqs. (CIS) and (C16), where this last 
equation implies for real k 

S(k, E) Re H(k, E) = - ~ dd
k 

S(k, E). (C28) 

However, the validity of this relation on the two Rie
mann sheets can be expressed by the two coupled 
equations 

d 2 
dk S2(k) = - k2 + M2 Re h(k)SI(k) 

- ( 2 k 2 + 2 Re HI(k») S2(k). (C29) 
k+M 

It is more convenient now to make use of matrix 
notation, introducing the vector v(k) and the matrix 
A(k), 

A(k) == ~ 2 Re h(k) 
(

-2 Re H1(k) 

41 -----'--'
k2 + M2 

-2 Reh(k) ) 
k ' 

- 2 2 2 ReHl(k) 
k+M 

(C30) 

N 
v(k) = LV n( - 2ik)-2n + O(k-2N- 2

), (C31) 
n=O 

N 
A(k) = LAn< - 2ikr2n- 1 + O(k-2N- 3

). (C32) 
n=O 

Equation (C29), which now reads 

~ v(k) = 4iA(k)v(k), (C33) 
dk 

implies the following recursion relation for the vectors 

n 

nVn = L An_mvm, 
m=O 

which for n = 0 yield the condition 

(C34) 

(C35) 

To solve the recursion relation (C34), we introduce the 
matrices 

which are assumed to exist for each positive integer 
(this is proved below). The relations (C34) then 
become 

n-I 

Vn = Bn L An-mvm, n ~ 1. (C37) 
m~O 

These recursion relations can be simply solved noting 
that the only possible expression for vn obtained by 
iteration must be 

n 

Vn = Bn L L L [n, //0'1 ... 0'1; 71 ••• 71-Il 
!=1 a T 

where the unknown numerical coefficients [n, [[aI' ... , 
a!; 7 1 , ••• , 71_1] are for the moment only required to 
satisfy the dimensional condition 

! 

ZO'; = n. 
;=1 

(C39) 

If we now put the expression (C38) into the recursion 
relation (C37), we find that the coefficients [n, /[0'1 •.. 
a!; 71 ••• 71_1] are different from zero only if 

k 

7k = n - za;, k = 1,2, ... ,1 - 1; (C40) 
;=1 
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moreover, these coefficients must satisfy the following 
recursion relation: 

[n, //(11 ... (11; T1 ... T1-1] 

= [n - (11,1- 1/P'2' .. (11; T2' •. TI_1], 

with the starting condition 

[n, lin] = I 

so that we obtain the simple solution 

[n, 1/(11 ... (11; T1 ... TI_1] = 1. 

I> 1, 
(C41) 

(C42) 

(C43) 

We are now in the position to solve our problem, 
taking into account that equations (C30), (C3I), and 
(CIS) imply 

(1) (g~zn») 
Vo = 0' vn+l = 2 g~2n) , n ~ O. (C44) 

Equations (C32) and (C30), together with the asymp
totic conditions (CI8) and (C2I) and the expressions 
(C20) , (C26) , and (C27) , completely determine the 
functional dependence of the matrices An from the 
phase shifts and the bound-state parameters 

( 

H(2n-1) h) 1 2n+1 
A - 2i 2n n-1 n 

n - () _ ~ (iM)2n-2m-2h2m+1 t(iM)2n + H12n-'-l)' ~ 1. 
m=O 

(C4S) 

It remains to check the condition (C3S) and to con
struct the matrices Bn. The matrix Ao is given by 

(C46) 

so that the condition (C3S) is verified because of 
(C44). On the other hand, the non vanishing eigenvalue 
of the matrix Ao is t, so that the matrix Bn exists for 
any positive integer n: 

(

1 2h1) n n(2n - 1) 
Bn = 2' n ~ 1. 

o --
2n - 1 

With the notation 

(C47) 

Xl == (~), X2 == (~), (C48) 

the functional expression of the even coefficient 
g~n), m = 1, 2, is finally given by the matrix element 

g~n) = t(xm , V n+1) 
n+l 

= t ~ ~ (xm, Bn+1A"lBT1A"s ... A"I_1BTI_1A",x1), 
1=1 " 

we obtain 

g~O) = -viZ) + [J~ll]Z, 
g~O) = _2J~1), 

(C49) 

where the sum ~" runs over all the possible combina
tions of I positive integers (fj satisfying the condition 

1 

~ (1j = n + 1, 
i=1 

while the (/ - 1) positive integers Tk are equal to 

We can also state, just by looking at the recursion 
relation (C37), that the total sum ~r~l ~ is composed 
of 2n terms. As an example, we write down the 
explicit dependence of the coefficients g~n) , for n ~ 2, 
on the phase shifts and bound-state parameters. First, 
it is convenient to introduce the quantities 

(CSO) 

If we now insert in (C49) the matrices 

(CS1) 

gi2) = -vi') + l6[Ji2)]2 - tJ~2)[J~1)]2 + iJ~3)J~1) + tM2[J~1l]2 + t[J~lI]', 

(CS2a) 

(CS2b) 

(CS2c) 
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g(2) _ .!J(S) .£[J(l)]S JU'M2J(l) + 2J(1)J(2) 2 - -3 2 - 3 2 - 3 2 2 1, (C52d) 

g~4) = -!JiS) + Vi4)J~2) _ 91S[Ji2)]S _ tJi4)[J~1)]2 - tJ~2)J~l)J~3) + tJ~5)J~1) + i-[J~S)]2 
+ tJ~S)[J~l)]S + -/]"[J~1)]6 + ~gM2J~1)J~S) _ iM2J~2)[J~1)]2 

+ -i-M2[J~1)]4 + J-N M4[J~1)]2 - tJi2)[J~1)]4, (C52e) 

g~4) = -tJ~5) + Ji4) J~l) + tJ~S) Jf2) - tJ~3) [J~1)]2 - !J~l) [Ji2)]2 

+ 2j<2)[J(l)]S _ --.L[J(1)]5 _ .ll.M2J(S) + JiM2J(2)J(1) 16 [J(1)]3 2 & 8M'J(l) 
3" 1 2 1 5 2 1 5 2 3 1 2 - -3- 2 - -TI"' 2' (C52f) 

APPENDIX D 

In this appendix we discuss the properties of the 
functions F:l» , I = 1, 2, P = 0, 1, .. " defined by 
Eq. (2.15): namely, the structure of the recursion 
relations (2.13) for the functions gln)(p), 1= 1,2, 
n = 0, 1, 2, .... We start writing down the recursion 
relations (2.13) in a slightly different form with the 
substitution E = M2: 

d n-l 
- gin)(p) = _gin+l)(p) -,l gin-1-m)(p)gim)(p) 
dp m=O 

n-l 
- E,l g~n-l-m)(p)g~m)(p) 

m=O 

n+l 
+ !,l g~n+l-m)(p)g~m)(p), n ~ 0, 

m=O 

(Ola) 
d n-l 
_ g~")(p) = _g~n+l)(p) _ 2,l gin-l-m)(p)g~m)(p), 
dp m=O 

n ~ 0. (Olb) 

Here and in the following, a sum is understood to 
vanish if the upper value of the summation index is 
smaller than the lower value. The first step is to obtain 
all the derivatives of the two functions giO)(p) and 
g~O)(p) in terms of the functions gln)(p). It is easy to 
prove by induction that the nth derivative of the 
functions glO)(p) has an expression of the following 
kind (we omit the p dependence): 

dn 
_ g(O) = (_l)ng(n) + A(n)[g(O) g(1) ... g(n-2). 
dpn 1 1 1 1, 1, ,1 , 

g~O), g~l), ... , g~n); E], n ~ 1, (02a) 

£.- g(O) = (_I)ng(n) + A(n)[g(o) g(1) ... g(n-2). 
dpn 2 2 2 1, l' ,1 , 

g~O), g~l), ... , g~n-2); E], n ~ 1. (02b) 

The functions Aln) are sums of products of the 
functions g~ n)(p) and of the nonnegative integer powers 
of E in such a way that each term of this sum has the 

correct dimensions. However, not all the possible 
combinations of the functions g~n)(p) and the powers 
€m appear as terms of the sums Aln). In fact, the 
proliferation of the terms, as the order of the derivative 
of the gfO)(p)'s increases, must satisfy certain rules 
because of the expressions (01) of the first derivative 
of the functions gln)(p). The following is proved 
immediately by induction: 

(i) Each term of the sum Ain)[A~n)] contains an 
even or null [odd] number of functions g~ll(p); 

(ii) the powers €m enter only in those terms of the 
sum Aln) containing at least m pairs of functions 
g~!)(p) ; 

(iii) the sum A~n) does not contain any term that is a 
product of functions gin)(p) only; 

(iv) the sum Al2l» does not contain the terms 
[giO) (p) ]211+1+<111. 

Now we introduce a compact notation for the 
general term entering in the sum Aln), showing ex
plicitly the dimensions 

I 

P [n I' S '" S ] = IT g('j)(p) <l , ,1 I - (I , 

1=1 

q = 1,2, n ~ 0, 1 ~ 1 ~ 'max, (03) 

where the index n means that the following conditions 
on the nonnegative integers 31 hold: 

I 

,lSi + 21 = n + 2, if q = 1, 
i=1 

I 

,lSi + 1 = n + 1, if q = 2, (04) 
i=1 

while the maximum value of I for fixed n is given by 

n 
Imax = - + 1, for even n, 

2 

n+l 
Imax = -- for odd n, q = 1, (OSa) 

2 

lmax = n + 1, q = 2. COSb) 
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The expressions of the sums A:n), therefore, read 

A1n)[g1°), ... , gin- 2 ); g~O), ... , g~n); e] 

= ! B1(n, I; S1 ••• sl)P1[n, I; S1 ..• S/] 

+ ! B2(n, m, I; S1 •.. S20+mHmo-l)EmP2[n + 1 - 2m, 2(1 + m + bmo - 1); SI •.• S2(HmHmo-U] 

+ ! BI2(n, m, p, II' 12 ; S1 ••• Sit; tl '" t2(i2+mHmo-l)E
mP1[p, /1 ; S1 ••• S/1] 

X P2[n - 2m - p - 1,2(12 + m + bmo - 1); t1 ... t202+mHmo-lJ], (06) 

A~n)[g~oJ, ... , g~n-2J; g~OJ, ... , g~n-2J; E] 

=! C2(n, m, I; S1 •.• S20+mJ_1)EmP2[n - 2m, 2(1 + m) - 1; S1 ... S20+mJ-tl 

+ ! Cl2(n, m, p, 11 , 12; S1 ••. sit; t1 ... t2(l+mJ_1)EmP1[p, /1 ; S1 ••. S/1] 

X P2[n - 2m - p - 2,2(12 + m) - 1, t1 ... t202+mJ-1]' (07) 

All the coefficients Band C multiplying the products 
Pq [Eq. (03)] are numerical p-independent quantities 
which do not depend on the starting functions g~OJ(p) 
andg~O)(p), that is, on the potentials, and could be com
puted once and for all. The first sum of the expression 
(06), i.e., that containing the coefficients B1 , runs 
over the values of the indices I, S1' ••• , SI' satisfying 
the conditions (04) and (OSa) [except the value 1 = 1 
that corresponds to the explicitly written term in Eq. 

(02a)]. The same holds for the second sum containing 
the coefficients B2 , for any fixed value of m, while the 
summation over m goes from m = 0 to a maximum 
value mmax fixed by the inequality 

4mmax - 2 ::;; n < 4mmax + 2. (08) 

The third sum containing the coefficients Bl2 runs over 
the indices 11, 12, SI' ••• , S11' t1, ... , t2(l+m+dmo-1) ' 
for fixed values of m and p, following the same rules 

TABLE II. The coefficients B2 and B18 of Eq. (D6) and C1 and C12 of Eq. (D7) for n up to 5. The coefficients B 1(n, I; S1 ••• s,) 
are not printed here because they are equal to the coefficients {n, I; S1 ... s,} given in Table II of 1. All these coefficients 
have been checked by hand. We note that by definition [see Eqs. (D3), (D6), and (D7)] all the coefficients are completely 

symmetric in the indices s/ and t/ separately. 

B 2(1,0, 1;01) = t, 
Bu(2, 0, 0, 1, 1; 0; 0 0) = -1, 
B.(3,0,2;0001) =-t, 
Bu(3, 0,1, 1, 1; 1; 0 0) = 3, 
B.(4,0, 1; 2 2) = -¥, 
B.(4, 1, 1; 0 2) = 6, 
B12(4, 0, 0, I, 1; 0; 0 2) = -19, 
B1I(4, 0, 0,1,2; 0; 0000) = I, 
Bu(4, 1,0, I, 1; 0; 00) = 12, 
BII(4, 0, 2, 2,1; 0 0; 00) = -19, 
B.(5, 0, 1 ; 2 3) = 12, 
B2(5, 0, 2; 0 111) = _1~§., 

B.(5, I, 1; 1 2) = -18, 
Bu (5, 0, 0, 1, 1; 0; 12) = 75, 
Bu(5,0, 1, 1, 1; 1;02) = 66, 
Bu (5,O,1, I, 2; 1; 0000) = -5, 
Bu (5, 0,2, 2,1; 00; 01) = 167, 
B .. (5, 0, 3,2, 1; 0 1; 00) = 138, 
1111(5, 1, 1, 1, 1; 1; 0 0) = -34 
Cu (2, 0, 0, I, 1; 0; 0) = 2, 
Cu (3, 0,1,1,1; 1; 0) = -4, 
C.(4, 1, 1; 000) = 4, 
Cu (4, 0, 0, I, 2; 0; 000) = -2, 
Cu (4,O, 2,1,1; 2; 0) = 6, 
C2(5,0, 2; 0 0 3) = 6, 
Ca(s,0,3;00001)= -1, 
Cu(s, 0, 0.1,1; 0; 3) = -8, 
Cu (5,O,I, 1, 1; 1;2) = -18, 
Cu (5, 0, 2,1, 1; 2; 1) = -18, 
ClI(5,0,3,1,1;3;0) = -8, 

B 2(2, 0, 1 ; 0 2) = -1, 
BI (3,O, 1; 0 3) = l, 
BB(3, 1,1; 0 1) = -4, 
B2(4,0, 1; 04) = -2, 
B2(4, 0, 2; 0002) = 2, 
B2(4, 1. 1 ; 1 1) = 5, 
B12(4,O,O,I, 1;0; 11) = -15 
Bu(4, 0,1, 1, 1; 1; 0 1) = -25 
B18(4, 0, 2,1,1; 2; 00) = -6 
B2(5, 0, 1 ; 0 5) = to 
B.(5,O,2;0003) = -5, 
B.(5,0,3;000001) = 1, 
B2(5, 1,2; 0001) = 55, 
Bu(5, 0, 0,1,2; 0; 0001) = -52 
B12(5, 0, 1, 1, 1; 1; 11) = 1~§. 
Bu(s, 0, 2,1,1; 2; 0 1) = 54 
Bu(5, 0, 3,1,1; 3;00) = 10 
B .. (5, 1, 0, 1, 1; 0; 0 1) = -68 

C2(3, 0, 2; 0 01) = 1, 
C.(4, 0, 2; 002) = -3, 
Cu (4, 0, 0,1,1; 0; 2) = 6 
Cu (4,0, 1, 1, 1; 1; 1) = 10 
ClI(4, 0, 2, 2, 1;00;0) = 12 
Ca(5, 0, 2; 0 1 2) = 27, 
C.(5, 1,2; 001) = -34 
ClI(5,0, 0, 1,2; 0; 0 01) = 44 
Cu (5,O, 1,1,2; 1; 000) = 8 
Cu (5, 0, 2, 2,1; 0 0; 1) = -34 
Cu (5, 0, 3, 2, 1 ; 0 1 ; 0) = -68 

B 2(2,0, 1; 11) = -i, 
BsCl, 0, 1 ; 1 2) = 3 
Bu(3, 0, 0,1, 1; 0; 0 1) = 8 
Bs(4,0, 1; 1 3) = -5 
B 2(4, 0, 2; 0011) = ¥ 
B 2(4, 1,2; 0000) = -3 

Bs(5, 0, 1; 1 4) = 1.1 
B2(5, 0, 2; 0012) = _Ai
BI (5, 1, 1;03) =-8 
Bu(5, 0, 0, 1, 1;0;03) = 36 

Cu (3, 0, 0, I, 1; 0; 1) = -4 
Ca(4, 0, 2; 011) = -5 

C.(5,O, 2; 111) = .: 

B.(2, 1, 1; 00) = 1 



                                                                                                                                    

ON INVERSE PROBLEM FOR KLEIN-GORDON s-WAVE EQUATION 567 

(D4) and (D5), and, for every fixed value of m between 
m = 0 and m = mmax' p goes from p = 0 to p = n -
2m - 2, where mmax in this case is fixed by the follow
ing inequality: 

4mmax 5: n < 4mmax + 4. (D9) 

On the other hand, the first sum in the expression 
(D7), namely that containing the coefficients C2 , runs 
over the indices I, SI"" ,S20+m)-1 with the usual 
conditions (D4) and (DSb) [except the value I = I 
that corresponds to the explicitly written term in Eq. 
(D2b)], for any value of m between m = 0 and m = 
mmax, where mmax is given by the condition (D9); the 
same holds for the indices 11, 12 , SI' ••• , S1

1
, 11' ••• , 

120+m )-1 in the second sum for any fixed value of m and 
p, while, for m between m = 0 and m = mmax,P goes 
from p = 0 to p = n - 2m - 2, where mmax is given 
by the inequality 

4mmax + 2 5: n < 4mmax + 6. (DIO) 

We did not try to find recursion relations for the 
coefficients Band C, as we did in the simpler nonrela
tivistic case (see I, Appendix F), but we limit ourselves 
to the demonstration of the general structure of the 
solution, with the aim of giving a useful basis for per
forming an algebraic computation of the coefficients 

Band C in FORMAC language by computer. We have 
obtained all these coefficients by computer for n up to 
5 (see Table II). However, we note that the coefficients 
B1(n, I; SI ••• sz) are known from Paper I. In fact, 
making the choice g~O)(p) = 0, we find that all the 
g~n)(p) vanish and the recursion relation (Dla) reduces 
to the nonrelativistic relation. In the notation of 
Paper I, we have 

B1(n, I; SI ••• sz) = {n, I; SI ••• sz} 

(see Table II of I). 
We finally obtain the expressions of the functions 

FI(n) defined by Eqs. (2.15), using the relationships 
between the functions glO)(p) and the potentials (2.14) 
and performing the nth derivative of the potentials 

~ V ( ) _ ! ~ (n) d
n

-
i 

(0) ~ (0) 

d 
nIP - 4 k., . d n-i g2 (p) d i g2 (p) 

P 1=0 I P P 

dn 
(0) 

- dpn gl (p), (Dlla) 

dn dn 

dpn V1(p) = - dpn g~O)(p). (Dl1b) 

We get the final result by substituting in the above 
expression the derivatives of the function glO)(p), as 
given by Eq. (D2), and setting E = M2. 
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Orthogonality of a Set of Polynomials Encountered in Neutron
Transport and Radiative-Transfer Theories * 
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The properties of the polynomials h!(v) which appear in the spherical-harmonics expansion of the eigen
solution <py(p,) = ~;:o H21 + l)P!(p,)h!(v) in plane-symmetric one-speed transport problems with 
aniso~ropic s~tte!ing are re~iewed a~d fur~he~ in~estigat~d. These polynomials are shown to be orthog
onal m the StJeitJes sense With a weight dlstnbutlon which contains a continuous as well as a discrete 
portion. Some further properties of the h!(v) are listed, taken from the Tchebycheff theory of 
orthogonal polynomials. 

1. INTRODUCTION 

In the treatment of the case of anisotropic scattering 
in neutron-transport as well as radiative-transfer 
theories, it is customary to express the solution as an 
expansion in spherical harmonics. One is then led to a 
special set of polynomials which appear as the expan
sion coefficients. These polynomials contain the 
Legendre moments of the scattering function as 
parameters and reduce to the Legendre polynomials 
if there is no scattering. They have been used by all 
the authors (among others, Chandrasekhar,l Kuseer,2 
Mika,3 Lathrop,4 Mulliken,5 Inonii and Usseli,6 
McCormick and Kuscer,7 Boffi and Trombetti8) who 
have considered linear or more general anisotropic 
scattering. In addition, they appear also in the 
spherical harmonics treatment of the isotropic scat
tering (as may be seen, e.g., in the writings of Mark,9 
Davison,lo and Kofinkll) as a linear combination of 
two kinds of Legendre polynomials. In spite of this 
wide use, however, the orthogonality properties of 
these polynomials and some of the immediate conse
quences which follow do not seem to have been 
pointed out in the literature. This is the aim of the 
present paper. 

• This research is supported by the National Science Foundation, 
NSF GU 2151 Sub 39. 

t On leave from the Middle East Technical University, Ankara, 
Turkey. 
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In the first part of the article we describe briefly the 
polynomials in question and obtain the orthogonality 
relation, thus showing that they fall within the 
general class of orthogonal polynomials. In the 
second part, we present some of their properties which 
may be of interest for neutron-transport as well as 
radiation-transfer problems. These properties follow 
directly from the general Tchebycheff theory and are 
listed here either without proof or with only a sketch 
of a proof. We note further that although these 
polynomials have sometimes been defined in the 
literature5.7 for the more general case of azimuthal 
dependence, our considerations here are restricted, 
for simplicity, to the azimuth-independent case. 
Throughout the article, the notation of neutron-trans
port theory is used. 

2. POLYNOMIALS hl(v) AND THEIR 
ORTHOGONALITY RELATION 

A. Description of the Polynomials hl(v) 

We consider the polynomials h,(v) defined by the 
following recurrence relation: 

(l + l)hl+l(v) + Ih l_ l (v) 

- (21 + 1)(1 - cfz)vhl(v) = 0, for I ~ 0, (1) 

and the initial condition 

ho = 1. (2) 

Here c and JI are real parameters which satisfy the 
conditions 

0< c < I, 

/0 = 1, 

I!zl < 1, for I ~ 1, 

(3) 

(4) 

(5) 

568 
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and 
00 

I (21 + 1) If!1 < 00. (6) 
1=0 

Clearly, h!(v) is a polynomial of degree 1 in v which 
contains only even or odd powers of v as 1 is even or 
odd. The first few polynomials are 

hl(v) = (1 - c)v, 

h2(v) = t[3(l - c)(1 - cj;)V2 - 1], (7) 

ha(v) = (1/3 !){3 x 5(1 - c)(l - %.)(1 - cf2)V3 

- [4(1 - c) + 5(1 - cfJ]v}. 

We have the symmetry property 

(8) 

Note that, for c = 0, the hl(v) reduce to the Legendre 
polynomials PI(v). We also see from relation (1) that 

(9) 

The lth polynomial can be expressed as the following 

B. Connection with Neutron-Transport Theory 

The polynomials hl(v) occur in neutron-transport 
theory in the following way. We consider the one
speed, stationary, plane-symmetric, homogeneous 
Boltzmann equation -for neutron transport in an 
infinite medium with an azimuth-independent scat
tering law expressed as an infinite series of Legendre 
polynomials. We have then, using the notation of 
Case and Zweifel,12 

cJ1p(x, ft) + .n{ ) 

ft ox r,X,ft 

= lc !~ (21 + l)fzPz(ft) f:I\P(X, ft')Plft') dft', (15) 

11 K. M. Case and P. F. Zweifel, Linear Transport Theory 
(Addison-Wesley Publ. Co., Reading, Mass., 1967). 

determinant: 

~ov 1 

1 ~IV 

1 0 2 
h (v) =- 0 0 ! I! 

0 

2 

~2V 

3 

0 

0 

3 

~3V 

1- 1 

1 - 1 ~!-1V 

for 1 ~ 1, (10) 
where the abbreviation 

~I = (21 + 1)(1 - cfz) (11) 

is used. Expanding the determinant in (10) with 
respect to the last row or column, one easily sees that 
it satisfies the recurrence relation (1). 

The coefficient of the highest power in hl('v) may 
be written down from (10) as 

a = .!.(rr ~.) = (21- 1)!1 IT (1 - cf,.) (12) 
1.1 I! i=O • I! ;=0 ' , 

while the other terms can be obtained from the 
following formula [Eqs. (2) and (6)]: 

(14) 

where x is the distance measured in mean free paths, 
ft is the cosine of the angle between the x axis and the 
neutron velocity, tp(x, p,) is the neutron distribution 
in (x, ft), the I! are the Legendre coefficients for a 
scattering law [given as the probability distribution 

f(Q • Q') = i 21 + 1 f!P!(Q • n') (16) 
1=0 417 

for scattering from the direction Q into Q' with 
normalizationio = 1], and c is the ratio of the cross 
section for scattering to that for scattering plus 
absorption. We assume no multiplication, so that 
c < 1. 

Making the substitution V'(x, ft) = CPy{ft)e-""Y and 
defining 

CPy, = f~1 cpyCp)P,Cp) dft, (17) 
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we obtain the well-known eigenvalue equation for 
1>v(p): 

00 

(v - p)4>hJ,) = lev! (21 + l)flPlp)4>v!' (18) 
1=0 

Multiplying Eq. (18) with Pk(p), integrating over P 
from -1 to + 1, and using the recurrence relation 
for the Legendre polynomials, we obtain a recurrence 
relation for the functions 4>V! which is identical to the 
relation (1). With the normalization 4>vo = 1, these 
functions become identical with the polynomials hz(v). 

Thus the polynomials hl(v) are the coefficients in 
the Legendre expansion of the solution 4>v(p) of the 
eigenvalue equation (18): 

00 

4>lp) = ! t(21 + l)Pz{p)hb). (19) 
1=0 

If the scattering law is expressed as a finite sum 
containing Legendre polynomials up to PN(p), one 
has It = ° for I ~ N + 1 and the relation (1) becomes 
identical with the Legendre recurrence relation for 
I ~ N + 1. In particular, for isotropic scattering, 
we have It = ° for I ~ 1 and hz(v) can be expressed as 
a linear combination of the two sets of polynomials 
Pz(v) and WZ-l(V) which satisfy the Legendre recur
rence relation. We have, in this case, 

where 
Wz-b) = Pz(v)Qo(v) - Qb) 

= 1 J+1 Pb) - Pz(p) dp. (21) 
-1 v - P 

Thus, here the hl(v) reduce to the polynomials 
(-I)IG!(v) used by Davison1o and G!(v) used by 
Kofink.ll 

For a finite anisotropy of order N, it is still con
venient to express hl(V) for I ~ N as a linear combina
tion of PI (v) and WI_leV). One can write, following 
Kofink,ll 

hz(v) = AN(v)Pl(v) - evBN(v)Wl_l(V), for I ~ N, 

(22) 

where AN(v) and BN{V) are polynomials in v2 of degree 
N which are determined from the requirement that 
the expression represent hN{v) and hN+1(v) identically. 
One therefore finds, 

A~v) = (N + l)[hN{v)WN(v) - hN+1(v)WN_l{V»), 

B~v) = N + 1 [h~V)PN+1(V) - hN+l{v)P~v»). (23) 
ev 

To establish the orthogonality of the h,{v), we need 
to recall the essential properties of the eigensolutions 

4>.{p). As IS well known, the eigenvalue spectrum 
contains a continuous portion extending over the 
interval (-1, + 1), while the discrete eigenvalues 
are given by the roots of the equation 

where 

A(v) == 1 - levJ+1 M(p, v) dp 
-1 V - P 

= l' - levi+1 M(p, p) dp = 0, (24) 
-1 v - P 

00 

M(p, v) = ! (21 + l)ftPz{p)hb). (25) 
1=0 

Both P1(p) and hl(P) are bounded in -1 ::;; p ::;; 
+ 1; it is clear that the series for M(p, v) and M(p, p) 
will be uniformly convergent if the condition (6) is 
satisfied. 

Since A(v) = A( -v), the roots occur in pairs 
=f v j' Kuscer7 has shown that, for e < I, all the roots 
are real. We shall assume that the roots all lie outside 
the interval (-I, + I). This means that we are 
excluding the exceptional case of A(V) [which is 
defined in (28)] and M(v, v) having common roots in 
the interval (-1, + I). The total number of roots 
will depend on the values of e and /It it will remain 
finite even when the /z form an infinite sequence 
(provided the convergence conditions are satisfied), 
as we show in Sec. 3F. We shall enumerate them in 
decreasing order of magnitude, VI being the largest. 

The solutions belonging to the discrete spectrum 
are given by 

M(p, ±Vi) 
4>iip) = ±tevi ' (26) 

±vi - p 

while the continuous spectrum solution is expressed as 

M(p, v) 
4>lp) = lev P + A(v)b(P - v) (27) 

v-p 
with 

f+l M(P v) 
A(V) = 1 - levP , dp, 

-1 V - P 
(28) 

where P denotes the Cauchy principal value of the 
integral. 

It is seen from (24) that A(v) is an analytic function 
of v over the whole v plane with only a cut on the real 
axis between -1 and + 1. At infinity, A(v) is bounded 
and equal to 

!~n;,A(v) = 1 - Ie L~lM(P'P) dp = fi (1 - eli)· 

(29) 

Denoting by A+(v) and A-(v) the boundary values 
of A(v) above and below the cut (- I, + I), respec
tively, one has the relations 

A±(v) = A(V) ± threvM(v, v) 
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or A+(v) + A-(v) = 2A(v), 

A+(v) - A-(v) = hrcvM(v, v). (30) 

The normalization integrals for the discrete and 
continuous spectrum eigenfunctions are defined by 

(31) 

and 
(32) 

where "P(v) is a function which may be expanded in 
terms of the eigenfunctions 4>ht) and 4>i±(f/,). Conven
ient expressions for these integrals are 

1 2 ( ) aA(v) I N j ± = ±2cvjM vj ' Vj -~-
uV vi 

(33) 

and 
N(v) = vJ\+(v)A-(v). (34) 

C. Orthogonality Relations for hz(v) 

Mika3 has proved that, for an anisotropy of finite 
order N, any function "P(p) satisfying the Holder 
condition in the interval (-1, + 1) can be expanded 
there in terms of the eigenfunctions (26) and (27) of 
the whole spectrum as 

"P(fl) = f:1A
(V)4>vCfl) dv 

M 

+ I [CX j +4>Afl) + ocr4>r(P)], (35) 
;=1 

where 
1 f+1 A(v) = - P4>.(fl)"P(P) dp, 

N(v) -1 

1 f+1 oc j ± = - Wpj±(p)"P(p) dfl, 
N j ± -1 

(36) 

and 2M is the total number of the discrete eigenvalues. 
Consider the expansion of Pk(p)/(1 - C!k)' where 

k < N. One obtains from (36), using the expansion 
(19), the recurrence and orthogonality relations of 
the Pz(fl), and the recurrence relation (1) for hk(v), 

A(v) = [v/N(v)]hk(v) 
and 

OCj'F = (=fvj/N;'F)hk(v;). (37) 

Substituting in (35), multiplying by Pz(fl) , and 
integrating over fl from -1 to + 1, one is led to the 

or, since the inversion of the order of integrations can 
be justified here (the first term on the right-hand side, 
which is the critical one, contains only one principal
value integraP3), to the orthogonality relation 

215 f+l v __ ----<k"'-Z __ = hiv)h,(v) - dv 
(21 + 1)(1 - eiz) -1 N(v) 

+ ~ [hiV;)h zCv;) .!.L 
;=1 N j + 

+ hi -v;)h,( -v;)(~:~) 1 (38) 

Thus, for finite N, the polynomials hz(JI) form a 
set which is orthogonal in the Stieltjes sense. The 
orthogonalization interval covers both the continuous 
and discrete spectra. 

The relation (38) is established for any finite N. 
However, it may immediately be generalized to the 
limiting case of infinite N by the following argument. 
Consider (38) for a given 

N 

MN(p, v) = I (2n + 1)!nPn(p)hn(v) 
n=O 

and k, I < N. The polynomials hk(v) which have been 
determined from M N for k < N do not change when 
new terms L;;:N+1 (2n + 1)!nPn(P)hn(v) are added to 
M N . Only the eigenvalues and the expressions for N(v), 
N;(v;) are changed. In the limit for N -+ 00, N(v) 
and N;(v;) will exist, since we have assumed the 
uniform convergence of the series for'M(p, v) so that 
A(v), M(v, v), and A(v) will all converge for N -+ 00. 

[It will be seen in Sec. 3F that the total number of 
discrete eigenvalues remains finite even for N -+ 00.] 

It is thus clear that the relation (38) will continue to 
be valid in the limit for N -+ co. 

Another argument for the validity of (38) for 
N -+ 00 may be obtained by considering the relevant 
moment problem; i.e., the problem of determining 
a function w(v) nondecreasing in a given interval 
(a, b) which will satisfy the equations 

fVkdW(v)=mk' for k=0,1,2,···, (39) 

where the moments mk form a given infinite sequence 
of real numbers. This problem has only one solution 
if the interval (a, b) is finite. Now, in our case, the 
interval (a, b) is given by (-VI, Vl) and remains 
finite even for N -+ co. [An expression for VI' valid 
in the case of N -+ co, is given in Ref. 6.] Further, the 
relations (38) imply that the moments mo, m2 , ••• , 

m2k determined from Mk(p, v) do not change when 

13 See, e.g., N. I. Muskhelishvili, Singular Integral Equations (P. 
Noordhoff Ltd., Groningen, The Netherlands, 1953), p. 59. 
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new terms are added to Mk • Thus the moments mk , 

obtained from the relations (38) for all k, determine 
uniquely a function w(v) which may be expressed as 
the continuous distribution 

and the sequence of horizontal lines 

M v. 
w(=Fv) = w(=Fl) =F I....!.., for Vm < v < vm- 1 , 

i=mNi 

with 
ill 11. 

w(=FlI) = w(=F 1) =F I....!.., for VI < v. 
i=lN, 

(41) 

The set of orthogonal polynomials constructed by 
means of this weight function 00(11) over the interval 
(-V1 ,V1), according to the Tchebycheff theory, are 
identical with the polynomials h,(v) , ensuring again 
the validity of the relations (38) for N ~ 00. We 
write them concisely as 

(42) 

where 
nl = 2/(21 + 1)(1 - e!l) = 2/~/ (43) 

We have seen that the orthogonality of the hk(v) , 
with w(v) as the weight function, follows from the 
completeness of the eigenfunctions ~v(fJ,). It is clear 
that, conversely, from the completeness of the PI(ft) 
and the orthogonality of the h,(v), the completeness 
of the ~.(p,) will follow. The expansion of PI(ft) in 
terms of 4>v(ft) may be immediately derived from the 
orthogonality of h,(v) by multiplying (38) with Pk(p,) 
and summing over k. [Here, we are assuming that 
the infinite sum (19) converges, in the distribution 
sense, to 4>.(1'). A proof is given in Appendix A] In 
this way the "full-range" completeness theorem of 
the 4>.(p,) is extended to cover the case of anisotropic 
scattering of infinite order. 

We should also note here that the orthogonality 
relations for 4>v(p,) lead to the closure relations for 
the normalized h,(v). We have 

for the discrete spectrum. 

Remark: Our restriction that there should be no 
discrete roots for Ivl < 1 is not an essential one for 
the proof of orthogonality of h,(v). If ).(v) and M(v, v) 
do have common roots =Fv, in the interval (-1, + 1), 
these Vi will be discrete eigenvalues embedded in the 
continuous spectrum, and the orthogonality relation 
(38) will only be modified then by the addition of the 
terms 

where 2M' is the number of all such roots v,. 
3. SOME PROPERTIES OF hl(v) CONSIDERED 

AS ORTHOGONAL POLYNOMIALS 

A. Various Standardizations 

From the Tchebycheff theory of the orthogonal 
polynomials,14.15 one can obtain many properties of 
the h,(v). We list here some of them which seem 
relevant for the solution of transport problems. We 
note first that h/(v) form symmetrical polynomials 
since the interval extends from -VI to +V1 and the 
weight function is odd. 

The weight function and the interval of integration 
determine the orthogonal polynomials up to multi
plicative constants. As in neutron-transport theory, 
the recursion relation (1) and the initial condition (2) 
arise naturally; one obtains for the coefficient of the 
highest power in h,(v) the expression (12). In the 
literature, two other definitions are commonly used: 

(i) The normalized polynomials h!norm)(v), specified 
by 

satisfy the recurrence relation 

vh!norm)(v) = wlhl~~rm)(v) + WI_1hl~~l'ffi)(v), (46) 

where WI is given by (14). 
(ii) The polynomials which are standardized by 

having the coefficient of the highest power set to unity, 

14 M. J. Shohat, Th60rie generale des polynomes orthogonaux de 
Tchebichef, Memorial des Sciences Mathematiques, Fasc. LXVI 
(1934). 

15 N. I. Akhiezer, The Classical Moment Problem (Hafner Pub!. 
Co., New York, 1965). 
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denoted by hlst)(v), are formulas 

h1st)(v) = hz(v)/r:1.'I,I' 

The recurrence relation satisfied by h:st)(v) is 

vh:st)(v) = hl+l(v) + w~_lh:~i(v). 

(47) n[hn_1(A.)h n(,u) - hn(A)hn_1(,u)] 

2(,u - J) 

(48) 

B. Polynomials of the Second Kind and Relations 
Between Consecutive Polynomials 

The finite-difference equation (1) has two linearly 
independent polynomial-type solutions. We have 
considered, so far, the solution which corresponds 
to the initial conditions ho = I and hI = (l - c)v. 
The second solution may be defined by ho = 0, 
hI = lor, introducing kl-l(v) = hz(v), by 

k_l = 0 and ko = 1. (49) 

We have, then, 

kl(v) = t(I - eft)v, 

klv) = (1/3!)[3 X 5(1 - ch)(l - cfJv2 - 4J; (50) 

kz(v) is a polynomial of lth degree in v. We have again 
k z( -v) = (-I)Zkl(v) and the coefficient of the 
highest power is given by 

<Xz.z(k) = IT~' = - <XI+l.!+l(h). (51) 1 (Z .) 1 
(l + I)! i=1 ~o 

It is easy to see that, in general, 

kz-b) = 1 f+>1 hlv) - h:(v') dw(v'). (52) 
->1 V - " 

The kl(v) may be called polynomials of the second 
kind associated with the recurren~e relation (1). For 
c = 0, the kz(v) reduce to the wz{v) associated with 
the Legendre equation. Also for fo = I, fz = 0 
(I> 1), i.e., isotropic scattering, one has again 
k,(v) = wz(v). 

Using the difference equation (1) and the initial 
conditions, one easily establishes the analog of the 
Liouville-Ostrogradskii formula 

hz(v)kz(v) - hZ+l(v)kz_1(v) = 1/(/ + 1). (53) 

In general, if uk(),.) and vk(P,) are two solutions of Eq. 
(1), one has the analog of Green's formula, 

n[un_lA.)Vn(,u) - un().)vn-1(,u)] 

- m[um_1(A)Vm(,u) - um().)vm- 1(,u)] 
n-l 

= (,u - ).) I ~kUk().)Vk(,u)· (54) 
k=m 

In particular, taking m = I, unO.) = hn(.A.), vn(,u) = 
hn(,u) , one obtains one of the Christoffel-Darboux 

The sum in (55) is usually called the kernel polynomial 
S"'_1(,1, It) belonging to the system hk(.A.). The formula 
can be transformed, using the relation (I), into 

(n + 1) 
2(,u _ .A.) [),.hn(),.)hn+l(,u) - ,uhn+l(.A.)hi,u)] 

n-1 
= I (k + 1)hk(.A.)hk+1{Jl). (56) 

k=O 

In the limit for,." -+ A, one obtains, from (55) and (56), 

n-1 
n[hn_1(.A.)h~(A) - hiA.)h~_1(A)J = I ~kh:().); (57) 

1<=0 

t(n + 1){A.[hn(.A.)h~+I(A) - hn+l(A)h~(A.)] 

- hnCA)hn+1(A)} 
n-l 

= I (k + l)hk(A)hk+l(A). (58) 
k=O 

It is of interest for applications to transport 
problems to consider relations which involve the 
hn(v) and the Legendre functions. Out of a large 
number of such relations, which can be constructed 
using the respective recurrence relations, we give a 
few involving PI' h, and Q!, hi: 

n 

(A - ,u) I (21 + l)PI(A)hl,u) 
z=o 

n 

- c,u I (21 + l)f,P,()')hlJt), (59) 
1=0 

n 

(A - ,u) ~ (21 + l)Ql)')hl,u) 
z=o 

n 

- c,u I (21 + l)f,Qz{)')hlp) + 1, (60) 
z=o 

n 

I (21 + l)f,Pz(A.)h ,(A) 
z=o 

n 

I (21 + l)f,Q,(A)hlA) 
1=0 
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One may define a Tchebycheff function of the 
second kind K!(v) by the integral 

J+Vl h (v') 
KI(v) = t -!-, dw(v'). 

-Vl V - V 
(63) 

The functions KI(v) satisfy the recurrence relation (I). 
In analogy to Legendre functions, KI(v) may be 
expressed by means of Ko(v) and the two sets of 
polynomials as 

K!(v) = Ko(v)h!(v) - kH(V). (64) 

C. Expression in Terms of the Moments 

The moments of w(v) were defined in (39) with 
a = -VI' b = +'111 , From symmetry, we have 

mk = 0, for odd k, 

mk = 2 iH\k dw(v), for even k. (65) 

Consider the determinants 

, for I ~ I, ~o = 1. 

(66) 

Because ~! is the discriminant of the positive-definite 
quadratic form 

i.!~omH1gig1 = L::lC~giVir dw(v), 

all the ~l are positive. The normalized polynomials 
hlnorm)(v) can be expressed in terms of the moments 

as 

mo m1 

m 1 m 2 

h:norm)(v) = (a!aH1)-1 

m l- 1 m l 

1 v 

The connection between a! and a! is given by 

fl.dfl.l+! = a~.!lnl 
or 

(/-1 )/(/-1 )2 / (1-1 )2 fl.! = II nj nat.; = 2! I! au nat.; 
i=O .=0 .=0 

(67) 

(68) 

with the convention ao,o = 1. These relations may be 

used to express all the moments successively in terms 
of c and II' One has for the first few moments 

mO = 2/(1 - c), 

m2 = 2/3(1 - e)2(1 - efl)' 

m4 = 22 2(_1- + 4 ). 
9(1 - c) (1 - efl) 1 - e 5(1 - e!i) 

(69) 

We note that the moment m21 involves the coeffi
cients f,. only up t@ k = l. 

D. Expression by Means of a Continued Fraction 

Consider the following infinite continued fraction: 

F(v) = ____ 1 ____ = !. _ w~1 _ w~I_ ... 
w~ -I'll I'll 1')1 

'11----"--

w~ 
')I - ---=----: 

w~ 
')I - -----

v -'" (70) 

where w2 is defined in (14). Following Akhiezer,16 we 
denote by 

NI(')I) = '11 /- 1 + OCIVI-3 + ... + OC C- 1 

and 

DI(v) = v! + P1VI-2 + ... + P!, 

the numerators and denominators of the successive 
finite approximations to this continued fraction. We 
thus have 

Fl = N1(')I)/D1(')I) = 1/')1, 

F2 = N 2(v)/ D2(')I) = 1/(')1 - w~M = ')1/(')12 - w~), 

etc. We specify further that 

No(v) = 0, NI(v) = 1 and Do(v) = 1, DI(v) = V. 

It can be easily checked that both of the polynomials 
N1(')I) and D!(v) satisfy the recurrence relation (48) for 
the h~8t)(V). Hence, for the infinite continued fraction 
(1/~o)F(v), the lth approximation will be just equal to 

(1/~o)Flv) = k!_b)/h/(v). (71) 

E. Asymptotic Expressions of h l +1(v)/h l(v) and 
hl(v) for I ->- <Xl and 1'111 > 1 

The asymptotic value of hl+1(V)/hc(v) for /-+- ex:> and 
1'111 > 1 can be easily obtained from an application of 
Poincare's theorem.16 Writing the recurrence relation 
(1) as 

h(/ + 2, v) + Pl(l)h(/ + 1, v) + Po(l)h(/, v) = 0, 

16 A. O. Guelfond. Calcul des differences finies (Dunod Cie. 
Paris. 1963). 
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where 

Pl(/) = - [(21 + 3)/(1 + 2)](1 - C!,+l)'II, 

Po(l) = (I + 1)/(1 + 2), 

so that 

1 .... 00 

lim Po(l) = 1, 

one sees that the equation 

A2 - 2'11A + I = 0 

must be considered. The two roots are 

Au = 'II ± ('112 - 1)!. 

According to Poincare's theorem, the limit of 
h(1 + I, 'II)/h(/, 'II) for 1-- 00 will be equal to one of 
these roots, provided they are different in modulus, 
which is the case for \v\ > I, but not for \'11\ < 1. Since, 
for c = 0, hl('II) reduces to Pl('II) and for the Legendre 
polynomials we have the asymptotic relation17 

it follows that 

lim PH1('II) = AI, 
1-+00 Pl('II) 

lim h1+l('II) = lim P1+1('II) = Al = 'II + ('112 - 1)!. (72) 
' .... 00 hb) 1-+", Pb) 

Consequently, we also have, for \v\ > 1, the 
limiting relation 

lim hb) = a function of'll, independent of I. 
I .... '" PI('II) 

To find this function, we consider the definition of 
A('II) in (24). Integrating over 1', after changing the 
order of summation and integration, one obtains 

'" A('II) = 1 - C'II ~ (21 + 1)f,Qz(v)hz(v) (73) 
1=0 

or, using (62), 

A('v) = lim (1 + 1)[Ql('II)hH1('II) - QHl('II)h('II)], (74) 
I .... '" 

which, with the relation (72), may be transformed into 

A('II) = lim h,('II) for /'11/ > 1. (75) 
I .... "'PI(V) 

It may also be of interest to consider the remainder 
term in the relation (72). Defining E'II(V) by 

h1+1(v)/hb) = P,+1(v)/Pb) - EI(V), (76) 

17 G. Szcgo, Am. Math. Soc. 23, 192 (19S9). 

where EI -- 0 for 1-- 00, we obtain, from (25) and 
(61), 

M(v, 'II) = lim I + 1 [P1+1(v)hl('II) - Pz(v)hl+1('II)] (77) 
I .... '" C'II 

= lim 1 + 1 Pl('II)hz(v)EI('II). (78) 
1 .... 00 CV 

F. Zeros of the Polynomials hl(v) and kl(v) 

We quote from Refs. 14 and 15 some of the well
known theorems about the zeros of the orthogonal 
polynomials which relate here to hi and k , . 

(i) All the zeros of hl('II) are real, simple, and 
situated between -'Ill and +'111 .16 

(ii) Any two zeros of the polynomial hl(v) are 
separated by a zero of hH('II) and vice versa. IS 

(iii) Two consecutive zeros of hi ('II) are separated by 
at least one zero of h1'+I('II), where l' ~ J.14 

(iv) The zeros of the polynomial k,(v) are real, 
simple, and contained in the interval (-'Ill' + 'III). 

(v) Any two zeros of k 1- 1('II) are separated by a 
zero of h,(v) and vice versa. IS 

(vi) The two zeros of hl('II) which have the largest 
absolute value approach TVI , in the limit for 1-- 00. 

(vii) In each partial interval (a, {3) within (-1, + 1) 
one can find, choosing I sufficiently large, as many 
roots of hl('II) as one wishes. The general theorem 
requires for this result the condition 

f
ill 

dw('II) :;i: 0, for every al, {31, 
et1 

where a ~ (Xl < {31 ~ {3, which is clearly satisfied in 
this case as dw > 0 in (-I, + 1). 

Outside the interval (-1, + 1), hl('II) can have at 
most one root between any two consecutive roots 
Vi' 'IIHI (or -'II;, -'11;+1) of A('II).14 

Considering the whole sequence of polynomials 
hl('II) for 1-- 00, one sees that the roots cover the 
interior of the interval ( -1, + 1) everywhere 
densely, while outside (-1, +1), the hl('II) have a 
limited number of zeros.14 

By means of relation (75), one can obtain from 
these theorems very useful information about the 
zeros of A('II) for \vi\ > 1. We see that the total 
number of zeros of A(v) outside the interval (-1, + 1) 
is finite, all these zeros are real and simple, [the non
degeneracy of the zeros of A(v) for 0 < C < I 
previously proved by Zweifel18] and they will be 
reached as the limits of the zeros of the polynomials 
h,(v) for 1-- 00 and that the approach to the limiting 

18 P. F. Zweifel, private communication, 1968. 
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values is always from the left for v > I and from the 
right for '11< -1. 

G. Quadrature Formula 

Consider an arbitrary polynomial of degree 2/ - I, 
say R2Z- 1(V). One can write, by division with hz(v), 

R2Z- 1(V) = hz(v)Sz_l(v) + T Z_ 1(v), (79) 

where SH(v) and TZ_1(V) are some polynomials of 
degrees n < / - 1. Using Lagrange's interpolation 
formula, TZ-1(V) may be expressed as 

~_l(V) = hzCv) ± , ~-l(VZk) 
k=l hZ(vZk)(v - V1k) 

= hz(v) ± R2Z-1(VZk) , 
k=l h;(vzJ(v - V1k) 

where V1k are the / zeros of hz(v) which are all situated 
between -'111 and +'111• 

On the other hand, using the orthogonality property 
of h,(v), one obtains 

(81) 

Thus the following quadrature formula, valid for an 
arbitrary polynomial R(v) of degree n ~ 2/ - I, is 
established: 

f
+Vl I 

-VI R(v) dw(v) = k~l ftlkR(V1k), (82) 

where 

ftlk = 2[kl_1(V1k)/h;(Vlk)]' (83) 

Two other representations for ftlk may be of use. 
One can write 

_ 2 kl_1(Vlk)hz_1(VZk) - kl- 2(V1k)hzCvlk) 

ftlk - h;(vlk)hz-l(Vlk) - hzCvlk)h;-l(V1k) 

which, using relations (53) and (57), reduces to 

ftZk = (~: gih~(Vlk») -1 (84) 

On the other hand, consider the expression 

R(v) = [hlv)jh;(VZk)(V - VZk)]2, 

representing a polynomial of degree 2/ - 2 which 
vanishes at all the zeros of hz(v) except at v = Vlk 
where it equals unity. Inserting R(v) into the quadra
ture formula, one obtains immediately 

(85) 

Both (84) and (85) show the positive nature of the 
weights ftlk . 

We note, further, the relation obtained from (82) 
by letting R(v) = I. We have 

Z f+V1 
~1 ftlk = -V1 dw(v) = mo = 2/(1 - c) (86) 

or, in general, 

for n ~ 2/- 1. 

(87) 

A quadrature formula may also be obtained for the 
quasiorthogonal polynomial 

where T is a real parameter (cf. Ref. 15). 
As an application of these formulas, we point out 

the expansion of the ratio 2k l _ 1(V)/hz(v) in inverse 
powers of v. 

Using Lagrange's interpolation formula, one may 
write 

2kz_b) = i 2kz-bzk) 
hzCv) k=l h;(V1k)(V - VZk) 

which, using (83) and expanding in powers of 1/'11, 
leads, through (87), to 

mo m2 ... m21-2 + 0(_1_). + 3 + + 2Z-1 2/+1 V V V V 

Comparing with (71), we see the connection between 
the continued fraction (70) and the moment expansion. 
We have 

~ F (v) = 2kl_1(V) = 2~2 mi + 0(_1_), (88) 
~o I hzCv) i-=O VH1 v2Z

+1 

which gives, in the limit for / -- 00, 

(89) 

This expansion is also related to Ko(v), since one has 
for 1'111> '111' 

Ko(v) = ! ~ = ! I ~i • f+V1 d ( ') 00 

-V1 V - v' i=OV<+1 
(90) 
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APPENDIX: THE SUM OF THE SPHERICAL 
HARMONICS EXPANSION (19) 

We wish to indicate here that the infinite sum (19) 
converges, in the distribution sense, to the eigen
functions (26) for v = viand to (27) for Ivl < 1. For 
isotropic and linearly anisotropic scattering, the 
proofs have been given by Nonnenmacher19 and 
Mehner,20 respectively. Their method can be applied 
immediately to the present case of anisotropy of 
infinite order. 

(i) v = vi: We have, from Eqs. (19), (59), and (75), 
that 

CV. n 
_--,-1 - lim 2 (21 + l)!IPzCft)hb i ) 2(v, - p,) n-+ool=O 

1 lim (n + 1) 
2(vi - ft) n-+oo 

X [P n+l(ft)hn(v i) - P n(ft)hn+l(v i)] (A2) 

(A3) 

(ii) IVI < 1: We have, similarly, from (19) and (59), 

cpvCft) = [cv/2(v - ft)]M(ft, v) + lim !:l.nCft, v), (A4) 
n-+oo 

where 

!:l.nCft, v) = [en + 1)/2(v - ft)] 

x [P n(ft)hn+1(v) - P n+lCft)hn(v)]. (AS) 

Both terms of (AS) are distributions. The first one 
defines a distribution (1/(v - ft), cp(p,» for every test 
function cpCft) which vanishes outside (-1, + 1) by 
the principal-value integral 

/_1_ , cpCft)\ = pi+l cp(ft) dft. (A6) 
\v - ft I -1 V - ft 

11 T. Nonnenmacher, Atomkemenergie, 12, 183 (1967). 
,. J. Mehner, Nukleonik 11, 182 (1968). 

To show that the second term !:l.n(ft, v) converges 
for n -+ 00 to the distribution !:l.(ft, v) = ).(v)r5(ft - v), 
we must show that 

lim (!:l.n(ft, v), cp(ft» = (!:l.(ft' v), cp(ft» 
n-+oo 

= (A(V)r5(ft - v), cp(ft» (A7) 

for every such test function. Representing a test 
function in a uniformly convergent series of Legendre 
polynomials, 

00 

cpCft) = \left) 2 cmP m(ft), (AS) 
m=O 

where 

\left) = 1, over a neighborhood of 

support (-1, + I), 
= 0, otherwise, 

we have 

which, using the relation 

1\ PtCft) ,P m(P,)/\ = P m(v)PQb), for m ~ 1, 
2(v - ft) 

(A9) 
gives 

lim (!:l.nCft, v), cp(ft» 
n-+oo 

= lim (n + 1)[hn+l(v)PQnCv) - hn(v)PQn+l(v)] 
n ... oo 

00 

x oc(v) 2 cmP m(V), (A 10) 
m=O 

where PQI(V) means the principal value of QI(V) for 
Ivl < 1. Finally, from the equivalent of relation (74) 
for Ivl < 1, we see that 

lim (!:l.n(p" v), cfo(ft») = A(v)cfo(lI) 
n-+ 00 

= (A(V)~Cft - v), CPCft». 
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Gravitational Radiation: Cutting the Tail* 
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Using the Newman-Penrose spin-coefficient approach to gravitational radiatio~, we c.onsider.necessary 
conditions for stationary-radiative-stationary transitions to occur between sta~es m a RIem~nman space
time which satisfies the empty-space Einstein field equations ~ve~ywhere outsIde o~ a spatIally ?ounded 
timelike cylinder. It is found that for axially symmetric radIatIOn of finite multIpole exp~nsIOn. s~ch 
transitions cannot occur; however, a model has been constructed for nonaxially symmet~Ic ra~Iat~on 
for which these transitions can occur to a certain asymptotic order in a relevant parameter whIle satIsfymg 
the Newman-Penrose conservation laws. 

1. INTRODUCTION 

In discussions involving gravitational radiation the 
question has been considered as to whether!t is possible 
for a gravitational system to reach a statIOnary. st.ate 
in a finite time after it has emitted a burst of radIatIOn 
from an initially stationary state.1- 7 The problem of 
the existence of a final stationary state is closely 
associated with the problem of the existence of radia
tion tails. Radiation tails are defined as either in
coming radiation or nonradiative motions. The 
incoming radiation with which we are h~re con~e~ned 
is created by backscattering of the outgolllg radIatIOn, 
caused by interaction of the outgoing radiation with 
itself or with the curvature of space-time. The inter
action with space-time curvature may be thought of 
as scattering by a dissipative medium.6 Nonradiative 
motions correspond in the linear th.eory, and in the 
theory of electricity and magnetism, to imploding 
(exploding) sources which are not ra~iati~g.1.4·6 .An 
example of this would be a dipole WIth lInear tlll~e 

dependence. If we think of a dipole i? .electromagn~tlc 
theory as being made up of equal posItive a~d negat.lve 
charges separated by a distance, then a motIOn havlllg 
linear time dependence would correspond to the 
charges moving toward (away from) each other with 
uniform velocity. 

Kundt and Newman6 investigated the problem of 

• Supported in part by the Aerospace Research Laboratories, 
Office of Aerospace Research. This work incorporates so~e ~f the 
results of the first author's doctoral dissertation at the Umverslty of 
Pittsburgh. I'" . P t Present address: California State College, Ca horma, enn-
sylvania 15419. 

1 H. Bondi, M. Van der Burg, and A. Metzner, Proc. Roy. Soc. 
(London) A269, 21 (1962). 

• E. Newman and T. Unti, J. Math. Phy~. 6, 180.6 (1965). . 
3 (a) R. Torrence, Ph.D. thesis, UniverSIty of PIttsburgh, 1965, 

(b) R. Torrence and A. Janis, J. Math. Phys. 8, 1355 (1967). 
'E. Couch, R. Torrence, A. Janis, and E. Newman, J. Math. 

Phys. 9, 484 (1968). 
• (a) E. Newman and R. Penrose, Phys. Rev. Letters 15, 231 

(1965); (b) E. Newman and R. Penrose, Proc. Roy. Soc. (London) 
A305, 175 (1968). 

• W. Kundt and E. Newman, J. Math. Phys. 9, 2193 (1968). 
7 E. Couch, Ph.D. thesis, University of Pittsbugrh, 1966. 

back scattering for scalar and for electromagnetic 
waves in a flat background space-time and in a 
Schwarzschild background space-time. Their results 
showed that, although in the flat space-time back
ground there was no backscattering, in the Schwarz
schild background there was always back scattering. 
Couch et al.4 (referred to as CTJN) have investigated 
the problem for general relativity by developing the 
mUltipole structure of the field through a perturbative 
approach, as was done to first order (the linear theory 
of gravitation) in an earlier paper by Janis and New
man,s who identified the multipoles for the linear 
theory by analogy with the theory of electricity and 
magnetism and then extended this definition to the 
full theory. CTJN found that an outgoing first-order 
quadrupole wave would interact with the ~rst-or?er 
Schwarzschild mass to give a second-order lllcomlllg 
quadrupole wave. It has been conjectured5~ th~t such 
incoming waves "will (in general) die off wIth tIme so 
the system should become asymptotically stationary." 
However, in addition, CTJN found that to second 
order the quadrupole-quadrupole self-interaction gave 
rise to nonradiative motions for which the time de
pendence did not die off asymptotically. For this sort 
of situation, one could not even expect the system to 
become asymptotically stationary. The sort of solu
tions whose existence we shall here investigate will be 
such that they have neither incoming radiation nor 
nonradiative motions present after the burst of radia
tion has passed. 

Newman and Penrose5 have discussed ten exactly 
conserved quantities in general relativity. They have 
shown that these quantities may be used to show that 
certain transitions between two stationary states are 
forbidden. For a stationary state the conserved quan
tities are equal to an expression D2 - MQ, where D, 
M, and Q are related to the dipole moment, the mass 
(or monopole moment), and the quadrupole moment, 
respectively. Therefore, if for two different stationary 

8 A. Janis and E. Newman, J. Math. Phys. 6, 902 (1965). 
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states, corresponding to different configurations of the 
sources, we have different values for this expression, 
then these two states may not be connected by a 
radiative transition. For a given initially stationary 
state which emits a burst of radiation, the expression 
D2 - MQ must have the same value after radiation as 
it did before in order to allow the possibility that the 
final state may be stationary. However, satisfaction of 
this condition is not sufficient to ensure that the final 
state is stationary. 

In their approach CTJN assume that the burst of 
radiation is axially symmetric. Their calculations for 
quadrupole radiation then lead in second order to the 
conclusion that there necessarily exist tails which 
prohibit the system from returning to a stationary 
state. Using a somewhat different approach, Bonner 
and Rotenberg9 obtained the result that if the system 
were Schwarzschild before radiation, it could not be 
stationary after radiation; however, their approach 
also assumed that the radiation was axially symmetric. 
UntlO has shown, and it will be established in this 
paper, that a space-time corresponding to a particular 
gravitational system cannot pass from a stationary 
initial state to a stationary final state by emitting a 
burst of axially symmetric radiation of finite multi pole 
expansion. In fact, solutions which appear to represent 
nonradiative motions have to be present after radia
tion, and these solutions are of such a type that the 
system cannot even become asymptotically stationary. 
Incoming radiation may also be present; however, it 
does not appear possible definitely to establish its 
presence using the approach in this paper. 

In this paper we assume that the empty-space field 
equations hold everywhere outside of a spatially 
bounded timelike cylinder, that a stationary solution 
to the field equations exists in an empty space-time 
region to the past of some initial null hypersurface, 
and that a pulse of outgoing gravitational radiation 
occurs in a space-time region to the future of this 
null hypersurface. We then integrate the field equations 
for the time development of our solution from the 
initial hypersurface to a null hypersurface for wichh 
the radiation occurred entirely in the past, and we 
examine the final solution thus obtained to see whether 
there exists a nontrivial choice for the radiation pulse 
for which the final state is stationary. 

The formal method used in this investigation, due 
to Newman-Penrose,1l·12 Newman-Unti,13 and Janis-

• W. Bonnor and M. Rotenberg, Proc. Roy. Soc. (London) A289, 
247 (1965). 

10 V. Unt, private communication. 
11 E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962). 
12 E. Newman and R. Penrose, J. Math. Phys. 7, 863 (1966). 
18 E. Newman and T. Unti, J. Math. Phys. 3, 891 (1962). 

Newman,s is outlined in Sec. 2. In Sec. 3 we discuss 
the case for which the radiation pulse has axial sym
metry, and we find that in this case the system cannot 
have a stationary final state. In Sec. 4 we discuss the 
case for which the radiation pulse has no assumed 
axial symmetry, and we find that in this case the system 
may have a final state which is at least stationary to a 
certain asymptotic order in a relevant parameter 
while satisfying the Newman-Penrose conservation 
laws.5 In Sec. 5 we summarize and interpret the results 
of Secs. 3 and 4. Finally, there follow two appendices 
introducing some relevant definitions and containing 
details of calculations. 

In the following, Greek letters used as subscripts or 
superscripts have the range 0, I, 2, 3 and lower case 
Latin letters used in the same manner have the range 
2,3. The Einstein summation convention is employed 
throughout for Greek and lower case Latin letters. 

2. SUMMARY OF THE TETRAD FORMALISM 

We introduce a family of null hypersurfaces in our 
space-time and associate a complex null tetrad with 
each point of each hypersurface. The tetrad is 
chosen to have the orthonormality properties 

[I'nl' = -ml'ml' = 1, 

with all other scalar multiplications zero. The vectors 
II' and nil are real, and mil and its complex conjugate 
ml' may be defined as 

mil = (1/'I!'2)(a ll + ib ll), 

ml' = (1/'I!'2)(al' - ib ll), 

where al' and bl' are appropriate real spacelike vectors. 
We choose our coordinates and associate the tetrad 

with the coordinate system in the following way: Let 
U = XO label the null hypersurfaces and choosel4 

II' = u.1' so that III is hypersurface orthogonal and equal 
to a gradient. Next let r = Xl be the affine parameter 
along null geodesics in each of these hypersurfaces and 
choose II' = dxl'jdr. Choose () = x 2 and p = x3 to 
label a particular null geodesic in each hypersurface, 
and choose nl' and ml' to propagate parallelly along 
these null geodesics. Our metric now reduces toll 

010 0 
1 gIl glk 

gl'> = 0 

o 
U A comma denotes partial differentiation; a semicolon denotes 

covariant differentiation. 
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where 

gll = 2(U _ ww), glk = Xk _ (;kW + ~kW), 
gkl = _(;k~1 + ~k;I), 

with 
III = c5r, mil = wc5r + ;kc5~, 

nil = c5~ + Uc5r + Xkbf. 

The functions w, U, X k , and ;k are defined by their 
appearance in these expressions for the tetrad vectors. 

Ifwe form scalars by contraction of the empty-space 
Riemann tensor with all possible combinations of the 
tetrad vectors, we obtain five independent complex 
quantities: 

tpo = -Cllvp"lllmvIPm", 

tpl = -Cllvp"lllnVIPmfJ", 

tp2 = -Cllvp"mllnvIPm", 

tp3 = -Cllvp"mllnvIPn", 

tp, = -Cllvp"mllnVmPn", 

(2.1) 

where CIlVP" is the empty-space Riemann tensor (the 
Weyl tensor). We may also use this tetrad to obtain a 
set of scalar equations (the Newman-Penrose equa
tions) that are equivalent to the empty-space Einstein 
field equations.ll 

In this paper we shall be interested in space-times 
which have all gravitational sources contained in a 
finite timelike world tube: As the distance from this 
tube becomes large, the space-time becomes Minkow
skian. In order to assure that this flatness will hold, if 
the distance is measured in terms of the affine param
eter along null geodesics, it is sufficient to put the 
following conditions11.15 on tpo: 

tpo = O(r-5
), 

~ tpo = 0(r-6
), 

or 

otpo _ O(r-5) ••• 04tpO _ 0(r-5) (2.2) 
oxi - " OXiOXiOXkOX I - , 

!. otpo = 0(r-6), ... , . 0
3 

otpo = 0(r-6). 
oxi or ox'OXiOXk or 

With these conditions one can then prove thatll 

tpl = 0(,-'), tp2 = 0(,-3), tp3 = 0(r-2), 

tp4 = O(r-l). 

10 The symbol 0 which appears means the following: We say that 
f(r, u, Xi) is of order g(r), which is written 

f(r, p" Xi) = 0 g(r), 
if and only if we have 

If(r, u, xi)1 < g(r)F(u, Xi) 

for some F(u, x') independent· of r, and for all r> Ro, where Ro is 
some fixed value of the affine parameter. 

These asymptotic results, which are known as the 
peeling-off theorem, show manifestly that the space
time becomes asymptotically Minkowskian. In this 
paper we adopt the stronger condition16 

with appropriate derivative conditions analogous to 
Eqs. (2.2). If we assume that the intersections of the 
null hypersurfaces with a timelike cylinder at infinity 
are spacelike spheres at infinity, and if we make () and 
q; the usual polar coordinates, then the equations for 
the Weyl tensor and its time development become 

o -0 tp, = -(] ,00' 

tp~ = iSO'~o, 

11,0 _ ,,,0 = _iS2O'O + 620'0 + o'O(]o _ (]oau 
r2 r2 ,0 ,0' 

(tpg + 1fg),o = - iStpg - ~1f~ + (]0tp~ + O'01f~' 
tpto = -iStpg + 2(]°tp~, 
tpg,o = -t5tp~ + 3(]°tpg, 

tp~.o = ~(-t5tp~ + 4(]°tp~), 
2tp~,o = -5tp~ - Mtp~ 

(2.3a) 

(2.3b) 

(2.3c) 

(2.3d) 

(2.3e) 

(2.3f) 

(2.3g) 

+ 10( tp~tp~ - tpgtpg - ttpg1fg) + E, 

(2.3h) 
with E = 0 whenever (]o = 0, and where 

and 

tpi = (tpUr') + 0(r-5
), 

tp2 = (tpg/r3
) + 0(r-4

), 

tp3 = (tpg/r2
) + 0(r-3

), 

tp, = (tp~/r) + O(r-2
), 

(] = lll:vmllmv = «(]o/r2
) + O(r-') 

is the complex shear of the null geodesics. The symbol 
is stands for a differential operator which is explained 
in Appendix A. 

To specify completely a solution to the Newman
Penrose equations we must give the following data: 
'Po on an initial null hypersurface, ao on a timelike 
cylinder at infinity, tp~ and tp~ + 1f~ on the intersection 
of the cylinder with the hypersurface, and (as we have 
already done) the geometry of their intersection. The 
quantity tpo gives information about the quadrupole 
and higher moments of the sources, as well as informa
tion about the incoming gravitational radiation; ao 
gives information . about the outgoing gravitational 
radiation; tp~ gives information about the dipole 

18 The numerators in these expressions (and in similar expressions 
that follow) are independent of r. 
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and higher moments; and tp~ + Vi~ gives information 
about the monopole (mass) and higher moments. 

In addition to the coordinate conditions that we 
have explicitly mentioned, certain additional condi
tions have been imposed in order to simplify certain 
equations.13 Not all of the coordinate freedom has 
been used in this manner, however. The remaining 
transformation freedom may be studied asymptot
ically as has been done by Bondi et al.,1 Sachs,17 and 
Newman and Penrose.12 In their studies classifying the 
asymptotic group they have noted that, apart from 
certain inversions, it may be thought of as being com
posed of two subgroups: the Lorentz transformations 
and the supertranslations. For the Lorentz trans
formation the leading terms of the transformations 
can be written as 

U' = K(O, rp)u + O(r-1), 

r' = K-l(O, rp)r + 0(1), 

0' = /(0, rp) + O(r-1), 

rp' = g(O, rp) + O(r-1), 

(2.4) 

where the leading terms on the (0, rp) part of the trans
formations are just the conformal transformations of 
a sphere into itself with K as the conformal factor; 
i.e., 

For the supertranslations the leading terms of the 
transformations can be written as 

u' = u - oc(O, rp) + 0(,-1), 

r' = r + 0(1), 

0' = 0 + 0(,-1), (2.5) 

rp' = rp + O(r-1), 

where oc may be written in terms of spherical harmonics 
as 

oc = ! a'mY'm(O, cp). 
I,m 

The supertranslations are thus an infinite-parameter 
group of transformations. 

Solutions to Eqs. (2.3) will be stationary if and only 
if there exists a coordinate system, consistent with all 
of the coordinate conditions, such that the partial 
derivative with respect to xO, a/au, of all of the tp's, 
Eqs. (2.1), vanishes and such that uII = 0 in this co
ordinate system.5b Therefore, given a solution to the 
Newman-Penrose equations which is not manifestly 
stationary, we need only examine the behavior of the 
tp's and uII under the Lorentz transformations and the 

17 R. Sachs, J. Math. Phys. 3, 908 (1962). 

supertranslations to decide whether or not this solu
tion is, in fact, stationary. 

We have now reviewed all the formalism necessary 
for the rest of the paper. In the next section we shall 
look at the problem of radiative transitions between 
stationary states for the case when the radiation is 
axially symmetric. 

3. THE AXIALLY SYMMETRIC RADIATION 
PULSE 

In Sec. 2 we mentioned that the outgoing gravita
tional radiation field is described by the function cfl. If 
we want the radiation to be axially symmetric, then 
if' must have the form 

where 2 YIO(O) is a spin-weight-2 spherical harmonic 
(defined in Appendix A) and the b, are functions of u 
such that b"oo may be only piecewise continuous. In 
addition we shall impose the constraint that cfl have a 
finite multiple structure; i.e., we may write 

L 

O'°(u, 0) = ! b,(u) 2YIO(0), (3.1) 
1=2 

where b L ~ O. It seems likely that this restriction is 
sufficient (but not necessary) to insure that one can 
determine a unique solution of the radiation probl~m 
by giving data as described in Sec. 2. Friedlander18 has 
considered the problem for scalar radiation and has 
found that the quantity analogous to cfl must satisfy 
coherence conditions, which are automatically satisfied 
by finite multipole expansions. 

In Sec. 2 we found that the u dependence in tp~, 
when outgoing radiation is present, is determined by 
Eqs. (2.3a)-(2.3d) to be 

(3.2) 

Let us first assume that cfl has the form of a radiation 
pulse that satisfies the conditions 

cfl==O, u::;;u1 , 

cfl == 0, u ~ U2' (3.3) 

Later we shall consider the case of a radiation pulse 
that doesn't satisfy (3.3). We can now integrate Eq. 
(3.2) from U1 to U2' With the aid of Eqs. (2.3a) and 
(2.3b), we obtain the following result: 

18 F. Friedlander, Proc. Roy. Soc. (London) Al69, 53 (1962); 
Al79, 386 (1964); Al99, 264 (1967). 
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From Eqs. (3.2) and (2.3b) it is clear that we have 
1J'to == 0 if 0'0 == 0, so that before and after radiation 
1J'~ satisfies the requirement of Sec. 2 for the state to be 
stationary. However, we must examine all of the scalar 
components of the Weyl tensor to see whether they all 
satisfy the requirement. Of -course, we choose the 
initial state to be stationary, but we must integrate 
the Newman-Penrose equations to find out whether 
the final state is also stationary. The u dependence of 
1J'~ is given by Eq. (2.3e) as 

1J'to = -t51J'~ + 2a°1J'g. 

Ifwe are to have 1J'~.0 == 0 when 0'0 == 0, then 1J'~ must 
have the form 

1J'~ = ao ° Yoo , (3.5) 

where ao is a constant. We choose 1J'~ to have this form 
initially, so that we have 

"Pto(u,O) == 0, u ~ U1 • 

From Eq. (3.4) the change in 1J'~ is given by the ex-
pression 

With the initial choice (3.5) of 1J'~ we see that when we 
express ~1J'g in terms of spin-weighted spherical 
harmonics, all the coefficients must be zero except that 
of 0 Yoo if the final state i.s also to be of the form (3.5). 
These coefficients may be written in the form 

QJ ==JoYJo(~1J'~)dn = JoYio(f:2Ia~oI2dU) dn, 

where dn = sin 0 dO dcp and the integration is over 
the spacelike sphere at infinity. Now expressing the 
product of spin-weighted spherical harmonics involved 
in la?012 by means of Eq. (AS) of Appendix A, we 
have 

. = ~ (f. U

2 b b dU) (21 + 1)(2k + 1»)! 
Q, "- 1.0 k,O 4 (2' + 1) 

l,k=2 Ul 7T' J 

X (kOlO 1 kljO)(k21 - 21 kljO), j ~ 2L, 

QJ = 0, j > 2L. (3.6) 

We now look at the case) = 2L. For this case the sum 
reduces to a single term and we have 

Q2L = [47T'~~L : \»)!(f:'2IbL.oI2 dU) 
x (LOLO 1 LL(2L)O)(L2L - 21 LL(2L)0). 

Since we have assumed that bL 't= 0, we have 

so that it is easily shown that 

(3.7) 

It therefore appears that 1J'~ is time dependent after 
radiation, but, in order to be sure that the solution is 
not stationary, we must examine the effects of the 
Lorentz transformations and the supertranslations on 
1J'g and 0'0 to see wqether the time dependence may be 
removed by these transformations. 

The changes in "Pg + Vig and aD for the supertransla
tion (2.5) may be shown to be given by 

(1J'g + Vig), = (1J'~ + Vi~) - 2(t5oc)(t5a~0) - 2(~oc)(~a~o) 

- (t5oc)2a?oo - (~oc)2a?oo, 

(3.8) 

where the left-hand sides are in terms of the primed 
variables. It can also easily be shown that if aD == 0, 
so that from Eq. (2.3c) 1J'~ - Vi~ = 0, then 1J'r - Vir = 
o also. We are interested in finding a supertranslation 
which maps us to a coordinate system for which 
1J'~ = ao ° Yoo and aD == O. We can see from Eq. (3.8) 
and the above argument that if 0'0 == 0, then 1J'r = 1J'g, 
so that it is not possible to remove the term Q2L from 
1J'r by a supertranslation. 

Under the Lorentz transformations (2.4), 0'0 trans
forms as 

where 1J' is the angle between 0 and 0'. From this we 
see that if 0'0 == 0, then we have 0'0' == 0 under a 
Lorentz transformation. If 0'0 == 0, the effect of the 
Lorentz transformation on 1J'g is 

1J'r = K-31J'g. 

The conformal factor K may be written as 

K-l = (7T')!(aa + bb + cc + dd) ° Yoo 

+ (t7T')!(aa - bb + cc - dd)oY1o 

- (i7T')!(ab + cd)oYn 

+ (i7T')~{ab + cd)OY...-l' 

(3.9) 

(3.10) 

where a, b, c, and d are complex constants satisfying 
the restriction ad - be = 1. However, we must ex
press the right~hand side of Eq. (3.9) in the new 
(primed) coordinate system to obtain an interpretable 
expresion. To do this we make use of the well-known 
expression connecting the orthogonal functions for 
two different coordinate systems on the unit sphere: 

I 

Yim(O, cp) = ~ main Y1n(O', cp'). 
10=-1 
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It is clear from this that in the new coordinate system 
we have 

3 

'V'nU', ()', rp') = ! a;m¥;m«()', rp'). 
1=0 

-ISmSI 

Since the Lorentz transformations have unique in
verses, if there is no Lorentz transformation taking us 
from a state 'V'~ = aD 0 Yoo , aO == 0 to a state 

'V'~' = I a; oYIO , aD' == 0, 
I 

then there is no Lorentz transformation taking us from 
the state 'V'g', aD' to the state 'V'g, aO. We see from Eqs. 
(3.9) and (3.10) that if 'V'~ = aooYoo , the Lorentz 
transformations cannot give it an angular dependence 
larger than I = 3; i.e., 

'V'~' = a~ oYoo + I a~m OYlm + I a~m OY2m 
m m 

+ ~ aim OY3m' (3.11) 
m 

However, the term Q2L is the coefficient of OY(2LlO in 
the expansion of ~'V'~ in terms of spin-weighted 
spherical harmonics. The smallest value for L is 2, 
for which value Eq. (3.1) becomes aD = b2 2 Y20 • This 
implies, from Eq. (3.7), that the coefficient of oY40 is 
greater than zero. This term cannot be removed by a 
Lorentz transformation as can be seen from Eq. (3.11). 
Therefore the coefficient of 0 Y(2LlO is unaffected by a 
Lorentz transformation for any value of L. 

Since the effect of Eq. (3.7) cannot be removed by 
coordinate transformations, it must be regarded as 
real. We may therefore say that a gravitational system 
which was initially stationary will not be even asymp
totically (in u) stationary after the emission of an 
axially symmetric gravitational radiation pulse that 
satisfies the conditions (3.1) and (3.3). In the linear 
theory, a solution of the type we have found would 
describe a nonradiative motion.4 

We must now consider the case of a radiation pulse 
that doesn't satisfy the restrictions (3.3). Since we 
assume that the initial state is stationary, we can always 
choose our coordinate system such that the first of 
these equations holds. In such a coordinate system, 
however, the most general aD after the pulse would 
satisfy O'?o = O. Thus we now adopt the condition 

aO(u) == 0, U ~ u1 , 

a~o(u) == 0, u ~ u2 , (3.12) 

which, together with the condition that the system be 
stationary initially, leads to the following equation 
for the change in 'V'g: 

(3.13) 

The positive definiteness of Q2L' defined by the rela
tion 

is not altered by the new term appearing in Eq. (3.13), 
as it only contributes to terms up to and including 
order L. 

Again we must consider the possibility that Q2L may 
be removed by a coordinate transformation; however, 
the situation is slightly different from the preceding 
because aD may be initially different from zero. Arguing 
as before by inverse transformations from an initially 
stationary state, it can easily be seen that we cannot 
remove the Q2L term from ~'V'~ . 

We thus see that removal of the restrictions (3.3) 
does not alter our results. 

In the above argument we have assumed that the 
radiation was symmetric with respect to a given axis. 
In the next section we completely remove this restric
tion on 0'0 to find out what effect this has on the 
problem. 

4. THE NONAXIALLY SYMMETRIC 
RADIATION PULSE 

For nonaxially symmetric outgoing radiation, aD 
has the form 

L 

aO(u, (),rp) = ! b1m(u) 2¥;"'(O, rp), 
1=2 

-ISmSI 

where the blm are functions of u such that b lm•OO may 
be only piecewise continuous. As in Sec. 3, we have 
imposed the constraint that aD have :finite multipole 
structure. 

Also as in Sec. 3, the change in 'V'~ is given by 

where we have again assumed that the radiation is of 
the form of a pulse between Ul and U2 that satisfies the 
conditions (3.3). 

The coefficient of the ° Yim term of ~'V'~ for this case 
may be given by 

Q;m = f0Y';m(i:l
/a?o/2 dU) dO. (4.1) 

Again, if 'V'to is to vanish after radiation, 'V'~ must be 
of the form 'V'g = aDO ° Yoo after radiation so that we 
must have 

Q'm = 0, unless j = m == O. 
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We may rewrite Eq. (4.1) for Qim in terms of the 
Clebsch-Gordan coefficients as follows: 

Z,k.r=2 U1 
Qi ... = ! (-I)n(iUlblr,ohkn,o dU) 

X (21 + 1)(2k + 1»)t(k _ nlr I kl'm)(k2l- 21 kl'O) 
41T(2j + 1) J J , 

(4.2) 
withr - m = n. 

In order to simplify Eq. (4.2), we will assume that 
aU has the form of a simple pole; i.e., 

where I is fixed and I ~ 2. For this case Eq. (4.2) 
becomes 

Qim = I(-I)lI(rUlbzroblllodU) 21+1 t 
r JUI" [41T(2j + 1)] 

x (I - nlr Illjm)(l21 - 2/11jO). (4.3) 

We see immediately that we have Qi'" = 0 for all 
j > 21 as a consequence of Eq. (A 7) of Appendix A. 
First we look at the equations Q,.o = 0, for these are 
just the generalization to the nonaxially symmetric 
case of the equations Q,. = 0 of Sec. 3. A sufficient 
condition for Q;o= 0 for all j = 1, 2, ... , 21 will 
be shown below. First we shall develop a useful 
identity. 

As a consequence of the fact that the eigenvectors 
I/lml1am2) form a basis on the vector space for addition 
of angular momentum in quantum mechanics, we have 
the following elementary identityI9: 

Illlajm) = Illlmllama)(llmllam21/1Iajm), 
"'1 

where ma = m - mI. III -121 ~j ~ It + la, and all 
vectors are normalized. The coefficients of Ill ml /am2) in 
the expansion are just the Clebsch-Gordan coefficients. 
The eigenvectors IMajm) are orthonormal; therefore 
we have 

(lllakn Illlaim) = b;k~lIm' 

Thus we must have 

I (11mllam2/1112kn)(llml12m2111jm) = ~;AAm. 
ml 

where we have chosen the Clebsch-Gordan coefficients 
to be real. A special case of this relation is 

1(1- m 1m /lljO)(1 - m 1m 11100) = bio, 
m 

But (/ - m 1m 11100) is just given by 

(/- m 1m 11100) = (_I)I+m(21 + 1)t. 
---

It See, for example, E. Merzbacher, Quantum Mechanics (John 
Wiley & Sons, Inc., New York, 1961), pp. 416 et seq. 

Therefore we have 

I(-l)m(l- m 1m IllOO) = 0, j "" O. 
m 

Now we see that a sufficient condition for QiO = 0 for 
all j = I, . . . , 21 can be written as 

iUt iUII Ib!m.ola du = Ib!n,ola du, for all m and n. (4.4) 
"I Ul 

The remaining equations for Qim = 0, m "" 0, are 
trivially satisfied if we choose 

i
"2b'm,obzn,o du = 0, m "" n. 

"I 
(4.5) 

We shall now construct a model for the blm which 
satisfies Eqs. (4.4) and (4.5). 

Consider any complex function feu) such that 
f(u) E C' and j(u) has compact support contained in 
[a, b] with 0 < a < b. We then define our him to be 

bz ... (u) = flu - (l + m)bJ. 

Letting U1 = 0 and U2 = (21 + 2)b, we see by inspec
tion that these b'm satisfy Eqs. (4.4) and (4.5). There
fore we have V'~ = a~o 0 Y 00 after radiation. 

Satisfying the condition that V'~ = a~o 0 Yoo after 
radiation is not enough to ensure that the state is 
stationary. We must examine all the scalar components 
of the Weyl tensor to see whether or not they are all 
independent of u afterward while satisfying the New
man-Penrose conservation laws.5 If we choose the 
initial state of our system to be that of the Schwarz
schild solution, i.e., 

and 
111 - 111

0 - 11,0 - tIl° 0 rO - r1 - r3. - r4 = 

tpg = aoooYoo at u = Ul, 

and demand that our final state as far as we can. ex
amine it have this form also, i.e., 

and 

0_ 0_ 0_ 0_ I 0 tp4 - tp3 - tp1 - tpo - tpo = 

If: = a~o oYoo at u = U2 • (4.6) 

then we will have trivially satisfied the Newman
Penrose conservation laws and have assured that, to 
the highest asymptotic order for which we have been 
able to examine the solutions, they appear stationary 
(provided, of course, we can find a model for the him 
satisfying the resulting conditions). We note from Eqs. 
(2.3) that these conditions make tp~,o = 0; this is as 
far as we have been able to carry out the calulations 
in our asymptotic expansion. 

A sufficient set of conditions on the him which will 
satisfy the situation outlined above are written out in 
Appendix B and are classified there into three distinct 
types: overlap, profile likeness, and symmetry. If we 
allow «1m' Plm' and rim to represent, generically, any 
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blm or its derivatives which occur in the equatio~s, the 
first two types of conditions may be written In the 
form 

('II ... ("'OClmPzn du ... du" = 0, m ~ n, 
JUt J "'1 

for the overlap condition and, for the profile likeness 
condition, 

("I ... ("'Ylm du ... dU" = (U, . . ·fu'Yln du ... dU" 
JUt JUt JUI"1 

for all m, n. 
The choice of blm made above to satisfy 'I'~ = a~o 0 Yoo 
after radiation also automatically satisfies these con
ditions. The remaining conditions to be satisfied, the 
symmetry conditions, make statements about each 
bzm individually. These are the most difficult condi
tions to satisfy; in order to do so we shall need to 
place additional restrictions on aO. The conditions 
already imposed on aO will show that if we can satisfy 
the symmetry conditions for a particular bzm , then 
they are automatically satisfied for all the other bzn 
occurring in a given aO. If we find a function bzm 
satisfying Eq. (B3f) of Appendix B for any I ~ 2, this 
function satisfies Eq. (B3g) of Appendix B as a special 
case if 1= 2; i.e., the integrals on both the right-hand 
side and the left-hand side are zero. Equation (B3d) 
only needs to be satisfied if I > 2; however, it may 
also be satisfied for I = 2. Therefore, in the following 
we shall always satisfy Eqs. (B3d) and (B3f) for I ~ 2. 
In order to find a function satisfying the conditions 
implied by Eqs. (B3) , we spall first apply another 
condition to bzm which will allow us to simplify the 
form of these equations somewhat. Let us write 
bzm = R zm exp (i()zm), where R zm and ()zm are real. 
Our new condition will be that (Jzm.o = 0. Now we can 
rewrite Eqs. (B3); and since we refer to a particular, 
fixed, though arbitrary, value for I and m, we drop the 
subscripts. Then, after performing certain of the indi
cated integrations, Eqs. (B3) become 

(UIR du = 0, (4.7a) 
JUI 

(USfUR du du' = 0, (4.7b) 
JUI "1 

(UI (U ("'R du du' dU" = 0, (4.7c) 
JUI JUI JUI 

(UIR (u(R.O)2 du du' = 0, (4.7d) 
JUI JUt 

{"I {" R ("'(R.O)2 du du' dU" = 0, (4.7e) 
JUI JUt JUt 
i"IR i" f"(R.o)2 du du' dU" = 0, (4.7f) 

Ul "I Ul J.u1R3 du = 0. (4.7g) 
"I 

~ 
J v(x)dx" 0 o 

a 

g(O) ~ 0 

~ a 
FIG. I. Examples of functions v(x), [(x), h(x), and g(x). 

We shall now construct a function R which satisfies 
these conditions. (See Fig. 1 for an example of the 
function to be constructed.) Consider a real-valued 
differentiable function vex) belonging to class C', 
having support contained in the interval [0, la], 
and such that the function and its first derivative 
approach zero as their arguments approach 0 or la. 
Also, assume that the integral of this function over 
[0, ta] vanishes. Now choose a real-valued function 
g(x) such that 

g(O) = 0, 

g(x + ta) = g(x) + c, ° < x ~ ta, 

with c a constant. Define a new functionf(x) such that 

I(x) = vex), ° ~ x ~ ta, 

I(x) = -vex - ta), ta ~ x ~ a, 

so that the suppott of I(x) is contained in the interval 
[0, a]. The function I(x) then satisfies the following 
conditions: 

Li(x)dX = 0, 

f li(x') dx dx' = 0, 

f[J(X)]3 dx = 0, 

li(x)g(x) dx = 0. 
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We now construct a new function hex) such that 

hex) = f(x), o ~ x ~ a, 

hex) = -f(x - a), a ~ x ~ 2a, 

so that hex) has support contained in the interval 
[0, 2a]. It is immediate that hex) satisfies the following 
conditions: 

(2a 
Jo hex) dx = 0, 

[2a [X 
Jo Jo hex') dx dx' = 0, (4.8) 

L2
ah(X)3 dx = O. 

We also assert that we have 

(2a ('" (X' 
Jo Jo Jo h(x") dx dx'dx" = 0,. 

12a ('" h(x')g(tx') dx dx' = 0, 
o .0 

(4.9) 

[2a 
Jo h(x)g(tx) dx = O. 

In addition, our function hex) satisfies the identity 

[2a (X 
Jo hex) Jo g(tx') dx dx' = O. (4.10) 

It can easily be seen that the choice of g(tx) as 

g(tx) = (X(dh I )2 dx' 
Jo dx x=,"' 

is compatible with the definition of g(x). Therefore, 
if we now choose 

hex) = R(x), 

g(tx) = LX (d~~')r dx', 

we see that Eqs. (4.8), (4.9), and (4.10) are equivalent 
to Eqs. (4.7) with [Ul> U2] appropriately chosen to 
include [0, 2a] such that all of the him may be included 
with zero overlap in the interval (UI, u2). It follows that 
we can satisfy Eqs. (4.6) with the choice of all described 
above. While we cannot conclude from this that the 
state of the system is stationary after radiation, it is 
at least not incompatible with the Newman-Penrose 
equations as far as they have been written asymp
totically to say that a gravitational system might reach 
a stationary state from an initially stationary state 
after the emission of a pulse of radiation. 

5. CONCLUSION 

In Sec. 3 we proved that a gravitational system 
cannot make a transition between stationary states by 
emission of a burst of axially symmetric radiation of 
finite multipole expansion. There must always be a 
tail after such a radiation pulse, and in fact the solu
tion afterwards is not even asymptotically stationary. 
Part of this solution may in fact represent a non
radiative motion corresponding to an explosion or 
implosion of the sburce after radiation. The proof of 
this theorem hinged on the fact that 1Jl~ had to be 
spherically symmetric (i.e., 1Jl~ = aoo 0 Yoo) for a state 
to be stationary. It was found that, for (J'o axially 
symmetric, if 1Jl~ was spherically symmetric before 
radiation, it could not be made spherically symmetric 
afterwards. 

In Sec. 4 the restriction that aO be axially sym
metric was dropped. It was then found that if (J'o had 
the form of a simple pole, a model of (J'o could be 
found such that, if 1Jl~ was spherically symmetric before 
radiation, it could be made spherically symmetric 
afterwards. It was also shown, using the asymptotic 
approach, that a model could be found for aO for 
which 1Jl~, 1Jlg, and 1JlL assumed zero before radiation, 
could be made zero afterwards. The conserved quan
tities of Newman-Penrose were trivially satisfied by 
this model. The final state solution was therefore time 
independent through order 1/r7 in the tetrad-formalism 
variables. 

It therefore seems that, although it is not possible 
for a gravitational system to return to a stationary 
state after emitting a burst of axially symmetric 
gravitational radiation of finite multipole expansion, 
the question of whether or not it can return to such a 
state is still open if the radiation is not assumed to 
have axial symmetry or if it has an infinite multi pole 
expansion. Should the asymptotic model we have 
constructed for return to a stationary state prove to be 
extendable to an exact stationary solution, it would be 
the first time (to our knowledge) that dropping the 
restriction of axial symmetry leads to significantly 
different physical results in general relativity. 

Note Added in Proof: Results similar to some of the 
results of this paper have been independently obtained 
by Papapetrov, Ann. Inst. H. Poincare llA, 57 (1969). 
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APPENDIX A 

In Sec. 2 we introduced a differential operator t5 
which we shall define below. Consider a spherical 
surface having a pair of orthonormal tangent vectors 
defined on it at all points except the poles. We denote 
these vectors at a given point as a" and h". We then 
make two complex vectors out of these tangent vectors 
by requiring that 

m" = (lJJ2)(a" + ib") 
and 

fiJ" = (IJJ2)(a" - ib"). 

We assume that the vector field defined by picking a" 
and h" at each point is sufficiently differentiable. 20 If 
we now choose a second vector field, i.e., if we pick 
new orthonormal tangent vectors at each point ii" and 
j)", then the new complex vectors will be related to the 
old ones by a rotation 

where f(O, cp) is the angle between the vectors a" and 
ii" at the point (0, cp). 

We may in general define functions on the sphere 
which transform according to the rule 

if = 'YjeiS/
(8,tp), s integral, (AI) 

under the above transformation on m". For example, 
such a function might be given by the expression 

where Tl'l" '1', is any constant convariant tensor of 
rank s. Functions which transform according to this 
prescription will be said to have spin weight s. It 
follows from Eq. (AI) that if 'f} has spin weight s, then 
if has spin weight -so 

Our sphere will be taken to be the sphere at infinity 
as mentioned in Sec. 2. Although m" and fiJI' as defined 
in our null tetrad are not asymptotically tangent to this 
sphere, we may write all our equations in terms ort5 
if we assign to the following tetrad-formalism vari
ables the spin weights they would have if ml' and fiJI' 
were tangent to the sphere at infinity: 

Variables 

V'~ 
V'g 
V'~ 
V'~ 

0'0, V'~, V'~, V'~ 

Spin weight 

-2 
-1 

o 
1 
2 

10 See, for example, L. Eisenhart, Riemannian Geometry (Princeton 
University Press, Princeton, N.J., 1960). 

Other tetrad-fonhalism variables may have spin 
weight assigned to them, but the above variables are 
the ones we are concerned with here. 

Now we are ready to define t5. Suppose 'Yj is 
a function defined on a sphere and having spin 
weight s according to Eq. (AI). We consider t5'f} to 
be a function on the sphere having spin weight s + 1 

and t5'f} to be a function on the sphere having spin 
weight s - 1. We choose polar coordinates (0, cp) 
on the sphere and choose a" tangent to the curves 
cp = const and hI' tangent to the curves 0 = const, 
where 

m" = (lJJ2)(a" + ib"), 

and define 

t5'fJ == - _1 (sin Oy(1. + _.1_' 1.-) [(sin O)-s'fJ] (A2) 
J2 00 sm 0 ocp 

and 

t5'fJ = - - (sm 0) 8 - - -. - - [(sm O)"'fJ]. - 1. _(0 i 0) . 
J2 00 sm 0 ocp 

We note that the commutation properties of t5 and ~. 
are (~t5 - t5i5)'fJ = S'fJ if 'f} has spin weight S. This 
operator can now be used to define spin-weighted 
spherical harmonics in terms of ordinary spherical 
harmonics12•21 as 

.Y;m(O, cp) = (2)t.[(1- .S)!J! t5'Y;m(O, cp), 0 < s ~ 1, 
(l + s)! -

= (-lrS(2)-!s[(l + S)!]!t5-s y; (0 ) 
(1 - S)! 1m' cp , 

-1 ~ s ~ 0, 

.Y;m(O, cp) = 0, lsI > 1, 

(A3) 

These spin-weight-s spherical harmonics have the addi
tional properties 

.trim = (-l)m+s_sY;._m' 
- . .! 
t5 .Y;m = i(.J2)[(l- s)(l + s + 1)] S+lY;m' 
- ! 
t5 s Yzm = - H",2)[(l + s)(l - s + 1)] .-1 l';.m' 

- (A4) 
M .Y;m = -tel - s)(1 + s + l).Y;m, 

21 J. Goldberg, A. J. Macfarlane, E. T. Newman, F. Rohrlich, and 
E. C. G. Sudarshan, J. Math. Phys. 8, 2155 (1967). 
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where dO. = sin ° dO dq; and the integral is taken over 
the entire surface of the sphere. 

A function 'Y}(O, q;), having spin weight s, may be 
written in terms of the spin-weight s spherical har
monics which form a complete orthonormal set for 
each value of s as 

'Y}(O, q;) = I 'Y}!msYim(O, q;). 
!~Isl 

m:;>11I 

The expression of the product of two spherical 
harmonics of spin weights sand t was given by Exton22 

as 

l+} [(21 + 1)(2k + 1)J* • 11m tYkn = ~ 
i=Il-k1 47T(2j + 1) 

X (knlm I k Ij, m + n) 

X (k - t 1- s I k Ij, -s - t)s+tYi.(m+n), 

(AS) 

where (kP/oc I k lj, oc + P) are the real Clebsch-Gordan 

coefficients given by23 

(kPloc I k lj, oc + P) 
+ [(I + k - j)! (j + k - l)! (j + 1- k)!(2j + 1) 

(j + 1 + k + 1)! 

X (k + P)! (k - P)! (I + oc)! (I - oc)! 

x (j + oc + P)! (j - oc - P}!]* 
x ~(-)P[p!(k + I-j - p)! 

P 

x (k - P - p)! (1 + oc - p)! 

x (j - 1+ P + p)! (j - P - ex + p)Wt, (A6) 

provided that the following set of equations is satisfied: 

1+ k - j ~ 0, 
f + j - k ~ 0, (A 7) 

k + j -/ ~ 0. 

The Clebsch-Gordan coefficients are automatically zero 
if they do not satisfy Eqs. (A7). In Eq. (AS) we have 
summed over those values of p for which the contents 
of all the factorials are greater than or equal to zero. 

APPENDIX B 

The conditions given below are sufficient to guarantee that Eqs. (4.6) are satisfied.24 The conditions have been 
grouped, for convenience, into three general categories: overlap, profile likeness, and symmetry. 

Overlap conditions: These conditions must hold for each I ~ 2 and for each m, n, and r such that either 
m ¥= n or m, n, and r are not all equal, whichever applies: 

(Bl) 

I. A. Exton, Ph.D. thesis, University of Pittsburgh, 1967. 
II (a) Institute of Atomic Energy, Academia Sinica, Eds., Tables of the Clebsch-Gordan Coefficients (Science Press, Peking, 1965); (b) M. 

Abramowitz and I. Stegun, Eds., Handbook of Mathematical Functions (Dover Publications, Inc., New York, 1965) . 
.. W. H. Hallidy. Ph.D. thesis, University of Pittsburgh, 1968. 
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Profile-likeness conditions: These conditions must hold for each I ~ 2 and for all m and n: 

Symmetry conditions: These conditions must hold for each I ~ 2 unless explicitly noted otherwise: 

f"2 

b'm du = 0, 
"1 

f"'f" b'm du du' = 0, 
"1 "1 

f"'f" f'" b'm du du' du" = 0, I> 2, 
"1 "1 "1 

f"· iV i'" b'm Ib'm,olll du du' du" == 0, I > 2, 
VI "1 VI 
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(B2) 

(B3a) 

(B3b) 

(B3e) 

(B3d) 

(B3e) 

(B3f) 

(B3g) 
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Alternative Method for Deriving the Fock Currents 

R. H. Orr 
Environmental Science Services Administration/Institute for Telecommunication Sciences, 

Boulder, Colorado 80302 

(Received 13 May 1969) 

.Fo~k's principle is extended to app~y to the fiel~s near the shadow boundary on a parabolic cylinder, 
Illuminated by a plane wave propagating at an arbitrary angle but normal to the cylinder axis. By solving 
the wave equation in parabolic coordinates, with an impedance boundary condition at the surface and 
a radiation condition at infinity, we find that the fields thus obtained agree very well with those predicted 
by Fock's principle, as long as the observation point is near where the wave propagation vector is tangent 
to the cylinder. When the propagati~n vector is tangent to the cylinder's apex, Fock's principle gives the 
exact currents everywhere on the cylinder. These results are more general than those of Jones, which are 
li.mited to perfectly conducting cylinders. 

I. INTRODUCTION 

A number of investigators have studied the problem 
of diffraction of radio waves by cylindrical (parabolic 
and circular) surfaces. Rice! derived the penumbral 
currents for a plane wave striking a perfectly con
ducting parabolic cylinder when the direction of the 
incident wave is tangent to the apex of the cylinder and 
normal to the axis of the cylinder. Fock2 derived the 
penumbral currents for a plane wave illuminating a 
finitely conducting parabolic cylinder when the plane 
wave propagates in a direction tangent to the apex of 
the parabolic cylinder. Jones3 derived the penumbral 
currents for a plane wave striking a perfectly con
ducting parabolic cylinder at an arbitrary angle of 
incidence. Wait and Conda4 derived the penumbral 
currents for a finitely conducting circular cylinder. 
Ivanov5 derived the penumbral currents for a plane 
wave incident on a perfectly conducting cylinder, so 
that the direction of the incident wave makes an angle 
1p with the axis of the parabolic cylinder but is normal 
to the generatrix of the cylinder. 

If we could establish the conditions under which 
Fock's assumption is valid, that is, that all bodies with 
a smoothly varying curvature have the same generic 
current distribution in the penumbra, we could obtain 
a universal formula for the surface field in terms of the 
field of a plane wave tangent to the apex. When the 
wave is not tangent to the apex, we would replace 
the original wave direction and cylinder geometry with 
a wave, tangent to the apex of a replacement cylinder, 
that has a radius of curvature matching that of the 
original cylinder at the point of tangency. 

1 s. O. Rice, Bell System Tech. J. 33. 417 (1953) 
• V. A. Fock, International Series of Monographs on Electro

magnetic Waves (Pergamon Press, New York, 1965), Chap Sf 1,2, and 
5. 

8 D. S. Jones, The Theory of Electromagnetism (The Macmillan 
Co., New York, 1964), pp. 467-478. 

'J. R. Wait and A. M. Conda, IRE Trans. Antennas Propagation 
6, 348 (1958). 

• V. I. Ivanov, Radiotekhn. E1ektron. 5, 393 (1959). 

To this end, we derive the currents induced by a 
plane wave striking a parabolic cylinder, normal to its 
axis but at an arbitrary angle of incidence (not 
necessarily tangent to its apex). We assume that the 
field on the surface of the cylinder satisfies an im
pedance boundary condition and that the effects of 
coupling between E2 and H. are negligible.6 The results 
show that Fock's principle yields extremely accurate 
penumbral currents, for all angles of incidence, pro
vided that the observation point on the cylinder is near 
where the incident field grazes the cylinder. When 
the propagation vector is tangent to the cylinder's apex, 
Fock's principle yields surface currents identical to 
those derived by solution of the wave equation. 

2. THE PARABOLIC CYLINDER 

We now consider the field on the surface of a para
bolic cylinder produced by a plane wave traveling in 
a direction making an angle CPo with the positive x 
axis (cf. Fig. 1). We will assume that 0 < CPo < 7T. 

The parabolic coordinates are defined by 

x = !(;2 - rJ2), 

Y = ~rJ, (1) 

where; = ;0 defines the particular cylinder in Fig. 1. 
We seek a solution of the wave equation in para

bolic cylinder coordinates 

1 (021p 021p) 2 
(;2 + rJ2) 0;2 + 0'Yj2 + k 1p = 0, (2) 

together with the boundary condition 

01p z - + t 1p = 0, at; = ;0, (3) 
an (;~ +'YJ2

) 

and the radiation condition at infinity. 

• J. R. Wait, Electromagnetic Radiationfrom Cylindrical Structures 
(Pergamon Press, New York, 1959). 
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Following Jones,3 we obtain for the total field 

1 fOO dp (tan iIPO)il'-l 

tp = 2(21T)t -oo cosh p1T cos 11'0 

( 
zDil'_t(-h~o) - hD;p._t(-h~o) ) 

x Di,,_t(-h~) - D. (hI:) + hD~ (hI:) Dil'_t(h~) D_il'-t(h'f/), (4) 
z <I'-t '>0 <p.-t '>0 

and it is easy to verify that tp in Eq. (4) satisfies the wave equation (2) and h = (2ik)l. 
The normal derivative of the current on the parabolic cylinder is 

1 alp I -Zlp I 
(~~ + 'YJ2)i a~ ;=;0 = (~~ + 'YJ2)i ;=;0 

= zh t (OO r{ip + t) (tan tlPoyl'-i D_il'-i(h'YJ) dp, (5) 
21T(~~ + 'YJ2) Loo cos 111'0 z Dil'_i(h~o) + h D;,._l(h;o) 

where we have used the Wronskians connecting the solutions as 

As Ricel has rather convincingly shown and as we 
shall indicate later on, integrals of the type in Eq. (5) 
have a saddle point somewhere near p = tk ~~, while 
the path of steepest descent has the form indicated in 
Fig.2. 

It follows that Eq. (5) can be adequately approxi
mated if the integral can be well approximated near 
this saddle point. But if ik~~ is large (that is, if the 
parabola has a minimum radius of curvature large 
with respect to the wavelength), then we may resort to 
approximations that are asymptotic to the parameter p. 

Olver7 has developed such asymptotic results in very 
complete detail. The result corresponding to our 
situation is 

Dil'_i(hz) '-' 21Tlpi exp [Hip - i) In ip - iip + /2i1T] 

x ( ~lft )tAi (pte-!;";l)' (7) 
2kz 2 

- 4p 

where 

(8) 

Equation (7) is valid for large Ipi uniformly with 
respect to arg p when 

-i1T < arg p < t1T, (9) 

and z is real (z = ;0 or 'YJ) and does not run into the 

7 F. W. 1. OIver,1. Res. Nat. Bur. Std., B63, 131 (1959). 

(6) 

lines shown in Fig. 3, The upper limit of integration in 
Eq. (8) is confined to the paths shown in Fig. 3; i.e., 
the locus of t, 

(10) 

is plotted in Fig. 3 along the original and steepest 
descent contours. 

Using the asymptotic form for the Airy function 

(11) 

in Eq. (7), we obtain an asymptotic expansion for 

Reflected 
Roy 

x 

FIG. 1. Geometry of incident wave and parabolic cylinder used in 
the derivation of the Fock currents. The origin is at the focus of the 
parabola. From simple geometric considerations, it is not difficult to 
show that IPo remains constant for all points on the cylinder. 
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Poles of 
r (iJL+ '12 ) 

Original Path 
of Integration 

Steepest Descent 
Palh 

Complex JL plane 

FIG. 2. Paths of integration used in studying the current density 
on the parabolic cylinder. Also shown are the poles, zeros and 
saddle points of the integrand. 

D_ill-t(hfJ), i.e., 

D_ill-i(hfJ) 

,.....,(4 + 2kfJ2/p)-t exp [-Hip + !)In ip + iip] 

{
e-illh fJ > 0 

X eillts,' fJ < 0: (12) 

where 

E2 = (~;)l (1 + ~:)l 

+ In [(~:)l + (1 + ~:)J' (13) 

We also need an asymptotic expansion for D;p_!' 
Differentiating the asymptotic expansion in Eq. (7), 
we find, considering h~o a parameter, 

where the terms coming from the differentiation of the 
quantity raised to the power t are neglected since they 
result in a higher-order negative power of p. From Eq. 

+1 

III Along 
Original Path 
(2)0) 

111 Along 
Sleepest Descenl 
Path (2)0) 

2,111 

." ." 3." org fL 
"2 2 

€ 

"I Along Original 
Path (2<0) 

FIG. 3. Region of validity of the asymptotic expansion for D,p-l(z), 
together with It I along original path and steepest descent path. 

(8) it is not difficult to show that 

O~l e-
ti1T (k~: )1 

o(hEo) = (P~l)t 2p - 1 , for all ~l' (15) 

We have 

zDtp_1 + hDip_i 

"" 2(17')* exp [!(ip - i) In ip - tip + -fti1TJpt 

x [z ( /1 )tAi (efi1TpiEl) 
2k~olp - 4 

+ h;t e".;" ek~2/~ -4t Ai' (eti .. pf~l)J (16) 

The exponent of the integrand in Eq. (5) is examined 
for saddle points when the arguments of the Airy 
functions are supposed large, and JonesS shows that 
the saddle points are solutions of 

p = !k(~: - r/) sin2 <Po - k~ofJ sin <Po cos <po. (17) 

Jones' textbook contains a typographical error; i.e., 
Jones shows 

p = lk( ~~ - fJ"") sin (flo - k~o1'J sin (flo cos (flo· 

The greatest contribution to the integral in Eq. (5) 
must come from the point fJ := -Eo cot (flo since it 
corresponds to ft = tk;~ (the turning point) and 
~l = 0, so it is no longer possible to replace the Airy 
functions in Eq. (7) by their asymptotic expansions. 
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The expression for the normal derivative of the current 
on the cylinder becomes 

The Laplace approximationS states that the major 
contribution to the integral in Eq. (18) will arise from 
the neighborhoods of the points at which 

attains its supremum. These points will be solutions of 

of = 0, (20) 
oft 

and substituting for ~2 from (13) into (20) yields 

where terms through the third derivative have been 
retained. Since we have assumed that T in Eq. (23) is a 
small quantity, we may neglect squares and higher 
powers of Tin Eq. (26). This does not mean we may 
neglect higher-order powers of ("I - "10), since we 
have not assumed this quantity small. Indeed, for 
angles near IPo = 117, the terms that contribute are 
("I - "10)3, as we shall discover. We have 

Ofl f(ft, "I) = f(ftsp, 1)0) + ;t.., (1) - '10) 
V'I /lsp.~o 

8 E. T. Copson, Asymptotic Expansions (Cambridge University 
Press, Cambridge, England, 1965). 

(
tan (tIPo) ) 

In! ! = O. 
"I(k/2ft) + (1 + k"l2/2ft) 

It is easy to verify that the point 

'YJ = -~o cot IPo, 

ftsp = tk~~ 

(21) 

(22) 

satisfies Eq. (21). Thus, the greatest contribution to the 
integral comes from the point on the parabolic cyl
inder near grazing. This is not a surprising result. 
Continuing with Laplace's method, we define the new 
variable T as 

_ t I ft - ftsp + ftspT, IT« 1, (23) 
with 

(24) 

and ftsp as given in Eq. (22). When Eq. (23) is sub
stituted into Eq. (8) and terms up to and including 
powers of T to the t are retained, we find 

~1 = -TftS!' (25) 
Since we are interested in the integral near the point 

where it assumes its greatest contribution, it would 
appear that a Taylor-series expansion off{ft, "I) about 
this point would be useful. That is, consider 

(26) 

1 (03f I 3 + -3
1
;a (1) -1)0) 

• u1) /lsp·~o 

(27) 
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where 

011 - 0 
O/-' /lsp,~O - , 

since this is how the point Vtsp, 'f}o) was determined. 
The various terms in Eq. (27) are given by 

k~~ cos CPo 
I(/-'sp, 'f}o) = - -2 -. -2- , (28 a) 

sm CPo 

radius of curvature is 

(33) 

It is convenient in many applications to separate 
the phase of the incident wave from the remaining 
factors in/(/-" 'f}). If we add and subtract the phase of 
the incident wave 

-tkM'f} sin CPo + ~o cos CPo) 

+ tk'f}('f} cos CPo - ~o sin CPo), (34) 

then /(/-" 'f}) becomes 

0'11 = - k cos CPo, 
0'f}2 /lsp,~o (28c) I(/-" 'f}) = - kr cos (cp - CPo) + 12(0., CPo) + 11(0., CPO)7, 

.... ...--' 

0'1 I = sin CPo 
o/-,O'f} /lsp,~o ~ 0 ' 

(28d) 

o'll k sin
3 

CPo 
0'f}3 I'sp,~O = ~o ' 

(28e) 

oy I = cos CPo sin
2 

CPo • 

0/-,0'f}2 I'sp,~O ~~ 
(28f) 

Substituting Eqs. (28) into Eq. (27) yields 

_ k~oco (1 _ co cos cpo) 
I(/-','f}) - . 2 21: 

sm CPo 5"0 

k~~ ( cos CPo C(

3
) +- ---+-

2 sin2 CPo 3~~ 

+ (.!5...)t C07(1 + co cos cpo), 
Uo Uo 

(29) 

where 

co = 'f} sin CPo + ~o cos CPo· (30) 

As a check on the result in Eq. (29), consider the 
case 

(31) 

Fock2 defines /(/-" 'f}) in terms of the variable I = ~o'f}. 

Substituting for I in Eq. (57) gives 

I ( 1) = kl + k1
3 

+ (~)t 71 (32) 
/-', ------ 6e 2~ ~' 

inoident 0 0 0 
wave 

which agrees exactly with Fock's result, where the 

inoident wave (35) 

where we have defined the normalized distance along 
the parabolic cylinder 

(36) 
and where 

11(0., CPo)/(tk~~)t = (0. sin CPo + cos CPo) 

and 

X [1 + ten sin CPo + cos CPo) cos CPo] 

(37) 

12(0., CPo)/k~~ = ten sin CPo + cos CPO)3. (38) 

The corresponding functions given by Fock and 
and J ones9 are 

and 

1:(0., CPo)/k~~ = ten sin CPo + cos CPo)3, (40) 

and we find that Eq. (40) agrees exactly with the result 
in Eq. (38). Also, when 0. '" -cot CPo, Eq. (37) agrees 
with Eq. (39); however, as 0. moves away from the 
grazing point (i.e., - cot CPo) the results in Eqs. (37) 
and (39) will differ. Since in most applications one is 
interested only in the penumbral currents near grazing, 
the differences in Eqs. (37) and (39) do not appear to 
be significant. 

The results in (37) and (38) show the range of 
validity of the Fock currents when the incident wave is 
not tangent to the apex of the cylinder. This is an 
extension of the results given in Jones' textbook. 

9 Note that the origin in Fock's equivalent replacement cylinder is 
at n = -cot f/Jo and our distance along the y axis [i.e., ~~(n + 
cot f/Jo)l needs to be projected onto the direction of the impressed 
field. 
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3. CONCLUDING REMARKS 

The validity of Fock's principle for the local field in 
the penumbra was investigated for the case of a plane 
wave striking a finitely conducting, parabolic cylinder 
at an arbitrary angle of incidence. The results show that 
Fock's principle is extremely accurate, provided that 
the observation point on the parabolic cylinder is near 
the point where the impressed field grazes the cylinder. 

When the impressed field travels in a direction tangent 
to the apex of the cylinder, Fock's principle agrees 
exactly with the results presented in this paper for all 
observation points. 
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Stress-Tensor Commutators in Nonlinear Electrodynamics* 
s. OESER AND L. K. MORRISON 

Brandeis University, Waltham, Massachusetts 02154 

(Received 9 May 1969) 

Equal-time stress-tensor co~u~ators ~re shown to ha~e a. simple for.m for ~eneral systems of spin 
zero and one. Electrodynamics with arbitrary self-couphng IS treated In detail. Ordering and other 
problems of a purely quantum nature are not discussed. 

I. INTRODUCTION 

As is well known, Lorentz invariance of a local 
theory with spin ::;; I is effectively equivalent to the 
validity of the single local equal-time commutation 
relation1. 2 : 

i[J'OO(r), roO(r')] = [TOk(r) + rok(r')]okb3(r - r'). (I) 

It is also knownl-4 that, for higher spins, additional 
model-dependent terms necessarily appear on the 
right. 

In this paper we shall explicitly evaluate the full 
set of stress-tensor equal-time commutators i[TOil (r), 
TAO'(r')], relevant to the Poincare algebra for a wide 
class of theories of spin zero and one.5 We shall 
illustrate in terms of the self-coupled Maxwell (or 
massive vector) field, which is a highly derivative 
coupled theory, involving, as it does, arbitrary 
powers of FllvFIlV and e"v«p FllvF«p (but not derivatives 
of F(lv)' For the best known model, Born-Infeld 
electrodynamics,6 Diracl has already shown by direct 
computation that neither nonlinearity nor the deriv
ative coupling disturbs the simple form of Eq. (1). 
This is in spite of the fact that TOO becomes' a com
plicated function, while rok retains its simple character 
as a spatial translation-generator density. 

Our technique is an extension of that given in I, 
which is based on the introduction of an external 
metric field gllv, the response to which defines T"V as 
the gravitational current. The general results we shall 
obtain are, strictly speaking, purely classical in that the 
operator-ordering problem is not considered. This is 

• Work supported in part by USAF, OAR, under OSR Grant 
368-67. 

1 P. A. M. Dirac, Rev. Mod. Phys. 34, 592 (1962). 
S J. Schwinger, Phys. Rev. 130,406,800 (1963). In this paper, we 

do not consider the mathematical problems of the existence of equal
time commutators as either three-, or limits of four-, dimensional 
distributions. For a recent discussion of this question for current 
commutators, see, for example, D. Boulware and S. Oeser, Phys. 
Rev. 175, 1912 (1968). 

aD. G. Boulware and S. Oeser, J. Math. Phys. 8, 1468 (1967), 
referred to as I in text. 

4 An explicit example is given in Ref. 2 for spin! and in S. Oeser, 
J. Trubatch, and S. Trubatch [Nuovo Cimento 39, 1159 (1965)] for 
spin 2 . 

• Fermions are not treated here, since somewhat different tech
niques are involved. It is known that they satisfy Eq. (1). 

o M. Born and L. Infeld, Proc. Roy. Soc. (London), Al44, 425 
(1934). 

adequate for the Abelian case, where there is effec
tively no ordering ambiguity. For non-Abelian systems 
like the Yang-Mills field, it is known7 that such 
problems are important and require the introduction 
of new, nonclassical terms. 

We also do not consider the purely quantum 
problem, discussed in I, of Schwinger terms in the 
stress-tensor commutators. 

II. GENERAL EQUAL-TIME STRESS-TENSOR 
COMMUTATORS 

The action W of a local system in an arbitrary 
external metric field is obtained by the usual "minimal" 
substitution 'YJllv -+ gllv in the Lorentz covariant form 
W['YJllv]' The (symmetric) contravariant stress-tensor 
density X"V[g] is the response of the system to a 
variation of the metric !5 W = ! S X"V(X)t5glv(x). It is 
shown in I, using covariant conservationS of X"V, that 
the normal stress tensor T"V = X"v [g = 'YJ] obeys the 
following equal-time commutation relations: 

i[TOIl(X), TAO'(x')]b(xO - x'O) 

= ['YJIl'TA<1(x) - 'YJ/lO'pJ.(x) - 'YJ/lJ.T'O'(x)]o,b(x - x') 

_ 20 br"(x) (2) 
, bg;.O'(x') ' 

where the variational derivative is also to be evaluated 
at gil' = 'YJllv' 

It would appear at first sight that the choice of basic 
field variables can alter the metric dependence of the 
action and, hence, both X"' and bX"'(X)/bg«p(x'). We 
shall see that there is effectively no ambiguity. The 
choice of appropriate initial field variables in the 
action will be effectively forced by covariance consider
ations, while the elimination of redundant variables 
leading to a canonical set will define the correct 
dependence for evaluating t5XIl'/t5g«p. 

Consider now the general form of the action ex
pressed as a function of a set of unconstrained canoni
cal momenta 1TA and fields CPA, to be varied inde
pendently in obtaining the field equations. (The 

• J. Schwinger, Phys. Rev. 127, 324 (1962). 
• This assumes the absence of preferred vectors in the original 

action, i.e., Lorentz invariance. 
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second-order formalism will be discussed later.) It is 
assumed that elimination of redundant ("constraint") 
variables maintains locality-which is the case if and 
only if the spin is ~ 1. We shall see that one may 
write the action9 as 

w = f (ft ~oo4>A + NOg(7T, 4>, gij) 

+ 3giiNiO~( 11',4>, gil) d4X), (3) 

where N == (-gOO)-t = (NiN1 gij - goo)t, Ni == gOi' 
and 3gii is the matrix inverse of the spatial components 
gij' The dependence on the N, Ni components of the 
metric is linear; accordingly, their coefficients, namely 
O~, when evaluated at gij = biJI are just the com
ponents of the stress tensor r:. The generator of 
canonical transformations, S 7TAoo4>A d4x, is entirely 
metric independent and so does not contribute at all to 
TPV. The right-hand side of the canonical commutation 
relations (CCR), [7TA(r), 4> A(r')], will likewise be 
metric independent, transforming like TTA and 4>A at 
rand r', respectively. The gop independence of the 
generator is, of course, to be expected if the (7T,4» 
variables are appropriate initial data at t = 0, since 
the gop only describe the change of coordinates off this 
surface. (This question has been discussed, for weak 
goo, in Ref. 2.) The further lack of gij dependence 
means that the matter variables have been correctly 
chosen to be kinematically independent of the gravit
ational field's variables.lO 

Variation of W with respect to gop immediately 
yields 

,:!oo = -N-10g, ,:!Oi = 3giJ(O~ + N-1NjOg). (4a) 

The spatial stresses ,:!ii will involve the particular g;; 
dependence in O~: 

!,:!ii = N ~Og _ !(gi!NIO~gm; + gj!NIO~gmi) 
ugij 

+ 3glkNk bO~ _ (2Nr1N iN;Og. (4b) 
bgij 

• For higher spins, this simple form no longer holds. While this is 
a great difficulty with respect to gravitational coupling [C. Aragone, 
Nuovo Cimento (to be published)], it is known that, say, the free 
spin 2 system is Lorentz invariant (for example, by direct evaluation 
of the Poincare commutators). However, the derivations of this 
section are not applicable, because reduction to the 2S + 1 inde
pendent variables of such systems introduces spatial nonlocality. 
Indeed. there would be a paradox otherwise, since a deviation from 
Eq. (3) would result in apparent time non locality through the 
oo(i5':t/i5g) terms in Eq. (2). 

10 See R. Arnowitt, S. Deser, and C. W. Misner, J. Math. Phys. 
1, 434 (1960), and Phys. Rev. 120, 1313 (1960), where the necessity 
of this form for coupled gravitational and matter fields is treated. 

From these expressions and the reciprocity relation 

b':!PV(x) = b2W 
bg .. p(x') - bg .. p(x')6gllv(x) 

b':!"'(x') = , 
bgpv(x) 

(5) 

we obtain the variational derivatives b':!/bg, evaluated 
at gllv = 'YJllv, i.e., N = 1, Ni = 0, gi; = 6i ;: 

6':!OO 
-, = -ITOOb(x - x'), 
15 goo 
b':!oO b':!o.' 
-- =--=0, 
bg~i 15 goo 
b':!oO b,:!i i' 150: 

bg;; = bgoo = - bg;;' 
b,:!oi 
-, = -16ij TOOb(x - x'), 
bgo; 
b,:!oi b,:!kl' 
--=--
bg~l bgoi 

(6a) 

(6 b) 

(6c) 

(6d) 

= _!(TOlbik + TOkbi/)b(x - x'), (6e) 

b,:!ii 1520: 
- = 2 (6f) 
bg~m bg;mbgij 

Now from Eq. (4b), taken at gpv = 'YJpv, we find 

150: = ITHb(x _ x'). 
bg;j 

The momentum density will be seen to maintain its 
simple metric independent (non interacting) form', so 
that b()~/bg~. actually vanishes. This is essential for the 
time locality of the theory. The remaining derivative, 
b20g/bgijbg:m, which appears in only one place, cannot 
be further reduced, but it does not affect time locality. 
Inserting the above results into the basic formula, 
Eq. (2), finally yields, after some simple manipulations, 
the following general formll : 

i[ToO(x), TOO(x')] = [YOi(X) + YOi(x')]oib(x - x'), 
(7a) 

i[TOO(x), YOi(X')] = [Tii(X) + biiTOO(x')]o;b(x - x'), 
(7b) 

i[YOi(X), TOi(x')] = [TOi(X)O, + YOi(x')o;]b(x - x'), 
(7c) 

i[Too(x), T ii(X')1 

= [YOi(X')Oi + YOi(X/)O; - (oOTii(x»]b(x - x'), (7d) 
i[TOi(x), Tlm(x')} 

= [T'm(x)Q. - bilTmk(x')Ok - bimTlk(x')Ok]b(x - X') 

_ 40
k 

b
2
0g (7e) 

bg1m(x)bgik(x') , 
11 In I, a complementary form for these commutators is obtained 

from another approach. The specific action, Eq. (3), is not used, but 
only the requirement of time locality [i.e., that no oo6(xo - XU') 
terms appear on the right]. 
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where reference to the purely quantum (aab) terms has 
been dropped. Thus, all commutators but the last are 
entirely model independent. As it happens, for the 
free Maxwell scalar field, the b2()Z1bg lmbg:k term is 
also expressible in terms of Tllv alone.12 The above 
result may, of course, be obtained directly in each case 
by use of the CCR, taking all constraints properly 
into account. 

In view of the special role played by the first com
mutator in Eq. (7a), we recall that it is equivalent to 
the simple requirement that in a weak external goo 
[Le., gii = bii , Ni = 0, N'"" ( - goo)!] 

b[( - goo)!;tOO] = ° = b;:tOi. 
bgoo bgoo 

(8) 

In the next section, we treat nonlinear electro
dynamics and other systems in a simple way to show 
that this criterion is satisfied. 

III. ENERGY DENSITY COMMUTATORS 

In this section, we deal with self-coupled spin-one 
systems in an introductory way to show that the 
Dirac-Schwinger condition, Eq. (1), or alternatively 
Eq. (8), holds there. We shall work in the usual 
second-order formalism, where the special form, Eq. 
(3), is not made explicit. In Sec. IV, we use first-order 
formalism and deal with the full set of stress-tensor 
commutators given in Eq. (7). The physics is, of course, 
independent of the formalism used. 

We consider generalizations of electrodynamics 
involving arbitrary powers of the field strength, but 
not its derivatives. The Lagrangian will now be a 
function of the two independent parity and Lorentz 
scalars ex. and /]2, where 

,.. = 1.F F 'YI1la.'YIVP = 9.\2 _ &2 (9a) 
"" - 2 IlV a.(J·1 '1 , 

(J == iEIlVa.PFllvFa.(J = iFa.(JFa.(J = -&.9.\. (9b) 

Familiar examples are the phenomenological Euler 
Lagrangian13 

(10) 

12 For the Maxwell case in particular, we find 

i[TO~(x), Tmfl(x')] = [Tmfl(x)Ok - ~Tln(x')OI - c5knTlm(x')oJ 

X c5(x - x') + [c5mflT~I(x')OI + T'"fl(X')Ok 

+ TOO(x')(c5kmo" + c5k"o .. - c5mnok)]c5(x - x') 

(see Appendix A). This result disagrees with earlier. stat~m~nt~ [see 
A. Peres, Nuovo Cimento 34, 340 (1964); I. Blalymckl-Blfula, 
Nuovo Cimento 35, 697 (1964)] that one cannot express this com
mutator in terms of TIlV alone. The same commutator for the spin
:zero field is also expressible entirely as a (different) function of TIlV. 
This is because it depends only on 4> •• 4>01 and nO, both of which are 
expressible in terms of T<J and Too. 

18 W. Heisenberg and H. Euler, Z. Physik 38,714 (1936). 

and the Born-Infeld theort 

LB = - [-det (rlllv + FIl.)]! + 1 

= -(1 + ex. - (J2)! + 1 == -y + 1, (11) 

where an appropriate dimensional constant is ab
sorbed into the definition of Fllv ' 

In going over to the covariant forms, several points 
must be borne in mind. The first is that there is no 
freedom of choice of the fundamental tensor variables, 
in terms of which the prescription 'YJllv ---+ gllv will be 
made: One must express everything in terms of the 
covariant tensor Fllv and then insert gllv and (-g)! 
factors as needed, for Fllv is merely a shorthand for the 
expression allAv - avAil' which is a general tensor. 
On the other hand, QIlV == allAv - aVAil (note that 
Q'" ¥: FIl' == Fa.(JgtxllgPV) or allAv - avAil (where All is 
a vector density of any nonzero weight) are not tensors. 
This fixes the explicit gllv dependence (and, hence, also 
;tIlV) once we recall that the totally antisymmetric 
symbol EIlVa./J transformsl4 as a fourth-rank tensor 
density of weight one, but is explicitly metric inde
pendent (though its covariant form Ep.va.p is not). Con
sequently, ex. is a scalar with explicit metric dependence, 
while (J is a metric-independent scalar density. Of 
course, every Lagrangian must be made a scalar 
density by appropriate insertions of (-g)! factors. 
The Born-Infeld theory is unique in this respect in 
not requiring any explicit (-g)! factors, since the 
square root of the determinant of any covariant 
second-rank tensor (such as gp.y + Fp.v) is automati
cally a scalar density.14 

The above discussion suffices to specify the first 
metric variation of the action, but its second variation 
b;tjbg, which enters in the stress-tensor commutators, 
cannot be evaluated without further refinement. For 
exa~ple, if we were to take 6;t°ijbgoo at gp.v = 'YJp.v for 
the Maxwell field directly from the ;tp.v form, it would 
not vanish, since for weak goo it is easy to see that 
;to; '"" (-goo)-!FOiFii . The point is that there is an 
implicit assumption in the derivation of Eq. (2) that 
;tp.v is expressed in terms of variables which are inde
pendent of the metric (i.e., of a weak goo for present 
purposes). Such variables must then be appropriate 
Cauchy data independent of changes of coordinates 
off the initial surface. We have already discussed (in 
Sec. II), in an essentially Hamiltonian framework, the 
appropriate choice in terms of the generators of 
canonical transformations (or, alternatively, the CCR) 
being metric independent. For spin-one fields it is 
knownlO •3 that the correct initial variables are not the 

U Indeed, ellV«fJ may even be defined in nonmetric spaces; see, for 
example, E. Schrodinger, Space-Time Structure (Cambridge Uni
versity Press, Cambridge, England, 1963). 
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Fily (i.e., FOi and Fii) but rather 

&i == (_g)lpoi == N(3g)lpoi 
and 

(12) 

(or any appropriate functions of & and $). The usual 
Maxwell CCR 

i[&i(r), $i(r')] = eiikokc5(r - r') (l3) 

is clearly metric independent [c5(r) is a scalar density] 
and reflects the transformation properties of the & and 
$ under coordinate changes at t = O. For self
coupled theories, & will no longer be conjugate to A 
(or equivalently $), as a result of the derivative nature 
of the coupling. However, the correct conjugate vari
able II will be seen later to depend on (&, $) but with 
no further gOIl dependence (or it would not be a "good" 
Cauchy variable!); thus, we need not express things in 
terms of it for present purposes. The $ on the other 
hand will remain the canonical amplitude. 

Now a term in the action of the form J (J.( _g)t d4x 
will have a variation 

c5 f ~(- g)l d'x = !b f F llyF"pgll"gYP( - g)l d'x 

= I( -FIl"P" + igIlY(J.)( - g)lc5glly d4x 

(14a) 

(where FIlY == F"pg"llgPY), namely, the usual Maxwell 
stress tensor. For any power (J.n, we will have 

c5 I (J.n( - g)l d'x 

= I (J.n-l( -nFll"P" + tgIlY(J.)( - g)lbglly d4x. (14b) 

For fJ2, which is a scalar density of weight two, we have 

c5 I fJ2( - g)-l d4x = -t I fJ2( - g)-i gllYc5glly d'x (14c) 

since the only metric dependence is in the factor 
(_g)-l. Likewise, 

b I fJ2n( - g)-n+! d4x 

= (-n + t) ffJ2n(_g)-nt-lgIlYt5gllyd4x. (14d) 

In particular, such terms will not contribute to either 
TOk or c5'X0k/c5goo at gllY = 'YJIlY' To compute the c5'X/c5g 
in general, we must rewrite the (J., fJ' and FIl"P" in 
terms of (&, $), keeping only a weak goo in the present 
context. Thus, we let gOO _ (goo)-I and (-g)l_ 
(-goo)i. Although only the goo dependence will be 

needed at this time, we will display the full Nil de
pendence for future reference: 

F - /Oi N(3 )-i + F Ni (15a) Oi - - gii g ii' 

Fii = ClOWJ _/oiNi)N-ICSg)-l + Fkl3gki3gli, (15b) 

where pi == (_g)lpoi = st. In terms of the canonical 
variables, we find 

IX""'" $2 _ &2, 

fJ ,....., FOiFJkeOiik f"ooo.I goo( - g)-it • $,....., (- goo)!& • $, 

(16) 

and 

FO"Fka;""'" (& X $)k( - goo)-!. 

We can now check whether 'X0ll has the correct goo 
dependence to satisfy Eq. (8). Since IX and fJ( -goo)-i 
are goo independent, any goo dependence will come 
from the explicit metrics in (14) once the & and $ are 
substituted in. It is easy to verify that Eq. (8) is indeed 
satisfied for any IXnfJ2m term of the original action. 
For the Born-Infeld action, we can do this in closed 
form: 

;r~Y = [;r~ - gllYCiIX + 1)(_g)t]y-I + (_g)lgIlY, 

(17) 
where 'X); is the Maxwell tensor and 

y = (1 + IX + fJ2 g-I)!. (18) 

It follows that 

TO; = (1 + $2)y-l - 1, 

TJl = (& x $)iy-l (19) 

have the correct [TO:, ~'] relation. This has also 
been done directly for the Euler Lagrangian, Eq. (10), 
with the appropriate II and CCR. One may also verify 
the Born-Infeld TOo commutator using the correct 
II, namely, 

TIi = _(Si - fJ$i)y-I, 

[TIi(r), $i(r')] = ieiikokc5(r - r'). (20) 

It is, in fact, II rather than & which now satisfies 
the Gauss equation, V· II = 0, and is transverse; 
this will be clearer when we treat the theory in first
order form later. The momentum density now has the 
simple form 

TO; = ($ X lI)k,....., _lliOkAi + o.clliAk) (21) 

(one could have arrived at the y-I& part of II from the 
necessity that TOk retain its simple form). To express 
TOJJ in terms of n, one simply uses the identities 

1 + 112 = y-2(l + fJ2)(l + $2), 

(II • $)2 == y-2fJ2(l + $2)2 (22) 
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to obtain 

T~ = [(1 + n2)(1 + $2) - (n • $)2]t - 1 

== [1 + n2 + $2 + (n x $)2]t - 1, (23) 

which is, aside from a constant, the form given by 
Dirac. l It is easy to see that the Poisson bracket of 
-r:l with itself gives the desired ]'Oiai<'l(r) structure. As 
Dirac remarked, the difference between the Poisson 
bracket treatment and a correct use of commutators 
lies in ordering problems, but these involve only 
[ncO), $(0)] "" a<'l(O), which may be dropped by odd
ness. There will be difficulties when other interactions 
(e.g., a dynamical metric field), are present in these 
terms, or for non-Abelian fields. 

The discussion is unaltered for massive fields: a 
mass term in the action, 

W m "" f AI'AvgIlV( - g)i d4x, (24) 

gives the following contribution to the stress tensor: 

X~ "" (-AI'AV + 19l'VAaAa)( _g)i. (25) 

The appropriate Cauchy variables are not AI" but Ai 
and AO == (-g)tAo, the covariant spatial and contra
variant density time components. [The necessity of 
using AO may be seen from the constraint equation 
a/Oi = m2Ao, since pi == (_g)t£Oi is the correct 
variable; any other choice, say Ao, would be expressed 
in terms of /Oi and the metric goo'] The contribution of 
the mass term to X°l' is 

(_ goo)tx~ ~ (AO)2 + A 2, 

;:r~ ~ AOA", (26) 

where both terms are goo independent. IS Likewise, any 
power of A2 in the action, corresponding to direct 
self-coupling, also satisfies this condition, since each 
further power behaves as 

AIIAvgllV ~ AogOO + A2 = _(AO
)2 + A2

, 

which is metric independent. The same holds for 
terms like AI'Fl'aFavA., etc., so we may conclude that 
(to within quantum-ordering problems) the Lorentz 
invariance condition, Eq. (1), is satisfied irrespective of 
the self-coupling for vector theories. 

In the above, we have concentrated on goo depend
ence only. For the other TI'V commutators, we would 
need Nt and gi, dependence as well. The former can be 

II Note that, in the massive case, there is a "conspiracy" between 

the & X 3l and AOA~ = V • tAt terms to yield the same form as in 
electrodynamics, 

Tot = tjiQ-tA; - ili(tjiAk), 

namely, a 7rV</> term together with a metric-independent divergence. 

traced through in general; the gi; will, of course, 
occur in many places (it also enters in the II-& relation) 
and depends very much on the model. Fortunately, 
the gii dependence is only relevant to the commutator 
[]'Oi, TIm']. 

IV. FIRST-ORDER FORMALISM 

We have seen in Sec. III, using second-order 
formalism, that, for self-coupled spin-one fields, the 
energy-density commutator, Eq. (1), follows from the 
weak goo metric dependence of the Lagrangian by 
means of Eq. (12). However, it was shown in Sec. II 
that a more powerful statement can be made if the 
Hamiltonian form obeys Eq. (3): All the commutators 
given in (6) then follow. We will now demonstrate 
that Eq. (3) does indeed hold for the models given. 

First, we consider the Born-Infeld theory.6 It is 
shown in Appendix B that, in first-order form, the 
Lagrangian is given in flat space by 

LB = _ly-I(£IIV - l{3FIIV)(aI'Av - avAI') + S(a., {3), 

y = (1 + a. - {32)i, (27) 

S(a., {3) = -y + a.y-l - 2fJ2y-1 + 1. 

The metric dependence is again obtained by the 
prescription 17l'v - gl'v, with appropriate factors of 
(_g)i introduced to make LB a scalar density. The 
resulting Lagrangian becomes 

LB = -lIII'V(0I'Av - OvA,,) + (- g)iS(a., fJ( - g)-i), 

Ipv == (_ g)iy-I[£IIV + {3FI'V(2grl], 

S(a., fJ( - g)-i) = _y-l(l _ {32g-l) + 1, (28) 

y = (1 + a. + {32g-1)i. 

By construction the field equations are as in the 
second-order form, with the difference that Fl'v = 
al'Av - OvAI' is now a field equation on a par with 
al'nl'v = 0 and is obtained by varying £l'V (inde
pendently of AI')' The variable conjugate to Ai is 
_ni, where 

n Oi == IIi = y-l [6i - $i,8( _g)-t]. (29) 

By using the constraints, LB may be expressed 
completely in terms of canonical variables, Ai (or 
3,\i), IIi, and (N, No)' with the spatial metric go; 
present where needed to tie together spatial indices. 
Notice that Eq. (29), the relation of IIi to &i and 9!i, 
is gol' independent, as both a. and (-g)-t,8 are gol' 
independent when written in terms of (6i , $;). This is 
also apparent when we express the various quantities 
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in terms of fi. In particular, we find 

(3(-g)-! = y($. fi)(3g)-1[1 - $2(3g)-1]-1, 

oc = _y2p2(3g)-1 + $2 (3g)-1 , 

y2 = [1 + $2(3g)-1]2{[1 + $2(3g)-1] 

(30a) 

(30b) 

X [1 + IJ2(3g)-1] - ($. fi)2(3g)-2}-1, 

(30c) 
IIii = (IIi 3g!i _ IIi 3g!i)N! + NH1m3g li 3gmi, 

(30d) 

HIm == -y-1E!mi(3g)-![$i + (-g)-!(3ypi], (30e) 

pi = _IIi + $i($. n)(3g)-1[1 + $2(3g)-1]-1. 

(30f) 

Clearly, oc, (-g)-!(3, y, H!m' and pi are independent 
of gO/l and, consequently, so is S(oc, (-g)-!(3). The 
term S IIioiA o in the Born-Infeld action vanishes 
because IIi is transverse (V, n = 0). Thus, the 
Lagrangian can be written in the desired form, C = 
Ilia A + N()O + 3giiN.()O where 

~i ° • ;' 
()~ = Eiik$iIIk(3grl 

= IIk(okAi - 0iAk) 

= -IIkoiAk + oiIIkAi), (31a) 

()g = !H!m 3gli 3gmiEiik$\3g)-1 

+ (3g)!S(OC, (- g)-! (3). (31 b) 

The momentum density Tli = ()? (g = 'f}) has the 
correct form $ x n given by Dirac and, furthermore, 
()? is entirely metric independent, which is required to 
give the simple form in Eq. (7d) for the commutator 
[roo, Tii']. The energy density, ()g, is indeed inde
pendent of gO/l' but has a great deal of gij dependence: 

()g = -eg)!{[l + n 2eg)-1][1 + $2eg)-1] 

- ($. n)2eg)-2}! + eg)!, (32) 

where n 2 == IIiTIigij , etc., and, of course, ()g('f}) = 
- roo is just the Dirac form, Eq. (23). One could now 
calculate the model-dependent commutator [TOi, Tik'] 
for the Born-Infeld theory, but the result is not very 
instructive; it does not have the simple Maxwell form 
of Appendix A. 

The various stress-tensor commutators may also be 
calculated directly by replacing the commutators with 
Poisson brackets. We have done this explicitly for the 
[TOI', TOY'] and find agreement with the general form.16 

One may check explicitly that the above method and 
results also apply to an action which is an arbitrary 
series of terms ocn (32m, using the appropriate first-order 
form given by Eq. (B2). 

11 The commutator [TOi, TOi'] may actually be calculated in terms 
of the CCR because of the simple form of TOi. 

Another model we have considered is the Yang-Lee 
theoryI7 of a charged vector meson coupled non
minimally to the electromagnetic field18 : 

C1nt = iA( - g)! PV( ~:~v - ~:~/l)' (33) 

The canonical variables are unchanged by the coupling, 
but the constraint equation for F/lv is altered: 

F/lv = G/lAy - ovAI' + iA(~N. - ~:~/l)' (34) 

Nevertheless, it can be shown by means ofEq. (8) that 
this model also satisfies the Dirac-Schwinger con
dition. 

Finally, we mention that actions arising from a 
scalar (~, 1T1')-vector (A/l' G/l·) theory with gradient 
"couplings," e.g., C1nt = A( -g)!A/l1T/l, also have the 
form given by Eq. (3). 

V. SUMMARY 

We have seen that the simple Lorentz invariance 
condition (1) on the energy-density commutator is 
valid for arbitrary derivative or direct coupling of spin
zero and spin-one systems and is, thus, a property of 
the low spin rather than of the details of the inter
action, as long as ordering problems are absent. The 
form of the full set of stress-tensor commutators was 
shown to be determined explicitly for systems having 
the canonical form W = S [1T¢ + N/l()~(1T, ~,gii)] d4X. 
This was exemplified by the Born-Infeld and other 
variants of electrodynamics. 

APPENDIX A 

We show that, for Maxwell theory, the model
dependent commutator [TOk, Tmn'] may be written 
entirely in terms of T/l· itself. We start from Eq. (7e) 
given in the text: 

i[TOi(X), T!m(x')]<5(xO - x'O) 

= [T!m(X)Oi - bilTmk(x')Ok - bi17lT 1k(X')Ok]<5(X - x') 

_ 40
k

( <52()~ ). (A1) 
<5glm(x)bgiix') 

For Maxwell theory, we have 

()g = _!(3g)-!( $2 + &2), 

()~ = (& x $)ieg)-l = &\GiA j - O;Ai)' 

17 C. N. Yang and T. D. Lee, Phys. Rev. 128, 885 (1962). 
18 The above coupling in second-order formalism is a different 

theory. It is equivaleQt to a first-order theory with a coupling 

i:Int = iA'(-g)t(iI/lA. - ilvA/l)(</>/l-</>. - </>.-</>/l), 

in which the constraint equation for F I'V is the normal one, but now the 
variable conjugate to A i is no longer (-g)l POi. A slight modification 
of the coupling, which also obeys the Dirac-Schwinger condition 
(I), is that of a self-coupled, massive, charged vector field: 

i:Int = i;'N(_g)tGI'V(cf>/lcf>! - </>vcf>:). 



                                                                                                                                    

602 S. DESER AND L. K. MORRISON 

We note that M)NfJgmn vanishes, while, after some 
manipulation, we find 

fJ 2eg 
fJ g 1m (x)fJ gik( X') 

= - H( fJikT lm + fJlmTik) 

+ T OO( +fJlifJmk + fJlkfJmi _ fJiwm)]fJ(x - X'), 

(A2) 

which yields the expression of Footnote 12, when 
inserted into (AI). A check is obtained by direct use 
of CCR, together with V • & = 0 = V • $. One may 
also check that the commutator of TOi with Tmm is the 
same as that with roo, in agreement with the trace
less ness of TIl> in the Maxwell case. 

The commutator [TO(r), Tlm(r')] is not relevant to 
the Poincare algebra. It can neither be expressed in 
terms of (YX/fJg, nor is it a function of T/JV alone, since 
it involves terms like f,iBmfilkokfJ, which,unlike f,if,j or 
fiikf,i Bk, cannot be written in terms of T/JV (although 
[Tii(r), T"(O)] = [TH(r), roO(O)] does depend on pv 
only). 

APPENDIX B 

We obtain here the first-order action (in which 
pi).V and AI' are to be varied independently), corre-

sponding to an ,arbitrary second-order form 

w = I C(o:, fJ) d4x, 

in which F/Jv == o/JAv - ovAI" 0: == tF/JvFaprt"'fjvp, and 
fJ == tF/JvF/Jv' We thus wish to obtain a Lagrangian 

r(pV, o/JAv - ovA/J)' which yields both the homoge
neous and usual Maxwell equations as field equations 
upon varying with respect to pv and AI" respectively. 
The Maxwell equations are just 

0iCaFl'V + tCpF/JV
) = 0, 

where Ca,p == fJC/fJo:, fJ. We, therefore, take 

(Bl) 

E == (CaF/J v + lCpF/JV)(o/JAv - ovAI') + S(o:, fJ). (B2) 

This guarantees the Maxwell equation (Bl) upon 
varying AI" To determine S, we vary with respect to 
F/JV and demand that the result implies F/Jv = o/JAv-
ovAI" It is easily checked that this is the case with 

S(o:, fJ) = C - 2(o:Ca + (Jep). (B3) 

In the Maxwell case, C = -to:, so that 

E = -tFl'V(o/JAv - ovAI') + tFl'vPv, 

the usual form. 
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We derive for nonequilibrium isotropic plasma the correlations of fluctuation in electric-field intensity 
and current density. The calculation is based on the ring-approximation results of Balescu and Taylor. 
The results reduce to the results obtained by Rostoker in the special case when the velocity-distribution 
function is Maxwellian at the initial time. 

1. INTRODUCTION 

This work attempts to derive in the "ring approxi
mation" the correlation functions with a plasma in 
general nonequilibrium states. 

The importance of correlations of fluctuations 
obtains from the fact that these can be directly related 
to the results of typical probe measurement1 on a 
plasma and they appear as the kernel function in the 
transport equation.2 In a well-known paper, Rostoker3 

derived expressions for the fluctuations of electric
field and current density within a plasma. In his 
derivation, Rostoker introduces the joint probability 
distribution function which is indeed necessary for a 
correct definition of the correlation function. The 
calculation proceeds by taking successive moments of 
the Liouville equation and subsequently truncating the 
chain by using an expansion in the plasma parameters. 
Instead of proceeding that way, we shall base our 
calculations on the very elegant resolvent formalism 
developed by Prigogine, Balescu, and their group.4.5 
The advantage of this formalism lies in the fact that it 
allows one to deal with the formal solution of the 
exact Liouville equation and dominant terms can be 
selected out using certain simple prescriptions. It has 
been demonstrated by Balescu5 that, in the case of 
plasma, dominant terms are those arising from the so
called "ring diagrams" (ring approximation), the 
summation of which is equivalent to a renormalization 
of the interaction potential, thereby eliminating the 
divergence due to the long-range nature of Coulomb 
forces. 

In this paper we present the calculations of the 
electric-field and the current-density correlation func
tions for a plasma in absence of external fields. Calcu
lations of these functions for plasma subjected to 
external magnetic field will be reported in a subsequent 

1 K. L. Dowles, Phys. Rev. Letters 1, 454 (1958). 
aT. Pradhan and B. Dasgupta, Phys. Rev. 160, 184 (1967). 
3 Norman Rostoker, Nucl. Fusion 1, 101 (1961). 
, 1. Prigogine, Non-Equilibrium Statistical Mechanics (Interscience 

Publishers, Inc., New York, 1962). 
6 R. Balescu, Statistical Mechanics of Charged Particles (Inter

science Publishers, Inc., New York, 1963); references to individual 
papers are to be found here and in Ref. 4. 

publication. In Sec. 2 below we discuss the definitions 
of these functions, while Secs. 3 and 4 are devoted to 
the actual derivations. 

2. DEFINITION OF ELECTRIC-FIELD CORRE
LATION AND CURRENT-DENSITY 

CORRELATION 

A. Electric-Field Correlation 

The electric-field correlation is defined as 

(E,/x, t)Ev(x', t'» 

= e
2 ~ ffdX dv dx' dv' 

',3 

a 1 a 1 
x ;- I l::l 'I' 'I D2(x, v, t I x', v', t'), 

uX)l x - Xi uXv X - X; 

(2.1) 

where D2(x, v, t I x', v', t') is the jo}nt probability 
function such that D2(x, v, t I x', v', t') dx dv dx' dv' is 
the probability that, at time (, the system will be within 
dx dv at (x, v), and at time t', the system will be in 
dx' dv' at (x', v'). x and v denote the totality of position 
and velocity coordinates for N particles. For a 
stationary random process, D2 is a function of ( - (', 
and it is related to the N-particle distribution function 
fN(X, v, () through the relation 

fN(X, v, t) = f dx' dv'D2(x, v, t I x', v', 0). (2.2) 

The N-partic1e distribution function satisfies the 
Liouville equation 

f.-fN(X, v, t) = 0, (2.3) 

which has the formal solution given by 

/v(x, v, t) = f dx' dv'§(x, v, t I x', v', O)fN(X', v', 0), 

(2.4) 

where g is the Green's function of the Liouville oper
ator obeying the relation 

f.-g(x, v, t I x', v', t') = 6(x - x')6(v - v')6(t - t'). 

(2.5) 
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The Green's functions satisfy the causality condition 

~(x, v, t I x', v', t') = 0 for t < t'. 

Now, we write expression (2.1) as 

(Ep.(x, t)Ev(x', 0» 

= (fp.v(x, x', t) 

= e2 ~ ffdX dv dx' dv'Eil x - xjDEv(lx' - xJl) 
''; 

X ~(x, v, t I x', v', O)!N(x', v', 0). (2.6) 

Following Balescu's notation, we write the Laplace 
transform of (2.6) as 

(f/lY(x, x', t) 

= ~ fdw exp (-iwt) I fdx dv 
27T i,i 

X Eilx - xiDEy(lx' - xmjt(W)!N(X, v, 0), 

where 

jt(w) F(x, v) = f dx' dv' (x, vi jt(w) Ix', v') F(x', v'). 

The integral equation for jt(w) is 

jt(w) = jtO(w) - e2jtO(w)C'jt(w), (2.7) 

which can be formally solved by a power series in e2
• 

In Eq. (2.7), jtO(w) is the value of jt(w) for a system of 
free particles and C' is the Liouville operator for the 
interaction part of the Hamiltonian. 

Now introducing the Fourier components 

with 

and 

fN(X, v, t) = I P{k}(V, t) I{k}), 
{k} 

(2.8) 

E (Ix - xA) = I i
q

2
p. exp {iq • (x - Xi)}, (2.9) 

p. q q 

we rewrite Eq. (2.6) as 

(tp..(x, x', t) 

= ~ I.2.2.2.2 JdW exp (-iwt)Jdx dV(- qp.;v) 
27T i,i Q q' {k){k'} q 

X exp {iq. (x - Xi) + iq'. (x' - x~)} I{k}) 
X ({k}1 jt(w) 1 {k'})P{k'}(V, 0). (2,10) 

Although in the above expressions the Fourier 
resolution is carried out in a finite volume, we intend 
to pass over to the limit V - oc, N - oc; NjV
const, later on. 

We now impose the condition of homogeneity: 

(tp.v(x, x', t) = (tp.v(x - x', t) 

= .2 <f"v(k, t) exp {ik. (x - x')}. (2.11) 
k 

From (2.10) one can separate <f into two parts, 

namely &(1), which consists of terms i ¥= j, and ~(O), 
which consists of terms i = j, wherefore 

tf°)(k t) 
/'" , 

2 2( kp.kv) N(87T\_1 'I I = en -7 V v) (tl dwexp(-iwt) dv 

X (0, ... ,k, -k, ... ,01 jt(w) l{k'})p{k'}(V, 0). 

(2.12) 

One may further rewrite (2.12) in terms of Pk.-k(i,j, t), 
the Fourier transform of the pair-correlation function 

B. Current-Density Correlation 

The current density is defined as 

j(x, t) = e I vibex - xit». 
i 

So the current-density correlation is 

~"v(x, x', t) 

= (jp.(x, t)jv(x', t'» 

= e2 ~ ffdX dv dx' dv'vi"b(x - xi)Vjvb(x - x~) 
''; 

X D2(x, v, t I x', v', t'). (2.14) 

Defining the Fourier components 

~IIV(X - x', t) = I 311.(k, t) exp {ik • (x - x')}, 
k 

where we have again assumed the homogeneity con

dition, we can separate 3"v into two parts, ~~j and 
~~Oj , the first one arising from pair correlation, exactly 
as in the case of the electric field. 

Analogous to Eq. (2.10) for the electric-field case, 
we have in this case 

3I1v(k, t) 

= .2.2 JdW exp (-iwt)JdVViIlV iV 
i,ilA,') 

x (0· .. kt = k, k; = -k' .. 01 jt(w) J{k'}> 

X P{k'}(V, 0). (2.15) 
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3(0) is obtained from the terms with i = j in (2.15) and 

the terms with j #: j give rise to 3(1). Again, introduc
ing the pair-correiation function Pk.-k' we may write 
finally 

3. CALCULATION OF ELECTRIC-FIELD 
CORRELATION 

As it is explicit in Eqs. (2.13) and (2.16), we have to 
have complete knowledge of the pair-correlation 
function Pk.-k for calculating (fll' and 311" This basic 
function has been obtained by Balescu and TaylorS 
in the so-called "ring approximation," and we shall use 
their result. 

The perturbation expansion for Pk._k reads 

Pk.-k(i,j, t) 

= fdV f dw exp (-iwt) 

x [~{(O ... k, -k' .. 01 !R,°(w) I{k'}) P{k'}(V, 0) 
{k'} 

+ I ~ ( ... k, -k' . ,,:R,°(w) I{k"})({k"}1 £! I{klfl}) 
{k"} {k"} 

X <{klll}1 :R,°(w) I{k'}) P{k'}(V,O) + ... etc.}} (3.1) 

where the prime over the integral sign excludes the 
integration over v. and v,. The terms occurring in (3.1) 
may be grouped according to their long-time behavior 
and this grouping is most conveniently done with the 
help of diagrams. As shown by Bale.scu, the dominant 
terms are those corresponding to the so-called terminal 
creation fragments, and, by retaining only these terms 
in (3.1), they constitute the ring approximation for 
Pk,-k' Thus the actual summation of (3.1) proceeds in 
two steps: (i) summation of all possible ring diagrams 
ending with a particular creation fragment to obtain 
a terminal creation fragment, and (ii) summation of all 
possible terminal creation fragments (Fig. 1). This 
leads to the result 

Pk.-k(i,j, t) = b~{djirp(i)rp(j) + dirp(j)F(i) 

+ d!rp(i)F*(j)}, (3.2) 
where 

w2 a 
d· = _.J! ik· - (3.3) 
• k2 avi ' 

1 
dii = - 8-;- [di - di]' (3.4) 

7Tn 

• R. Balescu and H. S. Taylor, Phys. Fluids 4, 85 (1961). 

.. 
1'"la,,..;tl":> + 

,.. 
FIG. I. Summation of terminal creation fragments. A typical 

terminal creation fragment is shown above. 

t5~ = 7Tt5_{k • (Vi - v,)}, (3.5) 

i 1 
b;i:(x) = b(x) ± - p - . (3.6) 

7T X 

rp(i) is the single-particle distribution function which 
satisfies the Balescu-Lenard kinetic equation. The 
function F(i) satisfies the integral equation 

E(oc)F(oc) = q(oc) - 7T d:rp(oc) 

x f dvtb(k. VIZ - k· vt)F*(I), (3.7) 

with 

E(OC) = 1 -f dV16~ldlrp(1), (3.8) 

q(oc) =f dVlb~dllZrp(OC)rp(1). (3.9) 

This integral equation can be solved in terms of the 
Vlassov (Van Kampen-Case) eigenfunctions X.,(v): 

(3.10) 

The barred functions used in (3.10) are obtained as 

r+ oo 
( k V) IC'v) = J-oo dvb v - T f(v). (3.11) 

The Vlassov eigenfunctions have the explicit form 

Xv'(v) = E2(V) P _1_, + El(V)t5(V - v'), (3.12) 
7T v-v 

where El(V) and E2(v) are the real and imaginary parts 
of E, respectively. It can be shown that, for a stable 
plasma, the Vlassov eigenfunctions form a complete 
set with the normalization 

f
+OO 

-00 dviAv) = 1. (3.13) 

The adjoint eigenfunction is 

(3.14) 
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with the orthogonality property 

Jd 
- ()- ( ) le(v')1

2 
~( , ") (3.15) vXv' v Xv" v = 1T -- U V - V • 

eb') . 

From (3.2) and (3.7), we get 

(f~~(k, t) = e2n2( - k~~v) J dvF(v). (3.16) 

Substitution of the solution (3.10), together with 
(3.13), yields 

(f(l)(k t) = e2n2(_ k/lkv)J dw q(w) . (3.17) 
/lV , k2 k Je(w)12 

We now evaluate the expression (3.17) at t = 0 with 
the assumption that at t = 0, cp(v) = fo(v) , the 
Maxwellian velocity-distribution function. Then 

(f(1)(k 0) = e2n2(_ k/lkv)J dw qo(w) 
/lV , k2 k2 le~( w )12 

with 

From (3.19) and (3.20), one gets 

qo(w) = - + 1m E~(W). 
81T nw 

From (3.21) and (3.18), one obtains 

g~ = _1_ pJ dWlm_l_. 
81Tn k e~(w) 

(3.18) 

(3.21) 

(3.22) 

We note' that the function [EriCk, W)]-l - 1 satisfies 
the Kramers-Kronig relation 

Re [. 1 - IJ = ~ J dw' 1m 1 . 
e~(k, w) 1T W' - w e~(k, w') , 

also-
1 

Reet(k,w) = 1 + --2' 
(kLD ) 

(3.23) 

(3.24) 

LD being the Debye length. Therefore, from (3.22), 
(3.23), and (3.24), we get? 

8 3 0 [1 (kLD )2 pI dw I 1 ] 1T ngk = - + -- - m . 
1T W e~(k, w) 

(3.25) 
7 B. Dasgupta and P. Dasgupta, Physica 32,878 (1966). 

The next step is to evaluate (f~O.'(k, 0), which contains 
the contribution of the terms with i = j. Since these 
correspond to k; = k; = 0, the corresponding contri
bution may easily be evaluated to obtain 

&(O)(k 0) = e
2
n (_ k/lkv). (3.26) 

/lV' 81T3 k4 

Hence the complete electric-field correlation is ob
tained as 

&/l.(k,O) = (41Te)2n k/lk. (kLD)2 pJ dw 1m 1 . 
k4 1T W e~(k, w) 

Now comparing this with 

(fJl.(k,O) = ~ JdWS/l.(k, w), 
21T 

where S/l.(k, w) is the spectral function, 

(3.27) 

(3.28) 

2 kJlk. (kLD)2 1 
SJl.(k, w) = 2(41Te) n -4 --1m . (3.29) 

k w e~(k, w) 

Finally, we introduce a function 

U±(k, p) = lim ~ JdV ~o(V) ,(3.30) 
),-+0 1T P + lk • V ± A 

whence 

1m e~(k, w) = 1TW 2Re U (k, -iw). (3.31) 
k(kLD) -

In terms of this function, the spectral function is given 
by 

S (k w) = (41Te)2n kJlk. 21T Re U_(k, -iw). (3.32) 
/l' , k' k leo(k,w)1 2 

Having obtained this spectral function, we can com
pute 

CfJl.(k, t), t > 0, 

from the Laplace integral 

- 1 1iOlo
+

00 
. CfJl.(k, t) = - dwe-·OItS/lv(k, w), (3.33) 

21T ;010-00 

where Wo must be chosen so as to keep the contour of 
integration C (Fig. 2) within the strip of holomorphy 

Imw 

Re w 

FlO. 2. Strip of holomorphy ~. 
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!: of S"ik, w). One can separate S"v(k, w) into the so
called plus and minus functions in the following way: 

+ S"y(k, w) i i dw' , 
S"v(k, w) = + - P -,-- S"v(k, w ), 

2 21T 02 W - w 
(3.34) 

S- (k w) = S"v(k, w) _ .i. P r dw' S (k w') 
"V , 2 21T JOI W' _ W "V, , 

(3.35) 

(3.36) 

While evaluating (3.33) for t > 0, one can close the 
contour of integration with a semicircle in the lower 
half w plane because of the factor exp (-iwt). Since 
Stv is analytic in the upper half-plane above C2 , and 
S;v is analytic in the lower half-plane below C1 , the 
contribution from S;.. vanishes. Thus 

(f"ik, t) =..!... r dw exp (-iwt)S~ik, w), t > o. 
21T Jo 

(3.37) 

The expression on the right side of (3.37) thus 
defines the casual correlation function. St'l(k, w) can 
be evaluated directly by substituting (3.32) in (3.34): 

+ 2 k"ky 2 
S"v(k, w) = (41Te) n k4 (kLD ) 

X fdW' b+( w' - w) !. 1m 1 . (3.38) 
w €~(k, w') 

Using the once-subtracted dispersion relation 

Re [€o(:, w) - €o(~, oJ 
= - ~ pf dw' 1m _1_ (3.39) 

1T w'(w' - w) €o(k, w) 
and the relation 

€o(k, w) = €o{k, 0) + iW1T 2 U_(k, iw), (3.40) 
k(kLD ) 

we finally get 

S;.(k, w) = (41Te)2n k,,;v 1T U_{k, iw) . (3.41) 
k k €o{k, w)€o{k, 0) 

4. CALCULATION OF CURRENT-DENSITY 
CORRELATION 

In order to calculate the current-density correlation, 
we substitute the expression for pair-correlation 
function (3.2) in (2.16). The resulting integral can be 
simplified greatly by transforming to a system with 
the vector k parallel to the polar axis. Such a trans
formation may be written as 

(4.1) 

where V" refers to the system with k as the third axis. 
The third column of the matrix IIC,,'l1! is given by 

C,,3 = k,,/k. (4.2) 

Thus we write (2.16) in the form 

31~(k, t) = n
2 2 C"AC'lafdVi dViVUViaPk,_k{V.' Vi' t). 

A,a 
(4.3) 

Making explicit use of the isotropy condition which 
guarantees that tp(v) is an even function of individual 
Cartesian components of velocity, we notice that the 
only nonvanishing terms on the right side of (4.3) 
corresponds to l = 3 and (f = 3, when we substitute 
the expression (3.2) for p,,(vi , Vi' t). Therefore, we 
have, using (4.2), 

';;(l)(k t) 2 k"kVfd- d- - - ( ) 
...J"v , = n 7 Vi VjViSVjSP" Vi' Vi' t . 

Introducing 

(4.4) may be written as 

k· Vi _ , 
-- = Via =", 

k 

c;(l){k) 2 k"kVfd d' 'R( ') 
...J". ,t = n 7 "" V'll 'II,". 

From (3.2) and (4.5), one gets 

R(v, 'II') = T(v, 'II') 

(4.4) 

(4.5) 

(4.6) 

+ _1_ [v:ii'(v)F*(,,') - ":ii'(,,')F(v)], 
'II-'ll' 

(4.7) 
where 

1 2 

T(v, 'II') = - -3 .2L. [ii'(v')ii(") - ii'(v)ii(v')], 
81T n 'II - 'II' 

(4.8) 

(4.9) 

Remembering €2(V) = 1Tv!ii'(v) and making use of the 
relations (3.12) and (3.14), we get from (4.7) 

R(v, 'II') = T(v, 'II') + F(v)xvCv') - ! F(V')€2(V)Xv(v'). 
71' 

(4.10) 
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Therefore, from (4.6) 

3~V(k, t) = n2 kz~'[f dv0(v)v/n 

+ f dv dv'F(v)iiv')vv' 

- .; f dv dv'F(V')VV'E:kP)X.(V')} (4.11) 

with 

0(v) = nf dv'T(v, v')p'. (4.12) 

We shall now make use of the following relations, 
satisfying the Vlassov eigenfunction and its adjoint: 

v'iAv) = vi..(v) - '11;91'('11), (4.13) 

v'X.(v') = VX.{v') + 1. (4.14) 

Equation (4.13) gives 

fvF(v)V'iiv') dv dv' 

= f dv dv'v2F(v)iiv') + v; f dv dv'vF(v)cp'(v'). (4.15) 

The boundary condition at 00, together with (3.13) 
and (3.10), may be used to obtain 

f
dV dv'vv'F(v)i.(v') =fdv(v2 - v~) q(V)2' (4.16) 

jE(v)1 

Equation (4.14) gives 

f dp dv'vv'F(v')E2(V)iiv') 

= f dv dV'V2E2(V)F(v')x.(v') + f dv dV'VE2(V)F(p'). 

(4.17) 

Using (3.10) and (3.15), one can derive 

f
dv'F(v')Xv(V') = 1r q(v) , (4.18) 

E2(V) 

so that (4.17) may be written as 

f d'll d'll''II'II'F(v')E2(V)i.(v') 

= - f dV1l2q(V) + v; f dvF(v). (4.19) 

Therefore, 

5(1)(k t) = n2 kpk. fdv[~ 0(v) + v2 q(lI) - v2q(V)]. 
p. , k 2 n IE(V)\! 

(4.20) 

The evaluation of j~OJ(k, t) proceeds by summing the 
terms with i = j in (2.15): 

3/tv (k, t) = n v/tv.CP(v, t) dv. (4.21) -(0) f 
Again from isotropy, 

31OJ(k, t) = nb/t.f dvv!cp(v, t). (4.22) 

To obtain the spectral function, we evaluate (4.20) and 
(4.22) at t = O. Introducing 

and 

we get 

CPo(v) = cp(v, t = 0), 

qo(v) = q(v, t = 0), 

EO(V) = E(V, t = 0), 

0 0('11) = 0('11, t = 0), (4.23) 

~(l)(k 0) = n2 k/tk. 
vpv , k2 

XfdV[~ 00(v) + v'" ijo(lI) - v2ijO(v)]. 
n IEoC'II)12 

(4.22') 

where 

(4.24) 

Now, one may easily recognize ldo as the average 
energy per unit mass per degree of freedom for a 
general isotropic system, and therefore do is constant 
throughout the time of evolution of the plasma 
towards equilibrium. Hence, 

3~~)(k, 0) = nb/tvePm)-lf dvipoev), e4.25) 

and we can, therefore, write for the spectral function 

Spik, (0) = [({Jm)-lipo(W/k)bp• _ w:n qo(w/k) k/t~. 
k k 

+ wtn qo(wlk) k/tk. + ~ 0 (~) . kpkvJ21rn 
k 2 IEo( £0 W k2 k 0 k k2 k' 

(4.26) 

The current-density correlation for arbitrary time is 
then obtained from 

.3"ik, t) == 1- fdW exp (-iwt)Spv(k, (0). (4.27) 
21r 

Again, the consideration of causality retains only the 
contribution from S;'(k, (0), the plus-function part of 
S"v(k, (0), which is obtained from 

st.(k, (0) ==f dw'!5+(w - w')S/t.(k, £0'). (4.28) 



                                                                                                                                    

CORRELATIONS IN PLASMA. I 609 

The special case of equilibrium state is obtained by 
assuming a Maxwellian distribution for lfio. The 
simplifications that result in this case are the following. 
First of all, since Po(v) is proportional to <Po(v), 0('1') 
vanishes. Secondly, 90 simplifies into (3.19), and hence 
the contribution from the term '1'290('1') in (4.22') again 
has the significance of average energy per unit mass 
per degree of freedom. The resulting spectral function 
is 

S~.(k, w) = 21Tn[(mP)-1 po(~/k)(b,.. - kZ~v) 

w
2 

Po(w/k) k,.kv] (4.29) 
+ k IEo(k, wW k4 ' 

which agrees with Rostoker's result.3 

5. CONCLUSION 

Expressions for spectral functions have been derived 
for isotropic nonequilibrium system in terms of the 
initial condition, which determines the evolution 

through the Balescu-Lenard kinetic equation. Ex
tensive use of Van Kampen-Case eigenfunctions has 
been made in our derivation of the correlation func
tion. We wish to emphasize that these eigenfunctions 
indeed provide a very convenient mathematical basis 
to deal with the typical problems of the statistical 
mechanics of charged particles. Similar set of general
ized eigenfunctions has been obtained8 for plasma in 
an external magnetic field, and use has been made of 
these to study the correlations in presence of magnetic 
field, which will be reported in a sequel to this paper. 
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An exponential Hilbert space, which is an abstraction of the familiar Fock space for bosons, provides 
a natural framework to discuss a wide class of field-operator representations. This framework is especially 
convenient when wide invariance groups, such as a unique translationally invariant state, are involved. 
In this paper, we develop the theory of exponential Hilbert spaces in a functional fashion suitable to 
discuss representations of field operators enjoying such invariance features. Representations of both 
current algebras and canonical field operators are discussed, and it is shown that these representations 
are natural generalizations of those characterizing infinitely divisible random processes. Questions of 
reducibility and equivalence are treated, and we prove that our construction gives rise to infinitely many 
unitarily inequivalent representations. Nevertheless, an extremely simple expression, bilinear in anni
hilation and creation operators, abstractly characterizes the operators of both the current algebras and 
canonical fields. Dynamical applications to quantum field theory will be treated in subsequent papers. 

1. INTRODUCTION 

In numerous applications, and especially for dynam
ical considerations in quantum field theory, the 
representation of basic field operators becomes im
portant. In a canonically formulated theory, for 
example, a commonly used representation is the 
familiar Fock representation, although it is known 
to be inapplicable for interacting theories possessing 
wide invariance groups.l Compatibility with the 
invariance requirements is the minimum demand we 
can impose on a representation for it to be relevant; 

1 R. Streater and A. S. Wightman, PCT, Spin and Statistics, and 
All That (W. A. Benjamin, New York, 1964); A. S. Wightman, 
Lecture Notes at the French Summer School of Theoretical Physics, 
Cargese Corsica, July, 1964 (Gordon & Breach, New York, 1967); 
L. Streit, Bull. Am. Phys. Soc. 14, 86 (1969). 

and for our purposes, we demand that there exists a 
unique, translationally invariant state in the repre
sentation space. The general representation of the 
appropriate algebra, such as the commutation rela
tions or a current algebra, lacks a translationally 
invariant state or at least a unique one. Thus, it is of 
some interest that numerous field-operator representa
tions, consistent with the invariance conditions, can 
be constructed in the framework of exponential 
Hilbert spaces.2 Such representations-which may 

• Rudimentary ideas regarding exponential Hilbert spaces appear 
in K. O. Friedrichs, Mathematical Aspects of the Quantum Theory 
of Fields (Interscience, New York, 1953), and in J. R. Klauder, 
Ann. Phys. (N.Y.) 11,123 (1960), pp. 133 and 134; for a more explicit 
construction, see H. Araki and E. J. Woods, Publ. Res. Inst. Math. 
Sci. (Kyoto), Ser.A, 1, 157 (1966). 
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The special case of equilibrium state is obtained by 
assuming a Maxwellian distribution for lfio. The 
simplifications that result in this case are the following. 
First of all, since Po(v) is proportional to <Po(v), 0('1') 
vanishes. Secondly, 90 simplifies into (3.19), and hence 
the contribution from the term '1'290('1') in (4.22') again 
has the significance of average energy per unit mass 
per degree of freedom. The resulting spectral function 
is 

S~.(k, w) = 21Tn[(mP)-1 po(~/k)(b,.. - kZ~v) 

w
2 

Po(w/k) k,.kv] (4.29) 
+ k IEo(k, wW k4 ' 

which agrees with Rostoker's result.3 

5. CONCLUSION 

Expressions for spectral functions have been derived 
for isotropic nonequilibrium system in terms of the 
initial condition, which determines the evolution 

through the Balescu-Lenard kinetic equation. Ex
tensive use of Van Kampen-Case eigenfunctions has 
been made in our derivation of the correlation func
tion. We wish to emphasize that these eigenfunctions 
indeed provide a very convenient mathematical basis 
to deal with the typical problems of the statistical 
mechanics of charged particles. Similar set of general
ized eigenfunctions has been obtained8 for plasma in 
an external magnetic field, and use has been made of 
these to study the correlations in presence of magnetic 
field, which will be reported in a sequel to this paper. 
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An exponential Hilbert space, which is an abstraction of the familiar Fock space for bosons, provides 
a natural framework to discuss a wide class of field-operator representations. This framework is especially 
convenient when wide invariance groups, such as a unique translationally invariant state, are involved. 
In this paper, we develop the theory of exponential Hilbert spaces in a functional fashion suitable to 
discuss representations of field operators enjoying such invariance features. Representations of both 
current algebras and canonical field operators are discussed, and it is shown that these representations 
are natural generalizations of those characterizing infinitely divisible random processes. Questions of 
reducibility and equivalence are treated, and we prove that our construction gives rise to infinitely many 
unitarily inequivalent representations. Nevertheless, an extremely simple expression, bilinear in anni
hilation and creation operators, abstractly characterizes the operators of both the current algebras and 
canonical fields. Dynamical applications to quantum field theory will be treated in subsequent papers. 

1. INTRODUCTION 

In numerous applications, and especially for dynam
ical considerations in quantum field theory, the 
representation of basic field operators becomes im
portant. In a canonically formulated theory, for 
example, a commonly used representation is the 
familiar Fock representation, although it is known 
to be inapplicable for interacting theories possessing 
wide invariance groups.l Compatibility with the 
invariance requirements is the minimum demand we 
can impose on a representation for it to be relevant; 

1 R. Streater and A. S. Wightman, PCT, Spin and Statistics, and 
All That (W. A. Benjamin, New York, 1964); A. S. Wightman, 
Lecture Notes at the French Summer School of Theoretical Physics, 
Cargese Corsica, July, 1964 (Gordon & Breach, New York, 1967); 
L. Streit, Bull. Am. Phys. Soc. 14, 86 (1969). 

and for our purposes, we demand that there exists a 
unique, translationally invariant state in the repre
sentation space. The general representation of the 
appropriate algebra, such as the commutation rela
tions or a current algebra, lacks a translationally 
invariant state or at least a unique one. Thus, it is of 
some interest that numerous field-operator representa
tions, consistent with the invariance conditions, can 
be constructed in the framework of exponential 
Hilbert spaces.2 Such representations-which may 

• Rudimentary ideas regarding exponential Hilbert spaces appear 
in K. O. Friedrichs, Mathematical Aspects of the Quantum Theory 
of Fields (Interscience, New York, 1953), and in J. R. Klauder, 
Ann. Phys. (N.Y.) 11,123 (1960), pp. 133 and 134; for a more explicit 
construction, see H. Araki and E. J. Woods, Publ. Res. Inst. Math. 
Sci. (Kyoto), Ser.A, 1, 157 (1966). 
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be called exponential representations-are the subject 
of this paper, along with the intimately related theory 
of exponential Hilbert spaces that "support" them. 
Sections 2 and 3 are devoted to our formulation of the 
exponential Hilbert space by appealing to familiar and 
intuitive properties of the usual Fock representation.3 

In Sec. 4 we develop the exponential representations of 
current algebras, while in Sec. 5 we discuss exponential 
solutions of the canonical commutation relations. In 
each case, questions of reducibility and equivalence 
of various representations are treated. 

The analysis of these representations within the 
context of exponential Hilbert spaces has several 
advantages. In the first place, questions of invariance 
and uniqueness of a state in the representation space 
are easily dealt with. Secondly, it provides a natural 
class of representations with which to deal, a class 
which is a natural generalization of those character
izing the so-called infinitely divisible random vari
ables.4 It lends itself to a natural and unified approach 
to the representation of diverse algebras like current 
algebras and canonical operators. Moreover, it is 
difficult to envisage a representation consistent with 
having a unique translationally invariant state that 
does not fit into our framework, although, of course, 
such a wild conjecture is undoubtedly false. 

In spite of the fact that there are infinitely many 
inequivalent representations of operator algebras
and, indeed, infinitely many inequivalent exponential 
representations-there is, nevertheless, a compara
tively simple abstract operator solution that covers all 
our cases. To present this operator solution, suppose 
we consider as an example the canonical field operators 
lP(x) and 7T(Y) for which 

[1P(x), 7T(Y)] = ibex - y). (1.1) 

The general form of exponential representation we are 
led to for these operators may be given as follows: 
Initially, let 1P1(X), 7Tl(Y) denote a Fock representation 
(or a two-fold direct sum of such representations) 
which is obtained from a suitable linear combination 
of annihilation and creation operators, Al(X) and 
Ai(x). In addition, let us introduce an auxiliary, 
independent set of annihilation and creation operators, 
A2r and AJr' r = 1, 2, .. , . Then the class of solutions 
we are led to has the basic form given by 

lP(x) = IPl(X) + AJql(x)A2, 

7T(x) = 7Tl(X) + A:7i'(x)A2. 

(1.2a) 

(1.2b) 
a For an introductory treatment, see J. R. Klauder, Coherence, 

Correlation and Quantum Field Theory, Brandeis Summer School, 
1967 (Gordon & Breach, New York, to be published), Sec. 4.3. 

4 E. Lukacs, Characteristic Functions (Charles Griffin, London, 
1960), p. 79; 1. M. Gel'fand and N. Y. Yilenkin, Generalized 
Functions, Vol. 4: Applications of Harmonic Analysis, translated by 
A. Feinstein (Academic Press, Inc., New York, 1964), Chap. III. 

Here rp(x) = {rpr.(x)} and 7i'(x) = {7i'r.(x)} are general, 
commuting, formally self-adjoint operators defined on 
the index space of A 2 , and 

A~rp(X)A2 == L Atrrpr.(x)A2s> etc. (1.3) 
r,S 

Provided that the operators A2 differ from a Fock 
representation by a suitable additive multiple of the 
identity operator, ~he resultant operators IP and 7T wiIl 
have all the desired features. Suitable solutions to a 
current algebra have essentially the same structure in 
which the first (linear) terms are generally absent, and 
the analogs of the operators rp(x) and 7i'(x) also fulfill 
the current algebra. To achieve the desired invariance, 
it is important that the representation of the operators 
A2 is unitarily inequivalent to a Fock representation, 
but differs from one only by an additive multiple of 
unity. Such operators give rise to "translated Fock 
representations," which were among the earliest non
Fock representations to be studied.5 Utilizing this fact, 
we may summarize by noting that all the basic field 
operators we consider admit a bilinear expansion in 
terms of annihilation and creation operators of an 
embedding, or "parental" Fock representation. 

This comparatively simple and completely general 
form of solution makes it practical to study such 
representations for possible application to quantum 
dynamical models. Elsewhere, we shall study our 
solutions from this point of view and show that non
trivial model field theories having wide invariance 
groups can be constructed with their help.6 Here we 
content ourselves with the formulation of exponential 
Hilbert spaces and the exponential representations 
they so naturally contain. 

Earlier studies along these lines have been directed 
at continuous tensor product representations, 7 which 
are extensions of the notion of direct product repre
sentations. The form of inner product adopted therein 
did not always generate a Hilbert space with positive
definite metric and gave rise to only a limited class of 
solutions of the basic field algebras. Our formulation 
and results are more general in character, always 
yielding proper Hilbert spaces and yielding far larger 
classes of solutions of the basic equations. In turn, 
we feel, this has been achieved with considerable 

5 L. van Hove, Physica 18, 145 (1952); K. O. Friedrichs, Ref. 2. 
6 J. R. Klauder, See also Ref. 3, Sec. 6. 
7 R. F. Streater, Nuovo Cimento 53A, 487 (1968); D. A. Dubin 

and R. F. Streater, Nuovo Cimento 50,154 (1967); R. F. Streater, 
Lectures at 1968 Karpacz Winter School, Karpacz, Poland (to be 
published); R. F. Streater and A. Wulfsohn, Nuovo Cimento 57B, 
330 (1968); R. F. Streater, Lectures at Varenna Summer School,1968 
(to be published). See also H. Araki and E. J. Woods, Pub\. Res. 
Inst. Math. Sci. (Kyoto), Ser. A, 2,157 (1966), and A. Guichardet, 
Commun. Math. Phys. 5, 262 (1967), for the introduction of con
tinuous tensor products. 
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simplification in the mathematical prerequisites, since, 
in essence, we merely exploit Fock-space methods to 
the hilt. This does not mean that our notation remains 
uncomplicated; simpler notational choices could be 
made, but, in the interests of maintaining some over-all 
unity in our presentation, we felt it necessary to resist 
that temptation. 

2. EXPONENTIAL HILBERT SPACE: 
MOTIVATION AND ABSTRACTION 

A. Fock Representation and Coherent States 

We begin with a brief review of well-known prop
erties of the Fock representation of a countable 
collection of annihilation and creation operators, AI' 
A~, respectively, which fulfill the commutation rela
tions 

(2.1) 

The Fock representation is singled out by the require
ment that the collection of operators Al and A~ is 
irreducible and that there is a normed state 10), the 
no-particle state; for which 

Al 10) = 0 (2.2) 

for all I. States in which n excitations are present are 
defined by 

1 
I tt t 11' 2,"', In) == AI1Ali ... Aln 10), (2.3) 

and the collection of such states for all I; and all n span 
the Hilbert space f). If {zz} is a square-summable 
sequence of complex numbers, then the state 

I{zz}) == exp (-t L Izzl2) exp (~;ZzAi) 10) (2.4) 

defines a normalized vector in f) depending on {zz}. 
These vectors constitute a specific overcomplete family 
of states (OFS), the so-called coherent states, and 
their properties are well known.8 In particular, we 
note that 

(2.5) 

i.e., that these states are eigenstates of the anni
hilation operators with eigenvalues given by the 
parameters Zz. The overlap of two such states is given 
by the formula 

<{z~} I {Zk}) 

= exp (-t L Iz~12 - ! Z IZkl2 + z ZtZk) 

= exp (-! L Iz~ - zkl 2 + i 1m I ZtZk)' (2.6) 

which never vanishes. Although the vectors 1 {Zk}) are 
never orthogonal pairwise, they span the Hilbert 

8 J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum 
Optics (W. A. Benjamin, New York, 1968), Chap. 7. 

space Sj, or, as we shall say, they constitute a total set 
:t. A total set :t is characterized by the equivalent 
properties that every vector may be given as a linear 
combination (possibly not unique) of the vectors in;r, 
or that a vector is the zero vector if its inner product 
vanishes with every element of ;r. In fact, various 
subsets of the coherent states, which we may call 
characteristic sets, also yield total sets. Analyticity 
arguments9 indicate, for example, that as far as, say, 
the parameter ZI goes, either a line segment or a set 
with a finite accumulation point are sufficient to 
generate a total set. Analyticity combined with growth 
restrictionslO lead to the sufficiency of a lattice in Re Z1 

and 1m Zl' with density greater than one point per 
unit circle (Le., an area of 17). Square-integrability 
leads to the sufficiency of such a lattice with density 
equal to one point per unit circle,u which just turns 
out to be one point in phase space per Planck cell (Le., 
an area h = 21Th). Lattices with a density less than this 
value do not yield a total set for f),12 From these 
examples it should be apparent that there is a wide 
variety of characteristic subsets of coherent states 
each of which yields a total set for f). 

Coherent-state matrix elements of normally ordered 
operators are particularly simple. If :B(A?, Am): 
denotes a normally ordered operator-all creation 
operators to the left of all destruction operators
then it follows from (2.5) that 

({z~}1 :B(Ai, Am): I{Zk}) = B(zt, Zm)({Z~} I {Zk})' 

The diagonal matrix elements become 
(2.7) 

({Zk} 1 :B(Ai, Am): 1 {Zk}) = B(zt, Zm). (2.8) 

From this expression it is clear that the diagonal 
matrix elements actually determine the operator, since 
we may regard z~ and Zm as independent variables in 
the argument of B. Subsets of diagonal coherent state 
matrix elements may also suffice to uniquely deter
mine the operator. As far as the variable Zl goes, for 
example, any open interval in the complex plane 
suffices, or a set of points of the form Zl == X1n + iYlm, 
where {x1n} and {Ylm} are two sets with a finite accu
mulation pointP On the other hand, the dependence 
of just Xl = Re Zl does not suffice to determine B; 
information from both the real and imaginary parts 
must be provided. 

• V. Bargmann, Commun. Pure Appl, Math. 14, 187 (1961). 
10 P. Butera and L. Girardello, "On the Completeness of the 

Coherent States" (University of Milan, preprint No.IFUM 084/FT); 
V. Bargmann (private communication). 

11 J. von Neumann, Mathematical Foundations of Quantum 
Mechanics (Princeton University Press, Princeton, N.J., 1955), p. 
406; J. R. Klauder (unpublished). 

12 V. Bargmann (private communication). 
13 K. E. Cahill, Phys. Rev. 138, BI566 (1965). 
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We conclude this elementary review with a dis
cussion of Hermitian operators of the form 

W = ! AiwzmAm. (2.9a) 
Z.m 

For simplicity, we confine our initial remarks to the 
specialized operators for which 

(2.9b) 

Since these involve a weighted sum of number oper
ators Nl = Ai A z , we can directly determine that 

e-iWt 
1 {Zk}) 

= exp (-!! IZkI2) exp (-iWt) exp (! zkA~) 10) 

= exp (-! ! IZkI2) exp (! zke-iWtAteiWt) 10) 

= exp (-! ! IZkI2) exp (! zke-iwktAb 10) 

== l{e-iWttzk})' (2.10) 

Consequently, we learn that 

<{znl e-iWt I{Zk}) 

= exp (-! ! Iz~12 - ! ! IZkl2 + ! zte-iWttzk)' 

(2.11) 

Evidently, if we had considered the more general 
operator (2.9a), then the last sum in the exponent of 
(2.11) would be replaced by 

"" Z ·'(e-iwt) Z k k kl I' (2.12) 

If an operator of the form (2.9) represented the 
Hamiltonian.le, then the determination of the dynam
ics is simple and straightforward. More interesting, 
however, is the dynamics based on Hamiltonians of 
the form 

(2.13) 

including terms representing production and decay, 
scattering, etc. As we shall subsequently see, the 
exploitation of Fock space for "embedding" non
Fock representations of the basic field operators will 
permit the study of Hamiltonians of the complexity 
of (2.13) which exhibit nontrivial invariance groups, 
such as the Euclidean group of rotations and trans
lations. 

B. Abstraction to General Hilbert Space 

The next stage in our development amounts to a 
relatively simple abstraction ofthe foregoing presenta
tion. We note that square-summable, complex-valued 

sequences {zz} themselves constitute a Hilbert space, 
the so-called [2. The vectors l{zl}) E f> are then images 
of vectors in /2 as elements in f>. We may make these 
notions more general in character in the following 
way: Rather than restrict ourselves to /2, let us 
consider a general Hilbert space 1) with elements 
"P, etc., denoted by lower case Greek letters. The inner 
product in this space will be denoted by ("P', "P) and 
takes the place of the expression! ZtZk used earlier. 
The image vectors, previously denoted by I{Zk})' may 
now be called '1', the capital Greek letter associated 
with the corresponding element in 1). The appropriate 
inner product in f> will be denoted by ('Y', '1'). This is, 
of course, just one of many possible notational con
ventions characterizing our abstraction. The essential 
point is that there are two Hilbert spaces involved, 1) 
and f>, and that there is a correspondence, i.e., a map, 
between the elements "P E 1) and a subset, a total set ::t 
of unit vectors 'I' E f>. To make the correspondence 
precise, we may restate the overlap (2.6) in the form 

('1", '1') = e-!1I1i"1I2-!IIIi'II·+{tp'.Ii') 

Here 
N == e-!1I1i'1I2, 

N' == e-!111i"1I2 

are normalization factors to ensure that 

('Y, '1') = I 
for all 'I' E ::to 

(2.14) 

(2. 1 Sa) 

(2.1sb) 

(2.16) 

Since ::t is a total set, we may represent an arbitrary 
vector X E f> as a linear sum of elements in ::t, such as 

<Xl 

X =!cn'Yn, 'YnE::t. (2.17) 
n=l 

The inner product of two such elements follows from 
(2.14), namely, 

(2.18) 

or the matrix elements of an arbitrary operator C) as 

(2.19) 

For simplicity, we shall generally confine our attention 
to matrix elements between the special vectors in the 
total set ::to 

We may express the correspondence between "P and 
'I' in other ways as well. Let 

D(n) == ® 1)./s (2.20) 
8=1 

denote the symmetrized (hence the subscript S), n-fold 
tensor product of 1) with itself. For n = 0, D(o) == C, 
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the set of complex numbers. Then the connection 
between tI and 1) may be stated essentially as 

tI = 20 tI(n) = n~ (~1).)ls· (2.21) 

In particular, the vectors 'I" E X and the vectors 
1p E 1) are related as follows: For 1p E 1), we first set 

n n 

'l"ln) = ® 1psls E ® 1).ls = tI(n) , (2.22) 
.=1 .-1 

where by definition, if n = 0, we choose '1"(0) = 1. 
Then the appropriate 'I" is given by 

<Xl 1 
'I" = N EB -J 'I"(n) 

n=O n! 

= N EB - ® 1p. . <Xl 1 (n ) I 
n=oJn! 8=1 S 

(2.23) 

Here, as before, N is a normalization factor given by 
exp (-t [[1p[[2). It is evident that the inner product of 
two such vectors has the form given in (2.14). While 
all the vectors 'I" E X imaged by all vectors 1p E 1) 
constitute a total set, there are, according to our 
earlier discussion, "characteristic" subsets of 1) for 
which the image vectors would still constitute a total 
set in tI. We suggestively set tI = exp 1) and refer to 
tI as an exponential Hilbert space. 

Along with our abstraction of the Hilbert spaces 
involved we shall generalize the operators. We take 
Eq. (2.5) as an essential defining property of the 
annihilation operators and abstract that relation as 
follows: To every A E 1) we associate an operator 
A(A), such that 

A()')'I" = (A, 1p)'I" (2.24) 

for every 'I" E X imaged by 1p E 1). We note that A(A) is 
antilinear in )., and, permitting ourselves a notational 
abuse, we could suggestively write (A, A) for A ()'). 
It is clear that, as straightforward abstractions of 
earlier relations, 

('1"', A()')'Y) = ()., 1p)('1"', '1"), (2.25a) 

('1"', A(A)t'l") = (1p', A) ('I'" ,'1"), (2.25b) 

('1"', AC)'I)t ... A (An)t A(f-lJ ... A(f-lm)'I") 

= (1p', AI)'" (1p', An)(f-ll' 1p) ... (f-lm' 1p) 
x ('1"', '1"), (2.25c) 

as well as 
[A().), A().')t] = ()., ).') (2.26) 

for any two elements )., ).' E 1). 
To every bounded operator b on 1) we can associate 

a particular operator B on tI defined as 
<Xl <Xl n 

B = EB B(n) = EB @ b, (2.27) 
n-O n-O.-l 

where B(o) == 1, which maps a vector 'I" E X into 
another such vector apart from normalization. Spe
cifically, 

('¥.', B'I") = N'Ne(rp',brp), (2.28) 

from which we see that B'I"I [[B'I" [[ E X. If b == e-iwt, 

where w is a self-adjoint operator on 1), then b is unitary. 
As the direct sum of direct products of unitary 
operators, 

<Xl n 

B = EB ® e-
iwt == e-iWt (2.29) 

n=O 8=1 

defines a unitary operator on tI mapping X onto X. 
Specifically, 

('1"', e-iWt'Y) = N' N exp (1p', e-iwt1p), (2.30) 

which associates a self-adjoint operator W on tI for 
every self-adjoint operator w on g. From the relation 

('1"', W'I") = (tp', wtp)('1"', '1"), (2.31) 

which follows from (2.30), it is clear on comparison 
with (2.25c) that Wis bilinear in At and A. Specifically, 
if {).n} constitutes a complete orthonormal set in 1), 
then 

W = 2 At(An)(An , wAm)A(Am), (2.32) 
n,m 

which we may suggestively abbreviate by 

W= (A, wA) (2.33a) 
or just by 

(2.33b) 

as we did in Eq. (1.3). We note that the diagonal 
matrix elements for such operators are given simply 
by 

('1", W'Y) = (tp, wtp), (2.34) 

since 11'1"11 = 1. As noted in Sec. 2A, the diagonal ele
ments W('I") == ('I", W'I") for all 'I" E X uniquely deter
mine W. In the present special example this is evident 
from the fact that we know w(tp) == (1p, w1p) for all 
1p E 1), and by the polarization identity14 we therefore 
know (tp', W1p) for all tp', tp E 1) (strictly speaking in the 
domain of w). According to (2.31), this is sufficient to 
fix ('1"', W'Y). 

Let us briefly examine the diagonal elements of 
(2.30) further. Since N = exp (-t [[1p[[2), it follows 
that 

('I", e-iW"f) = e(rp,(·-tw'_l)rp). (2.35) 

The left-hand side is the characteristic function for the 
distribution of W in the state 'Y and acts both as a 
generator of the moments and of the linked moments 
(subscript L, sometimes called the cumulants, which 

U F. Riesz and B. Sz.-Nagy, Functional Analysis (Fredrick Ungar, 
New York, 1955), p. 211. 
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are related to truncated functions and connected 
diagrams in field theory). In particular, 

('f", e -iWt'f") == (e- iWt) = i ( - it)m.( Wm) 
m=O m! 

== exp {(e-iWt 
- 1)d 

= exp { i (- it)m (Wm)L}' (2.36) 
m=1 m! 

On identification with (2.35), we see that 

(V', (e- iwt - 1)V') == (e- iwt - 1) = i (-it)m (wm) 
m=1 m! 

= (e- iWt _ I)L = i (-it)m (Wm)L' 
. m=1 m! 

(2.37) 

namely, that the mth linked moment (Wm)L equals 
the mth ordinary moment (wm ) as calculated in ~. 

To make these notions precise, we need to make 
some remarks regarding operator domains. We recall 
that in order for V' E bwp, i.e., for wPV' E ~, it is 
necessary and sufficient that 

d2p . 
dt

2P 
(V', e-·wtV') (2.38) 

exist at t = 0.15 A parallel criterion establishes the 
conditions for WP'f" E~. In view of the direct con
nection between the characteristic functions afforded 
by (2.35), we see that V' E bwp implies that 'f" E ::Dwp, 
and conversely. 

From the prescribed form of the inner product 
(2.14), it is not difficult to establish the following 
inequalities: 

2[1 - exp (-t 11V'1 - V'211 2)] ~ 11'f"1 - 'f"2112 

~ 2(11V'111 + 11V'211) 11V'1 - V'211, (2.39) 

for any two elements V'1' V'2 E ~ and their exponential 
images.I6 H follows that a stongly convergent sequence 
of vectors in ~ is imaged into a strongly convergent 
sequence of vectors in l:, and conversely. Another 
convergence condition follows from the relation 

('f"', NII'f"1 - N21'f"2) = N'[e('P'·'Pl) - e('P··'P2)]. (2.40) 

From this relation we conclude that a weakly con
vergent sequence of vectors in ~ is imaged into a 
weakly convergent sequence of vectors in ~ [of the 
special form N-1'f", 'f" E::t, where N-l = exp (t 11V'112), 
V' E I)], and conversely. 

16 E. Lukacs, Characteristic Functions (Charles Griffin, London, 
1960), p. 29, Theorem 2.3.1, Corollaries 1 and 2. 

18 The first inequality arises from the fact that cos (J ::::;; 1; the 
second inequality is derived in Ref. 8, p. 113. 

3. EXPONENTIAL HILBERT SPACE: LABEL 
SPACES AND REDUCED 

PARAMETERIZATION 

We develop the formalism of Sec. 2 one further 
stage by considering the consequences of a reduced 
parameterization. Rather than considering every V' E ~ 

and its image'f" E l: C D, let us consider the vectors, 
say, q; ESC ~ and their images <I> E (2) C l: C D. It 
is especially convenient at this point to introduce a 
label space!: and to regard q; as a map from points 
IE!: to vectors q;[l] E S, a subset of ~. That is, we 
imagine labeling the vectors in S by points IE!:. 
Clearly, we can use the same label to denote the 
image vector <I> = <1>[/] E (2) in the exponential Hilbert 
space D = exp ~. In this notation we have 

(<I>[ld, <1>[12]) = N 1N 2
e(tp[lI),tp[/2]), (3.1a) 

where 

(3.1b) 

We emphasize that this relation is nothing but an 
alternative parameterization for a subset of the vectors 
introduced in Sec. 2B. The question of whether or not 

(2) == {<I>[l]:/ E q (3.2a) 

is a total set for ~ depends both on !: and on the partic
ular labeling. Obviously, the question can be turned 
around to be one for 

S == {q;[l]:IEq. (3.2b) 

In a manner of speaking, in analogy with the discus
sion of the coherent states in Sec. 2A, it is sufficient if 
s is a "characteristic set" in some sense. While we shall 
tacitly assume such to be the case, our main con
clusions often do not hinge on this assumption, and, 
occasionally, it is useful to regard the total set spanned 
by (2) to be a proper subset of ~. 

All of the operator equations of Sec. 2B have imme
diate applicability. For example, we have 

A(A)<I>[l] = (A, q;[l])<I>[I], (3.3) 

(<1>[1'], e-iWt<l>[I]) = N' N e(tp[l·)··-itD'tp[/)) , etc. (3.4) 

Let us temporarily digress at this point to present an 
example which should help clarify some of the con
cepts we have introduced as well as point the way to 
the next stage of formal development. 

Example: In the light of the formalism developed, 
suppose we wish to determine unitary representations 
of the one-parameter group 

U(t) = e-iW t, (3.5) 

which fulfills the combination law 

U(t)U(t') = U(t + t'), (3.6) 
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for all t, t ' E R, the real line. For the label space 1:, we 
choose the real line R, and, in fact, we choose the 
naturally induced parameterization given by 

eI>[t] == U(t)eI>o, (3.7) 

where eI>0 is some fixed fiducial vector and U(t) is the 
representation under study. If we now insist that this 
representation be realized through an exponential 
construction, then we require that 

(eI>[t ' ], eI>[t]) 

= exp {-t II <p[t' ]112 - t II <p[t]112 + (<p[t ' ], <p[t])}. 

(3.8a) 
According to (3.6), this expression also equals 

(eI>0, eI>[t - t']) = exp {-t II <p[O]112 
- t 11<p[t - t']11 2 + (<p[O], <p[t - t'])}. (3.8b) 

Equating real and imaginary parts in the exponent, 
we are led to the two conditions [cf. Eq. (2.6)] 

11<p[t] - <p[t']112 = II <p[O] - <p[t - t']11 2, (3.9a) 

1m (<p[t'], <p[t]) = 1m (<p[O], <p[t - t'D. (3.9b) 

As a solution to these relations, we choose 

EB 
<p[t] = a + bt EEl f e-i(d dfJ(x), (3.10) 

where a and b are fixed complex numbers and where 
the inner product is defined by 

(<p[t'], <p[t]) = (a* + b*t')(a + bt) + f ei",(t'-t) dfJ(x). 

(3.11) 
Observe that 

11<p[t]112 ~ f dfJ(x) == fJ(R), (3.12) 

which means [if fJ(R) > 0] that <p[t] is never the zero 
vector. In this realization, 

EB 

1) = C EEl f C dfJ(x), (3.13) 

for some measure fJ, where C denotes the space of 
complex numbers. If we set c == 1m ba*, then the 
representations we have found have characteristic 
functions of the form 

«(1>0' e-tWt(l>o) 

= (eI>0, eI>[tD 

= exp [ict - t Ibl 2 t 2 
- f(1 - e-i"'t) dfJ(X)} 

(3.14) 

which may be recognized as the characteristic function 
of an infinitely divisible random variable.4 However, 

our derivation has not yielded the most general such 
characteristic function, since we necessarily have 
fJ(R) < 00. In essence, the formal development we 
next take up is aimed at rectifying this deficiency and 
its analog in related examples. 

A. Translated Parameterization 

We now take up, in the abstract framework, the 
consequences of a translated parameterization and, 
subsequently, return to our example for illustration. 
Let us assume we are given a set $ C 1) and have 
constructed the exponential map from <p [I] E $ to 
eI>[I] E 6. We now introduce a family of phase-related 
image vectors according to the rule 

eI>'[1] == e- i 1m (s.'P[I])eI>[l], (3.15) 

where ~ is some fixed element of 1). Clearly, 

(eI>'[11], eI>'[12]) = (eI>[11]' eI>[12])ei Im{(5.'P[h])-(~.'P[l2])}, 

(3.16) 
which can be manipulated to become 

(eI>'[11], eI>'[l2]) 

= exp { -til <p[ld - ~1I2 - til <p[12] _ ~1I2 

+ (<p[lll - ~, <p[12] - ~)} 
== N~N~e('P'[h].'P'[lI]), (3;17) 

where 
<p'[l] == <p[/] - ~. (3.18) 

From this equation we can read that a unif<orm trans
lation of the set $, i.e., <p[1] --)0 <p'[/] = <p[/] - ~, leads 
to an associated phase change in the image vectors in 
i>. Note that 

1m (e, <p[/]) = 1m (~, <p[/] - ~)= 1m <~, <p/[I]), 

(3.19) 

so that the phase change may be given by (3.15) or by 

eI>'[I] = e-Hm(s.'P'[I])eI>[l]. (3.20) 

Certain matrix elements are insensitive to such 
phase changes. In particular, for any operator B it 
follows that 

(eI>'[U BeI>'[12]) (eI>[ld, BeI>[12D 
«(1>'[11], (1)'[12]) (eI>[11]' (1)[12]) 

(3.21) 

and, thus, for diagonal matrix elements, that 

(eI>' [I], B(I>' [I]) = (eI> [I], BeI> [1]). (3.22) 

The annihilation operator associated with the trans
lated parameterization is defined by the property that 

A' (A)eI>' [I] = (A, <p' [/DeI>' [I]. (3.23a) 
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Since a phase factor cannot affect this, we must also 
have 

A'(A)<I>[/] = (A, 1fl'[I])<I>[/] = (A, 1fl[I] - ~)<I>[l]. 

(3.23b) 
It follows that 

A'().) = A()') - ()., ~) (3.24a) 

and, consequently. 

A'().)t = A(A)t - (~, A). (3.24b) 

By direct computation we see that 

[A' (AJ, A' (AJt ] = [A(A1), A(A2)t] 

= (AI' AJ. (3.25) 

The representation A' ofthe commutation relations is, 
in fact, unitarily equivalent to the representation A, 
since we have assumed ~ E I).17 Specifically, 

V-lA' (A) V = A(A), for all ). E I), (3.26) 
where 

v = exp [A(~)t - Aa)]. (3.27) 

(Shortly we shall break the assumption that ~ E I) and 
actually be dealing with unitarily inequivalent repre
sentationsA' and A.) 

The kind of change involved in the annihilation and 
creation operators carries over to many other oper
ators as well. Suppose we consider 

(<1>'[11]' e-iW"<I>'[1a]) = N;'N~ exp {Ifl'[ll], e-iw'Ifl'[la])}. 

(3.28) 
Then the same argument as before shows that 

W' = (A', wA') (3.29) 

in keeping with the fact that 

In addition, 

(<1>'[/], W' <1>'[1]) = (<1>[1], W'<I>[/]) = (1fl'[/], wlfl'[I]), 

(3.31) 

which is different from the expression that would 
follow from (3.4), in which 

W = (A, wA) = (A' + ~, w[A' + ~]). (3.32) 

Among all the possible choices of translation vectors 
~ we can always choose ~ == Ifl[lo] E S for some 10 E C, 
so that 

Ifl' [/0] = 1fl[/o] - ~ = O. (3.33) 

17 K. O. Friedrichs, Ref. 2, p. 79. 

That is, even if 1fl[1] :;!: 0 for all IE C, we can always 
choose ~ so that in the translated set s' = s - ~ the 
zero vector appears. A parameterization, such that 
Ifl'[lo] = 0, exhibits certain additional properties. For 
example, we note first that 

(<1>'[1], <1>'[10]) = e-! 1I1p'[1]1I
2 = N', (3.34) 

which is a real expression for all IE C. To make the 
next point, let us assume that w is an arbitrary 
self-adjoint operator on I). In general, the only eigen
vectors ofw which are imaged directly into eigen
vectors of W by the exponential map "P -+ 'f" are those 
with eigenvalue zero. However, when Ifl' [10] = 0 is an 
element of s, it follows from (3.28) that its image 
<1>' [/0 ] is an eigenvector with eigenvalue zero for every 
self-adjoint operator W' = (A', wA'). This is a partic
ularly important property. Moreover, if w has no 
eigenvectors with eigenvalue zero, then <1>' [/0] is a 
nondegenerate eigenvector with eigenvalue zero for 
the operator W' = (A', wA'). In summary, we note 
that if s does not already contain the zero vector a 
translated set s' = s - ~ may be considered which, 
by suitable choice of ~, does contain the zero vector. 

1. Improper Translations 

The transition to a translated set assumes its primary 
importance when the transformation is an improper 
one. Suppose that 1fl'[/] E S' C I) constitutes a valid 
initial set of vectors. Let us consider, in addition, 
the relation 

Ifl' [I] = cp[/] - £, (3.35) 

where in the present case we admit the possibility that 
£ ¢ l), i.e., 11£11 = 00, in which case cp[/] ¢ l) for all 
IE C. To distinguish this possibility, we have resorted 
to the carat over the usual vector symbol. Note that 
although cp and £ may not be elements of l), their 
formal difference lies in I) .by assumption. Such a 
relation can always be viewed as the limit of valid 
vectors in I), such as 

Ifl'[l] = qi[l] - £ == lim {Ifl .. [l] - ~ .. }, (3.36) 
n-+oo 

where Ifln' ~n E I), for all n. Abstractly, we may regard 
cp = lim Ifln and £ = lim ~ .. as elements of the dis
tribution space (dual to the test function, or nuclear 
space) in a rigged Hilbert space triplet,18 Indeed we 
shall loosely use cp and £ in inner products in this way. 
In a representation on some V space, it generally 
suffices that cp and £ are functions which in the present 
case need not be square integrable. To make this 
notion clearer, let us reconsider the example of unitary 

18 I. M. Gel'fand and N. Y. Vilenkin, Ref. 4, Chap. III, Sec. 4. 
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representations for the operators U(t) = exp (-iWt), 
treated earlier. 

Example revisited: In the present formulation of the 
example we seek a set of vectors of the form 

<I>'[t] = e-iIm (t'P·[t)IU(t)<I>o, (3.37) 

for which an exponential construction exists, i.e., 

(<1>'[t
1

], <I>'[t
2
]) = NiN~e<'P'[h].'P'[h]l. (3.38) 

We assume 1m (~, ep'[O]) = 0, and, thus, <1>'[0] = <1>0' 
The combination law U(t)V(t') = V(t + t') now leads 
to 

where 

at == 1m (~, ep' [t 2 - t1] - ep' [t2] + ep' [tIl). (3.40) 

Equating real and imaginary terms in the exponent, we 
find that 

Ilep'(td - ep'[t2 ]11 2 = lIep'[O] - ep'[t2 - t1J112, (3.41 a) 

while 

1m (ep'[t1], ep'[t2]) = 1m (ep'[O], ep'[t2 - tl ]) 

+ 1m (~, ep'[t2 - t1] - ep'[t2] + ep'[ll])' (3.41 b) 

Apart from the last term in g, these relations are 
identical to those found earlier in (3.9). As a solution 
to the first relation, we now choose 

$I 

ep'[t] = a + hi Ei1 f (e-itx - 1) dp(x), (3.42) 

instead of (3.10), which leads to the expression 

II ep'[t] \I 2 = la + btl 2 + fie-it., - 112 dp(x). (3.43) 

Note, in the present case, that a finite norm requires 
only that 

f C ;2 x2) dp(x) < 00, (3.44) 

while it is possible that ft(R) = j dft(x) = 00, in 
contrast with the requirement that ",(R) < 00. This is 
just the type of generalization in this class of repre· 
sentations which we sought. Let us adopt 

$I 

~ = ~ Y EEl f dp,(x), (3.4Sa) 

where c = 1m ha* as before and 

Y =f_x- dp,(x). 
1 + x 2 (3.45 b) 

With this choice we find that 

1m (g, ep'[t]) = f (1 : x2 - sin xt) dp,(x), (3.46) 

which is well defined in virtue of (3.44); moreover, we 
find that the second relation (3.41 b) is satisfied. 

In summary, we have determined that 

(<1>0' <1>'[t]) 

= exp (ict - Ilbl 2 
t
2 

- I fle-it:t - 112 dP(X») 

= e- i rm (t'P'Ct])(<1>o, U(t)<1>o), (3.47) 

from which it follows that 

(<1>0' e-iWt<1>o) 

= exp [ict - -! Ibl
2

t
2 

- f (1-1 ~X2 - e-;tx) dft(x)} 

(3.48) 

In this final expression we have arrived at the most 
general characteristic function for an infinitely divis
ible probability distribution (compatible with an 
infinite·dimensional ~); in fact, Eq. (3.48), coupled 
with (3.44), is just the Levy canonical representation 
for such distributions.19 The translations g are not 
restricted to elements of 1). This is clear since 

II ~\l2 = la/cl 2 y2 + p,(R), (3.49) 

neither term of which need be finite. In this particular 
example the translated set $' does not contain the zero 
vector unless a = 0, as can be seen from (3.43). 

2. Improper Trans/ations and Unitary Inequwalence 

In our initial discussion of those representations of 
U(t) = exp (-iWt) admitting an exponential con. 
struction, our parameterization was directly associated 
with the group combination law. To achieve the 
utmost generality in such representations, it was 
expedient to consider a translated parameterization, 
a translation which may well be an improper one. 
Nevertheless, we have shown that an exponential 
construction encompasses the set of infinitely divisible 
probability distributions, and that any unitary, one· 
parameter group of operators, realized in an ex
ponential way, is such a distribution. Of primary 
importance, of course, is the additional machinery 
we have introduced to realize and represent various 
associated operators. 

When the translation vector g is improper, the 
operators A'(A.) and A(A) are unitarily inequivalent.17 

10 Ref. 15, p. 90. 
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Heuristically, this is almost evident from the con
necting relation 

A(A) = A'(A) + (A, §). (3.50) 

For if § is improper, i.e., § tf 1), then, for some 
), = Ao E 1), the expression (Ao, §) = 00 and thus, 
although A'(Ao) is an acceptable operator, A(Ao) is 
not. 20 This could not happen if the two operator sets 
were unitarily equivalent. The operator A(A) is defined 
now for those A E 1) such that 1(1., §)I < 00. If 1) has 
infinite dimensionality, then A(A) is defined for a 
dense set of A. It follows that the operators A(Al) and 
A(A2)t constitute an inequivalent, irreducible repre
sentation of the canonical commutation relations: 

[A(J.l), A(AJt ] = fA'(AJ, A'(J.2)f] 

= (1.1' A2)' (3.51) 

For completeness we quote the complete theorem 
on equivalence of "translated Fock representations": 
Given a Fock representation A'(A) and two translated 
Fock representations 

Al (A) = A' (A) + (A, §l), 

A2(A) = A'(A) + (A, !2), 

(3.52a) 

(3.52b) 

defined for a set of A dense in 1), then Al(A) is unitarily 
equivalent to A 2(A) if and only if al - ~2) E 1).17.21 
This may be made concrete by choosing an ortho
normal sequence Am in the common dense domain of 
definition and requiring that 

! 1~lm - ~2m12 < 00, (3.53) 

where ~lm = (Am' ~l)' etc. 

B. Operator-Field Representations: Space-Translation 
Invariance and Cluster Decomposition 

Consider a field operator W(x), where for concrete
ness we may take x as a point in Euclidean three
dimensional space R3, which satisfies the commutation 
relation 

[W(x), W(y)] = O. (3.54) 

We assume W to be formally self-adjoint so that the 
smeared operators 

W(f) = f W(x)f(x) dx (3.55) 

are, for suitable real/ex), self-adjoint operators. As a 
suitable test function space we adopt Schwartz's space 
:0 composed of real Coo functions I(x) which have 
compact support. 

•• Ref. 14, p. 78. 
21 J. R. Klauder, J. McKenna, and E. J. Woods, J. Math. Phys. 

7. 822 (1966). 

In many applications a central question concerns 
the representation of the field operators W(j). We 
approach this question, as before, by considering the 
expectation functional 

E(f) == (<Po, exp [-iW(j)J<Po) (3.56) 

and imposing an exponential construction. Both the 
natural (~= 0) and translated parameterizations 
(~ -:;C 0) are important, and we shall illustrate them 
both. We adopt:o as the label space C. and/(x) as the 
labels I. 

If we set 

<p'[/] = e-iIm(g.<PT!Jle-iW(f)<po, (3.57) 

then we seek representations consistent with the rela
tion 

where 

(3.58b) 

As before we assume that 1m (~, gJ'[O]) = O. The 
combination law 

e-iWUl)e-:iWU.1 = e-ill'(fl+fa) (3.59) 

leads, just as in the elementary case, to the two rela
tions 

IIgJ'[OJ - gJ'[fl - f2]11 2 = IlgJ'[t;l- gJ'(hJII2, (3.60a) 

1m (gJ'[O), gJ'fh - 12]) = 1m (gJ'[j;l, gJ'(h)) 

- 1m (§, gJ'fh - hl - gJ'[hJ + gJ'fhD. (3.60b) 

There are various solutions to these relations, a few 
of which we shall illustrate. In the natural or group
oriented parameterization, we set § = 0, and, for 
example, we may adopt 

ED 
gJ'[f] = gJ[f] = (bf)(x) E9 f e-i(w.fl dp(w). (3.61) 

Here b is a general linear operator from :0 into V. 
The expression (w,!) is a real number for all/which 
implies that HI is a (real) distribution in :0'. Conse
quently, pew) is a measure on :0', which being the dual 
of a nuclear space is well defined.22 We have arbitrarily 
chosen only the linear term (bf)(x) in the present 
solution [cf. Eq. (3.10)]. In order for p[/] to have 
finite norm, it is clear that p(:O') == J dp(w) < 00. It 
follows that 

(<Po, e-iW(f)Wo) 

= exp {-! f1bf(X)12 dx - f [1 - e-
ifw

•f )] dP(W)}' 

(3.62) 
This expression characterizes a vast number of 

field-operator distributions. As a very simple example, 

u 1. M. Gel'rand and N. Y. Vilenkin, Ref. 4, Chap. IV, Sec. 2. 



                                                                                                                                    

EXPONENTIAL HILBERT SPACE: FOCK SPACE REVISITED 619 

suppose that ft is concentrated on Dirac b functions at 
the point x = z. In other words, let 

I e-i(w,f) dft(w) = I e-iW •. !l da(A) 

= I e-iAf(zl da(A), 

where A is a single real variable and 

(3.63a) 

ft('])') = I dft(w) = I da().) < 00. (3.63b) 

The inclusion of several derivatives of the b function 
is an obvious generalization of this example-and 
many more come to mind. However, more important 
representations may be obtained if we exploit a 
translated parameterization with an improper trans
lation. 

For the second class of examples we choose as 
solution to (3.60) the vectors 

(tI 

~ = 0 ffi I dt1(w), (3.64a) 

ttl 

IP'[J] = (bj)(x) ffi I [e-
iCw

•fl - 1] dt1(w). (3.64b) 

Note that this is a different type of translation vector 
from the one used before, since we principally wish to 
emphasize a different type of improper translation. 
Because IP'[O] = 0, it follows that 

(<Po, <P'[J]) 

= e-11l1Jl'[f]II' 

= exp [-tIlbf(xWdX - tIle-i(w.fl - 112 dt1(W)l 

(3.65) 
From this expression we learn that 

= exp {-!Ilbf(XWdX - I[l - e-i(w./l] dt1(W)}. 

(3.66) 
These relations do not require that 

t1('])') == I dt1(w) = I/!U 2 (3.67) 

be finite; in fact, we may choose many improper 
translation vectors ~. 

As a very simple example, suppose t1 is again con
centrated on b functions at x = z, but now with a 
uniform distribution of Z values. In particular, we 

assume that 

I [1 - e-i(w./l] dt1(w) = f [1 - e- iC).6.,fl] dt1oV,) dz 

= I [1 - e-i).f(z)] dt1o(A) dz. 

(3.68) 

Although this corresponds to an improper translation 
~, since 

1I~112 = I dt1(w) = I dt1o(A) dz = 00, (3.69) 

the desired relation (3.68) is finite since fez) = 0 
outside a compact set in R3. As it stands, this relation 
is also finite so long as f [lAI/(1 + IAI)] dt1o(A) < 00. 

If t1o( -A) = -t1o(A), then only the even part of (3.68) 
is nonzero and the condition for existence is the 
finiteness of 

(3.70) 

Even if such symmetry is not present, a different trans
lation vector, patterned after the earlier example 
[cf. Eq. (3.45)], gives a more general expression. For 
the most part we are content to assume such symmetry 
for the purpose of illustration. 

1. Space-Translation Invariance 

In order that the vector <Po possess space-trans
lation invariance, it is necessary that 

(<Po, e-iW(fal<Po) = (<Po, e-iW(fl<Po) 

for aIlf(x) E ']) and all a E R3, where 

hex) == f(x + a). 

(3.71) 

(3.72) 

An example of such behavior is given by (3.65), where 
b is simply a real constant and where (3.68) is adopted. 
An extension of this example is given by 

(<Po, e-iW(fl<po) 

= exp {-tb2If2(X) dx - I [1 - e-i(w.f.)] dt1o(w) dZ}, 

(3.73) 

where J. is the translated test function (3.72) and where 
t1o(w) is concentrated on distributions "at or near" 
x = O. For example, we could assume that, for each 
f(x) E']) such that f(x) = 0 for Ixl < Ro, the distri
butions of interest would fulfill (w,f) = O. The trans
lation invariance of the expression (3.73) [in the sense 
of (3.71)] is evident. 

We may profitably write ~ as a direct integral space 
over R3 when representations such as (3.73) apply. 
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That is, we set 
(fl 

1) = f 1)z dz (3.74) 

and 
(fl 

tp'lfJ = f tp;[fJ dz, (3.75) 

so that -

IItp'[fJlI 2 = fCtp;[fJ, tp;[f])z dz. (3.76) 

In this language, the example of (3.73) has a direct 
integral entry of the form 

(fl 

tp;lfJ = bf(z) EB f [e--i(w.f.) - 1] d40(w). (3.77) 

Among the possible representations of this partic
ular form are those for which 

(3.78) 

i.e., only the specific value/(z) enters. Equation (3.68) 
has this "ultralocal" characteristic which arises when 
flo is concentrated on 6 functions at x = 0, and these 
are essentially the only such representations. This class 
of representations has the property that 

whenever 
E(lt + 12) = E(jl)E(j2) 

11(x)/2(x) = 0, 

(3.79) 

(3.80) 

where E(/) is given by (3.56). Special representations 
of this form have been formulated as continuous
tensor-product representations, and have been studied 
by several authors.7,2s 

2. Cluster Decomposition 

The physical idea behind cluster decomposition is 
that equal-time field operators localized about remote 
regions of space are statistically independent. It is a 
familiar property for statistically independent variables 
that the probability (amplitude) and the related charac
teristic function factorize. Such factorization is just the 
statement of (3.79) for the special class of ultralocal 
"'Presentations. More generally, if we assume trans
lation invariance, E(J,.) = E(j), then, to ensure cluster 
decomposition, it is necessary that 

lim E(f' + la) = E(f')E(f), 
'.'-co 

for all f', I E~. (3.81) 

Examples of translationally invariant distributions 
that exhibit cluster decomposition are conveniently 
formulated in an exponential Hilbert space. If we 

U Such representations for .canonical operators were effectively 
tint treated by H. Araki, thesis, Princeton University, Princeton, 
l'U., 1960. 

assume tp'[OJ = 0, then we have the relation 

EU) = (<1>0' <1>' [f])et 1m (f.'P·[fl) = e-ill'P'U]1I2+Hm (g''P.[t]). 

(3.82) 

To win the desired features, we must have invariance: 

IIrp'[faJ1I 2 = Ilrp'[fJI1 2
, 

1m (g, cp'[faD = 1m (~, rp'[f); 

(3.83a) 

(3.83b) 

and asymptotic independence: 

lim Ilrp'[I' + faJI12 = IIcp'[I'W + Ilrp[fJII2, (3.84a) 
lal ... oo 

lim 1m (!, cp'[I' + faD 
/_1"'00 

= 1m a, rp'[f']) + 1m (£, rp'[fJ). (3.84b) 

In the direct integral form of (3.74)-(3.76), we have 

II qJ'[fJI12 = f II rp;[fJll~ dz, (3.85) 

which to exhibit invariance need only fulfill 

II rp~+a [fa] II ~+a = II cp afJ II; . (3.86a) 

Asymptotic independence is fulfilled if 

lim IIrp;[I' + faJII~ = Iltp;[f'JII~. (3.86b) 
lal .... 00 

These relations are consistent with the intuitive notion 
that rp;[fJ should depend only on the values of I(x) 
when x is "near" z. Equation (3.73) gives an example of 
this type. 

These examples, as well as our general discussion, 
should serve to demonstrate how ideal the exponential 
Hilbert space construction really is for representing 
field operators and invariant vectors exhibiting 
space-translation invariance and cluster decomposi
tion. In the next two sections we discuss exponential 
representations of current algebras and of the familiar 
canonical commutation relations for scalar fields. 

4. EXPONENTIAL REPRESENTATIONS OF 
FIELD-OPERATOR ALGEBRAS 

We consider an equal-time field algebra (or "cur
rent" algebra of particle physics) which is characterized 
by a family of formally self-adjoint field operators 
W1(x), I = I, 2, ... , L, with the commutation rule 

[Wl(x), Wm(y)] = iClmnWn(X)~(x - y). (4.1) 

Here Clmn are the structure constants of a Lie group, 
and summation over repeated indices is understood. 
If I(x), g(x) are suitable real test functions, such as 
elements of ~, then 

[WI(f), Wm(g)J = iclmnW .. (jg) (4.2) 
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is the proper statement of (4.1) for self-adjoint oper
ators. The unitary group elements in canonical co
ordinates are given by 

(4.3) 

(summation understood in the exponent on the right
hand side), where,h(x) E ~ for all I; itis representations 
of these field operators that we seek. 

Guided by our formulation in Sec. 3, we introduce 
the overcomplete family of states 

q,'[f,] == e-i 1m <i,tp'[fl1)U[/aq,o , (4.4) 

for some choice of ~ and of !p'[h] E ~. We insist on an 
exponential construction such that 

(q,'[/a, q,'[/,]) = N' N e(tp,[fI'l·tp'[fl1) (4.5) 

The group law reads 

U[h]U£h] == U[(j· f)tl, (4.6) 

where f· f symbolizes the parametric combination 
law characterizing the group. This law implies a func
tional identity within the exponential form that leads 
to the two relations 

11!p'[/;] - !p'[/IW = 1I!p'[O] - !p'[(-I' 'f)IW, (4.7a) 

1m (!p'[n], !p'[/tl) 

= 1m (!p'[O], !p'[( -I' . f),]) 

- 1m (~, !p'[( -I' . f)r1 - !p'[/I] + !p'[/a)· 

(4.7b) 

Solutions to these equations generate the representa
tions we seek. 

As our first solution, we adopt 

~ = 0, 

!p'[j;] == !p[h] = u[h]!po, 

(4.8a) 

(4.8b) 

where the u[h] are unitary operators which satisfy 

u[fz']u[/I] = u[(f' . f)1]; (4.9) 

i.e., u[h] also forms a unitary representation of the 
sought-for group. Indeed, U[j;] is related to u[j;] in 
the fashion that B is related to b in Eq. (2.27), namely, 

00 " 

U[f,] = ffi Q9 u[/I]' (4.10) 
n=O ,=1 

Moreover, in canonical coordinates, 

U[/,] = i WM/ ), 

u[/,] = eiwM1), 

(4. 11 a) 

(4. 11 b) 

so that an equation like (2.29) holds as well. Thus, in 
this solution it is clear that the representation Ul,h] is 
always reducible, whether u[j,] is irreducible or not. 

Equivalent (inequivalent) representations of u[j;] lead 
to equivalent (inequivalent) representations of U[j;]. 
In order that U[j;] be a cyclic representation with q,o 
a cyclic vector, it is necessary that u[};] be a cyclic 
representation (on ~) with !Po a cyclic vector. However, 
it is not a priori clear that this is sufficient in the general 
case. 

With the solution (4.8) the expectation functional 
takes the form 

E(f,) == (q,o, eiWMllq,o) 

= exp {(!Po, [eiwM/I - 1] !Po)} , (4.12) 

as follows from (2.35). In the present parameterization 
A(J.)q,o = (J., !Po)q,o and thus, according to (2.32) and 
(2.33), we find 

(4.13a) 

Hence, for each I we have 

(4.13b) 

It is a well-known property of creation and anni
hilation operators that 

[WI(f), Wm(g)] = [(A, w,(f)A), (A, wm(g)A)] 

= (A, [w,(f), wm(g)]A). (4.14) 

Thus, the validity of the commutation relations (4.2) 
follows from (4.14) and the fact that the wl(J) fulfill 
the same algebra on ~. 

The reducible nature of the representations given 
by WI(f) may be seen another way. Let 

N= (A,A) (4.15) 

denote the total number operator in the Fock repre
sentation. If 

00 

X = ffi Xl,,) E $5, (4.16) 
n=O 

then 
00 

NX == ffi nX(n) , (4.17) 
n=O 

so that N has zero and the positive integers for eigen
values. Now, no matter what the operators WI are, it 
follows that 

[WI(f), N] = [(A, w,(f)A), (A, A)] 

= (A, [wl(J),I]A) = O. (4.18) 

Implicitly, we have demonstrated reducibility by 
showing the existence of an operator N different from 
the identity operator, which commutes with all the 
generators. 
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As a second solution to relations (4.7), let us select 
t A 

S- = CPo, 

cp'[fz] = (u[fz] - l)!flo, 

(4.19a) 

(4.19b) 

where again u[fz] is a unitary group representation on 
~. Although we may give up the finiteness of II ~II = 
II !flo II , we assume that cp'Liz] E ~ and that (!flo, cp' [fz]) is 
well defined. In particular, we are immediately led to 
representations which are essentially characterized by 

(<1>0' eiW!UI)<I>o) = exp {(!flo, [eiw1(f!) - l]!flo)}. (4.20) 

These representations, of course, are not funda
mentally different than those given above unless 
II !flail = 00. As an important example of the difference 
that this condition makes, let us suppose that W == 
wl(!r,), for some choice of II, only has an absolutely 
continuous spectrum. Then 

w-lim eiwt = 0, 
t-+ 00 

(4.21) 

where the weak operator limit is meant. If II !flo II < 00, 

then 
w-lim eiWt = Po, (4.22a) 
t-+oo 

where W = W!(!r,) and where Po is a projection oper
ator onto the subspace of zero- W eigenvalue. This 
subspace always includes the vector $0' which is 
characterized by the fact that A(A)$o = ° for all A. 
On the other hand, for suitable choices of !flo ¢ ~, it 
follows that 

w-lim eiWt = 0, (4.22b) 
t -+ 00 

so that, like w, the associated operator W has only an 
absolutely continuous spectrum. This is a common 
and frequently desirable property of field operators 
and should be incorporated whenever suitable. An 
example of the two cases in (4.22) is given later in this 
section. 

In the translated form appropriate to (4.19), we 
have, according to (3.23a), the basic annihilation 
operators A'(A) such that 

A' (A )<1>' [fz] = (A, cp' [fz1)<I>' [fa· 

Since cp' [fz] E ~, this relation is defined for all A E ~. 
Indeed, cp'[O] = 0, so that A'(A)<I>'[O] = 0, which 
shows that A'(A) is surely the Fock representation. On 
the other hand, the group generators WI are still given 
by (4.13) in terms of the operators A. The relation 
between the two, as in (3.50), reads A(A) = A'(A) + 
(A, !flo), which, if !flo I!f ~, is not defined for all A. By 
hypothesis, however, cp'[fz] = (eiw1(f!) - l)!flo E ~ and 
is, in fact, "enough" within ~, we assume, so that 
(!flo, cp' [fz]) makes sense; this notion will be made 

clearer below through an example. We assume for 
simplicity that even wl(!r,)!flo E ~, and, moreover, that 
(!flo, w!(!r,)!flo) makes sense. With this simplification we 
have 

W!(f) = (A, wl(f)A) 

= (A' + !flo, wz(f)[A' + !flo)) 
= (A', wzCf)A') + (A', wz(f)!flo) 

+ (wl(f)!flo, A') + (!flo, wl(/)!flo). (4.23) 

While this equation still has the same appearance as 
(4.13b), it is, of course, quite different, since A is no 
longer a Fock representation. This inequivalence in 
representations suggests that, when !flo ¢~, we are 
dealing with an inequivalent representation of U[/I] 
(with no change of the representation u[fzl). More 
generally, consider two such representations 

WII(!) = (AI, wz(f)A1), 

W I2(/) = (A2' wz(f)A2), 

(4. 24a) 

(4.24b) 

where Al and A2 are related to a standard Fock 
representation A', as in Eq. (3.52). The first repre
sentation Wu is unitarily equivalent to the second 
W12 , if Al is unitarily equivalent to A2 ; but this is not 
the only possibility. Unitary equivalence of Wu and 
WZ2 is also assured, if Al is unitarily equivalent to 
e iYA 2 ; here, y is any over-all phase factor, since such a 
factor obviously drops out of (4.24b). In turn, this 
holds if and only if ~l - eiY~2 E~, for some real y. 
This exhausts the equivalence class of unitarily equiv
alent representations, unless there are additional 
unitary operators v on ~ which commute with all the 
wz(f). For any v such that 

vtwz(/)v = wz(f), (4.25) 

the representations Wu and W Z2 are unitarily equiv
alent, provided that 

~l - V~2 E ~. (4.26) 

The existence of such v (not simply eiY) depends on 
whether or not the wl(f) representation is irreducible. 

According to (4.26), whenever ~l = V~2 where the 
unitary operator v fulfills (4.25), the two representa
tions Wu(f) and Wdf) are unitarily equivalent. This 
is also evident from the equality of their expectation 
functionals, which follows from the form of (4.20) for 
!flo = gl = Vg2 and from the commutation property 
(4.25). It is well known that the expectation functional 
only determines a cyclic representation up to unitary 
equivalence and that equal expectation functionals 
correspond to unitarily equivalent representations.24 

24 M. A. Naimark, Normed Rings, translated by L. F. Boron (P. 
Noordhoff Ltd., Groningen, The Netherlands, 1964), p. 242. 
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Conversely, unequal expectation functionals mayor 
may not correspond to equivalent representations, 
depending on whether (4.26) is fulfilled or not. 

Whenever no unitary v exists such that (4.26) holds, 
the two representations Wn and Wl2 are necessarily 
inequivalent. In particular, for the cases illustrated 
above where £1 = 0 and £2 = £ = CPo, unitary inequiv
alence arises whenever CPo 1= 1). Moreover, any time 
£ 1= 1), the decomposition of U[,hJ given in (4.10) does 
not hold. 

To examine the reducibility of a given representation 
Wz (!) , we seek an operator different from the unit 
operator, which commutes with the generators Wl(f). 
It is not possible to use N = (A, A), for in a non-Fock 
representation N is not an operator.25 What is needed 
is another operator y for which [wz(f), y] = 0 and for 
which 

Y=(A,yA) (4.27) 

is a bona fide operator. In that case, 

[Wz(!), Y] = (A, [wz(f),y]A) = 0, (4.28) 

and reducibility would be established. Such a y can 
exist only if the representation WI on 1) is itself reduc
ible. Inspection of the Weyl operators shows that 
operators of the form (4.27) generate the subalgebra of 
operators which commute with the Wz(!)' Hence, if 
no such y exists, then the representation of Wz(f) is 
irreducible, in marked contrast to the situation when 
A is a Fock representation. 

To illustrate some of these aspects, let us discuss a 
particularly simple example of a current algebra, that 
appropriate to the "affine fields." The field algebra we 
wish to examine is given formally by the commutation 
relation 

[K(X), 1T(Y)] = ibex - Y)1T(Y), (4.29) 

and we take the unitary operators as 

(4.30) 

These are also canonical coordinates (of the so-called 
second kind26) and are chosen for reasons of conven
ience. The group combination law reads 

U[f, g]U[!" g'] = U[! +!" g + e-fg'], (4.31) 

where multiplication is pointwise. 
This algebra is the local field analog of that based 

.5 Ref. 17, p. 141; L. Glirding and A. S. Wightman, Proc. Nat. 
Acad. Sci. U.S. 40, 622 (1954); J. M. Chaiken, Ann. Phys. (N.Y.) 
42, 23 (1967). 

•• P. M. Cohn, Lie Groups (Cambridge University Press, Cam
bridge, England, 1961), p. 110. 

on the two-parameter Lie algebra,27 whose commu
tator reads 

[B,P] = iP. (4.32) 

If we imagine that B = H QP + PQ) and heuristically 
regard Q and P as Heisenberg operators, then a 
reasonable feel for this algebra is obtained. However, 
unlike the Heisenberg algebra, there are two unitarily 
inequivalent, irreducible representations of (4.33), one 
for which P > 0 and the other for which P < 0. 27 

The unitary operators of the affine group, 

(4.33) 

are the analogs of U[j, g]. If we diagonalize P, then 
we have the representation 

(uo[r, s]q?)(k) = e-he-i8kq?(e-rk), (4.34) 

where q?(k) E VCR) = V( - 00, (0). Note that V(O, 
00) and V( - 00, 0) form invariant subspaces; in the 
former P > 0, while in the latter P < O. The irreduc
ible represe~tations are given by restricting attention 
to V(O, (0) [or L2( - 00,0)] as representation spaces. 
For our purposes, we choose V(O, (0) and, thereby, 
obtain an irreducible representation space for uo. 

As our example of a solution of the affine field 
algebra, we adopt an exponential construction and 
choose 

q?'[j, g] = fEB {Uo[f(z), g(z)] - l}<po dz. (4.35) 

Here we have taken 

1) = f\. dz (4.36) 

and may identify 1). = V(O, (0). Thus, q?o IS (pres
ently!) an element of V(O, 00), and is chosen the same 
for all z. Note that 

f
EB 

~ = <Po dz, (4.37) 

and, therefore, 

11£11 2 
= fll<Poll! dz = II<poll~f dz. (4.38) 

In the infinite-configuration space which we consider, 
II ~II = 00 and corresponds to an improper trans
lation. Moreover, <Po vectors with unequal norms 
manifestly lead to unitarily inequivalent represen
tations of U[j, g]. As we shall see, thanks to the 
irreducibility assumed for uo, each class of unitarily 
equivalent representations is labeled by the rays [<Po], 
i.e., by 

[<Po] == {eiy<po: 0 ~ y < 21T}. (4.39) 

., 1. M. Gel'fand and M. A. Naimark, Dokl. Akad. Nauk SSSR 
55, 570 (1947); E. W. Aslaksen and J. R. Klauder, J. Math. Phys . 
9, 206 (1968). 
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The representation induced by (4.35) has an ex
pectation functional given by 

E AU, g) == (<Ilo, Uri, g]<Ilo) 

= exp [fCqJo , {u,,[f(z), g(z)] - l}qJo)z dzJ 

= exp (fLoo 
{qJt(k)[e-t /(Z)-ikll(Z)qJo(e-IIZ)k) 

- qJo(k)]} dk dZ). (4.40) 

Observe that the vector <Ilo is translation invariant and 
that the representation fulfills cluster decomposition. 
Indeed, this example is ultralocal in the sense of 
(3.79) and (3.80), although not every solution of (4.31) 
need be ultralocal by any means. Note also that if 
fez) == 0, UfO, g]U[O, g'] = ufo, g + g'] and we are 
necessarily led to an exponential representation for the 
single commuting field operator 'IT (x). Clearly, the 
resultant representation (4.40) that arises when f = ° 
has the general form derived in Sec. 3. This property 
is also fulfilled if we instead set g = 0, although the 
form of (4.40) does not make that result immediately 
obvious. Clearly, this is a general feature of expo
nential group representations in canonical coordinates. 

The presence or absence of a linear term in the 
exponent of the expectation functional [such as 
appears in (3.66)] is dictated by requirements of the 
group representation. For example, in the case of the 
affine field we could legitimately adopt 

<p'[f, g] = fa3

(b!(Z) EB {uo[!(z), g(z)] - l}qJJ dz, 

(4.41) 

where, say, b is a real constant. The modified expecta
tion functional is 

E~U, g) = exp {-!b2fp(Z) dZ}E.4.(f, g), (4.42) 

where E.4.(j, g) is given by (4.40). Again, this repre
sentation fulfills cluster decomposition and has a 
translationally invariant <Ilo. In addition, distinct b 
values lead to inequivalent representations. However, 
there is an unfaithful subrepresentation of the field 
operator 'IT(x), which mayor may not be important in 
applications. 

To see this feature most simply, let us return to our 
single degree of freedom case where [B, P] = iP. One 
set of solutions is to assume P = O! In that case 

uo[r, s] = e-iBPeirB = eirB. (4.43) 

In the subspace where this occurs, B can be diagonal
ized and each distinct eigenvalue b corresponds to a 

unitarily inequivalent representation of uo. Each such 
representation is one-dimensional. For our purposes, 
we choose not to consider such representations either 
in the one-dimensional case or in the field analog in 
which Eq. (4.29) is satisfied by assuming a subspace 
where 'IT(Y) == ° while IC(X) :yI:. 0. Thus, we ignore the 
possibility of a linear term in <p'[f, g]. In other group 
representations it may be appropriate to include such 
terms. When we discuss the canonical commutation 
relations in the next section, we shall see, in away, 
that linear terms are required. 

Recall that the annihilation operator A' (A) is defined 
by 

A'(A)<Il'[f, g] = (A, <p'[f, g])<Il'[f, g] (4.44) 

and satisfies 

[A'(AI ), A'(A2)t] = (Al' A2). (4.45) 

Since in this example 1) = fa3 1). dz, it is convenient to 
introduce the operators A'(A~) and their formal (and 
nonexistent!) ad joints A'(A.)t defined as follows: For 
each A. E 9., we set 

A'(A.)<Il'[!, g] = (A., <pal, g]}.<Il'[!, g] (4.46) 
and 

(A'(A1z), A'(A2 •• ) t] = <5(z - Z')(A.lo' A2.).. (4.47) 

In the manner of (2.32) and (2.33a), we let 

(A', wA'). == lA'(Anl(A'n., wAm.)..A;'(Am.), (4.48) 
n.m 

where {An.} is a complete orthonormal set in 1) ... This 
form is not an operator but becomes one on inte
gration, rather like the number-density operator in 
usual quantum field theory. 

Along with A' let us introduce 

A(A.) = A'(A.) + (A .. ~.).. (4.49a) 

which in our example becomes 

A(A.) = A' 0 .• ) + (A., qJo) •. (4.49b) 

Since A' is the Fock representation, so too, we may 
say, is A'. Although A is not the Fock representation 
because II ~II = 00, we may say that A is "locally Fock" 
whenever A(A .. ) is unitarily equivalent to A'(A.). This 
occurs in our case, provided that qJo E 1) •. In other 
\Vords, the representations would be equivalent if we 
dealt with a finite-configuration-space volume (quanti
zation in a box). However, we can also take qJo ¢ 1)., as 
we shall see, in which case the representation A is not 
even locally Fock. 

In essentially the same manner as (4.13b), we may 
realize the group generators for ultralocal representa
tions as 

Wz(f) = ff(Z)(A, wzA). dz. (4.50) 
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Note that on ~. the operators WI simply satisfy 

(4.51) 

rather like the "algebra of charges" associated with 
the "algebra of currents." If the representation A is 
locally Fock, then, for g(z) E 1>, 

N(g) = f g(z)(A, A). dz (4.52) 

is a meaningful operator, although 

N = N(l) = f (A, A). dz = (A, A) (4.53) 

is not defined. However, it is clear that 

[Wl(f), N(g)] = f f J(z)g(x) 

x [(A, wIA)., (A, A)",] dz dx 

= ff{z)g(Z)(A, [wI' I]A). dz 

= O. (4.54) 

Thus, the operator N(g) plays the role of Yin Eq. 
(4.27). Since N(g), for any g(z) E 1>, is not a multiple 
of the identity, we have established the reducibility of 
ultralocal exponential representations of U[};] which 
are based on locally Fock representations of the 
operators A and At. 

Finally, we consider those representations for which 
fiJo ¢ ~z· To help visualize this situation, we appeal to 
our example of the affine fields. [Not all groups admit 
a generalization to fiJo ¢ 1).; in particular, the "algebra 
of charges" (4.51) cannot correspond to a compact 
group.] On reference to (4.40), the quantity which 
must be well defined is obviously 

Since this must be meaningful for all rand s, it is clear 
that fiJo can fail to be L2 only near k = O. For example, 
let us assume that fiJo(k) is square integrable for 
K:::;; k < 00, for some K> O. To complete the 
specification of fiJo(k), we assume that 

fiJo(k) = k-te(k), (4.56) 

where e(k) fulfills the Lipschitz condition of order b, 

le(k') - e(k) I :::;; elk' - kid, (4.57) 

for 0 :::;; k, k' :::;; K, and for some C and b > O. From 
this condition it readily follows that (4.55) is well 
defined for all rand s. Two examples of suitable 
'Po(k) 1= L2(0, (0) are given by (k + J(4)-t and k-te-k • 

With such a choice for fiJo, the representation A is not 
even locally Fock, so that although WtCn is still given 
by (4.50), the reducing operator N(g) is no longer an 
operator. In fact, there is no operator different from 
unity which commutes with all the Wl(j). As a con
sequence, the ultralocal exponential representations 
based on nonlocally Fock representations of A and At 
are irreducible representations of U[fz]. In symbols, if 
ifJo ¢ ~z , the representation U[fz] is irreducible. In our 
example, since ~t>l (= B, P) form an irreducible repre
sentation in 1)., only those representations for which 
ifJOl - e iYifJo2 E L2(0, 00), for some real y, are locally 
equivalent. Full equivalence of two representations of 
the form (4.40) requires not only local equivalence but 
the condition that rpOl - eiYrp02 E 1), where ¢Ol = 
.fEB ifJOI dz, I = 1,2. The infinite volume of configuration 
space requires that fiJOl = eiY fj;02 for equivalence, which 
establishes that the rays (4.39) label inequivalent 
representations of (4.40). The validity of this result 
may also be seen by the "tag test." 28 In this approach 
one first shows for (4.40) that 

w-lim U[fa' gal = EA(f, g). (4.58) 
18 1 .... 00 

That is, these operators have a weak limit which is a 
multiple of the identity, and that multiple-the "tag"
is simply EA(j, g). As is easily seen, distinct tags label 
inequivalent representations. Unless ifJOl = eiY fiJ02, the 
tags are evidently unequal for some choice of j, g E 1>. 
Clearly, this kind of technique applies directly to 
exponential representations fulfilling translation in
variance and cluster decomposition for general current 
algebras. 

Let us briefly discuss some spectral properties of the 
field operator 7T(X) in the locally and nonlocally 
Fock-representation cases. We define29 

Pa = 1 7T(X) dx, 

Ba =1 K{X) dx 

(4.59a) 

(4.59b) 

for some compact set L\ c R3. It follows from (4.29) 
that 

(4.60) 

which is just the commutation relation (4.32). The 
representation of P A is determined by our expectation 
functional; it will be highly reducible in $), but we may 

IS J. R. Klauder and J. McKenna, J. Math. Phys. 6, 68 (1965), 
Sec.4.C. 

U Although a characteristic function is not an element of the test 
function space ~, it is a limit of such functions. Its appropriateness 
as a smearing function can be determined directly from the expecta
tion functional for ultralocal representations. 
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well ask the question whether P d only has an absolutely 
continuous spectrum, P d > ° in our case, or whether 
there is also a subspace in which P d = 0. We may 
examine this question most simply in the cOQtext of 

(<1>0' e-iol'd<l>o) 

= exp [iL;t)(e- ik
" - 1) l<Po(kWdk dZ] 

= exp [ -~ lW(1 - e-ik
,,) l<Po(k)12 dk 1 (4.61) 

If <Po(k) E V(O, 00), then the Riemann-Lebesque 
lemma insures that 

..... 00 

and, consequently, there is necessarily a subspace 
where P A = 0. The bilinear form of WI assures us that 
in this subspace B A = ° as well. Thus, we are con
fronted with a representation for B d and P A , a portion 
of which is unfaithful, and in which every group ele
ment is represented by unity.30 However, if <Po(k) 1= 
V(O, 00), e.g., in the manner described previously, 
then clearly 

0 .... 00 

In fact, it can be easily shown that 

lim (<I>[fl , gIl, e-iSPA
<I>[f2, g2]) = 0, (4.63) 

from which it follows that 

give a class of different examples. Let 0 S kq < 00, 

q = 1, ... , Q, denote Q integration variables ;f(Zq) == 
f(aQ + z), g(zQ) == g(aQ + z), where aq denote Q fixed, 
distinct points in R3 and where <Po(kq) = <po(kl , ... , 

kQ) is an element of V or possibly more general, 
roughly in the manner of (4.57). Then, it is essentially 
clear that a representation of (4.31) exists such that 

EA(f, g) = exp (J dz 100 

••• 100 

<pri(kq) 

x {exp [-I tJ(Zq) - i 2: kqg(Zq)] 

x <po(e-f(z.lkq) - <Po(kq)} dkQ ), (4.65) 

which is inequivalent to all those discussed previously . 

5. EXPONENTIAL REPRESENTATIONS OF 
CANONICAL FIELD OPERATORS 

In this section we consider exponential representa
tions of scalar field and momentum operators which 
fulfill the equal-time-commutation relation 

[tp(x), 1T(Y)] = ibex - y). (5.1) 

Unlike (4.1), the canonical operators do not form a 
closed algebra, so that our analysis will necessarily be 
somewhat different than in Sec. 4. If f(x) and g(x) 
denote suitable real test functions, such as elements of 
:n, then 

[tp(f), 1T(g)] = i(j, g) (5.2) 

w-lim e-iSP A = O. 
is the proper statement of (5.1) for self-adjoint oper

(4.64) ators on a suitable domain. We shall be particularly 
interested in the unitary Weyl operators 

This is just the condition that P A only has an absolu
tely continuous spectrum. Depending on the proposed 
application of the representation, the spectral prop
erties of a given smeared field (P A' say) may deter
mine that certain field representations are appropriate. 
Elsewhere, in an application of the local affine fields 
to physically motivated model problems, we shall 
discuss this question further.3I 

The non-Abelian nature of the combination law 
(4.3 I) imposes restrictions on the allowed representa
tions. To demonstrate that there are representations, 
other than the ultralocal ones, exhibiting translation 
invariance and cluster decomposition, it suffices to 

30 For example, see E. P. Wigner. Group Theory, translated by 
J. J. Griffin (Academic Press, Inc., New York, 1959), p. 72. We use 
this term to denote representations having subrepresentations in 
which one or more generators are represented by the zero operator. 

81 E. W. Aslaksen, thesis, Lehigh University, Bethlehem, Pa., 
1968; J. R. Klauder, 5th International Conference on Gravitation 
and the Theory of Relativity (Tbilisi University, Tbilisi, USSR, to be 
published); J. R. Klauder, Proceedings of the Relativity Conference in 
the Midwest (Plenum Press, New York, to be published). 

(5.3) 

where we have chosen our sign convention for con
venience. These operators obey the relation 

U[!" g']U[/, g] =e(!il[(f',yl-(y'.[I]U[!' + I, g' + g], 

(5.4) 

which is the Weyl form of the commutation relations. 
We introduce the overcomplete family of states 

<1>'[/, g] == e-i1m(g.CP'[f.y]lU[[, g]<I>o (5.5) 

for some choice of $ and \'f'[f, g] E 1). We assume that 
1m a, tp' [0, 0]) = O. Once again we insist on an 
exponential construction such that 

(<I>'[/" g'], <1>'[[, g)) = N'Ne(cp'[!',o'],cp·[t.o]l 

= e-IllcpTf',o'J-cpTf,g]II' 

X eiTm «P'U',g'],cp'U.o]l. (5.6) 
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If we employ the combination law (S.4), then we 
learn [cf. Eq. (4.7)] that 

II tp'Lf ' , g'l - tp/[J, gW 
= IItp/[O, 0] - tp/[J - !" g - g'W, (S.7a) 

Tm (tp/[!" g'], tp'[J, g]) 

= 1m (tp/[O, 0], tp'[f - !" g - g/]) 

- 1m a, tp'[f -!" g - g'l 
- tp'[f, g] + tp/[!" g/]) 

- He!', g) - (g/,!)]. (S.7b) 

The basic solution to these relations gives rise to the 
Pock representation of Sec. 2A, which motivated our 
study in the first place. Somewhat more generally, we 
adopt as our first solution 9 == 91' ~ = 0, and 

tp'[f, g] == tpl[f, g] 

= 2-i {[(0-ij)(k) - i(Oig)(k)] EEl (rlj)(k)}. 

(S.8) 

Here 0 and r are suitable linear operators, such as 
o = O(k), r = r(k), i.e., multiplication operators in 
momentum space such that O(k) > 0 almost every
where. On the other hand, r(k) ~ 0, and, in fact, r 
may be chosen identically zero. While (S.8) gives a 
convenient specific realization, we shall also treat 
91 abstractly. It is clear that tpl[f, g] already fulfills 
(S.7) and thus generates an ex.ponential representation 
of the canonical commutation relations. The resultant 
expectation functional is given by 

E
1
U, g) = (<Po, <p/[f, g]) = e-illq>'[f,g]II' 

= e-1[(1.t\f)+(u,nu)], (S.9a) 

where 

A == 0-1 + r. (5.9b) 

This solution is translationally invariant and satisfies 
cluster decomposition whenever A = A(k) and 0 = 
O(k) are polynomially bounded. In this case, distinct 
function pairs A(k) and O(k) lead to unitarily inequiv
alent representations. 

The representation characterized by E1U, g) is just 
the direct product of two independent Pock repre
sentations; it reduces to only one such representation 
if r == 0.32 Whether one or two Fock representations 
are involved, the field and momentum operators are 
given by suitable linear combinations of annihilation 
and creation operators. According to (3.3), we set 

A1(A)<P[j, g] = (A, tpl[j, g])<l>[j, g]. (5.10) 

3. H. Araki and E. J. Woods, J. Math. Phys. 4, 637 (1965); J. R. 
Klauder and L. Streit, J. Math. Phys. 10, 1661 (1969). 

It can be shown32 that the smeared momentum 
operator 17l(e) is given by 

17l(e) = (i/2i )[AI(A .. (e»t - AI(A.-(e»]' (S.lla) 

where 
A,,(e) == -i(O!e)(k) EEl O. (S.l1b) 

In like manner, the smeared field operator <PI (e) is 
given by 

where 
tpl(e) = 2-*[AI(Aq>(e» t + A1(Aq>(e»], (S.12a) 

Aq>(e) = -i(O-ie)(k) EEl -i(rie)(k). (S.12b) 

Consequently, we find that 

[tpl(e), 17l(e)] = i(Aq>(e), A.-(e» = iCe, e), (5.13) 

as desired. The representation of <PI and 171 determined 
by the above construction is reducible whenever 
r :jE O. 

Although the solution presented above is rather 
special, all the other solutions build on it. For our 
second solution, we still choose ~ = 0, but set 

9 = 91 EEl 92' (S.14a) 

<p'U; g] == tp[j, g] = tpl[f, g] EEl 'P2[J, g], (S.l4b) 

where 91 and 'PI [f, g] are as before. Since 'PI already 
fulfills Eq. (S.7), it follows that <P2[j, g] satisfies those 
same relations, with the last term in (S.7) absent. 
Consequently, we adopt as our solution 

tp2[j, g] = uo[j, g]'Po, 

where the unitary operators Uo fulfill 

(S.ISa) 

UO[jI,g']UO[j,g] = UO[j' + f, g' + g], (S.lSb) 

a strictly Abelian combination law. Accordingly, we 
may set 

(5.1Sc) 

where rp(f) and neg) are fully commuting self-adjoint 
generators. Moreover, these operators act on 92' 

J n terms of these expressions the resulting expecta
tion functional has the form 

EU, g) = E
1
U, g)e(q>o,{,io[f,gl-Wo) 

= E1U, g) exp (tpo, {ei[q, (f)-';; (g)] - 1 }'Po), 

(5.16) 

where E1 is still given by (5.9). So long as f{Jo E Ih, as 
is presently the case, none of these combined solutions 
can exhibit translational invariance and cluster de
composition. This defect will be remedied later when 
we treat improper translations. 

The Weyl operators for this solution may be given 
as follows: Let Udf, g] denote the Weyl operators 
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characterized by Eq. (5.9), and define 

0() n 

Do[f, g] = EEl @ !io[f, g]. 
n=08=1 

Before we pass to another solution of the basic 
relations (5.7), we note the fact that since if! and iT 

(5.17) commute, they may both be simultaneously diagonal
ized. Alternatively stated, we may write 

Then the solution characterized by Eq. (5.16) is given 
by 

U[j,g] = U1 [J,g] 0 Do[J,g]. (5.18) 

If we extend the operators VI and Do in obvious 
fashion to the direct product space, then we may drop 
the direct product and observe that 

U[f, g] = U1[f, g] Oo[f, g] == ei[q>(f)-IT(g)]. (5.19) 

Since Oo[j, g] obeys an Abelian combination law, in 
virtue of (5.15b), it is clear that U[J, g] will satisfy the 
Weyl form of the commutation relations (5.4) and that 
the generators cpC!) and 17(g) will obey the usual 
Heisenberg rules. 

In the present solution, the annihilation operators 
A(A), A E I.h EEl 92' fulfill the relation 

A(A)<I>[J, g] = (A, fJ?[J, g])<I>[J, g]. (5.20) 

If we set A = Al EEl A2 , Ai E 9i' then we define 

A(A) = A(A1 EEl A2) = A(AI EB 0) + A(O EB A2) 

== A1CA) + A 2(A), (5.21) 

which may be seen to be in accord with (5.10). Note 
that Al commutes with A2 and A~. Equation (5.20) 
leads to the relations 

where we have put CP1 = fJ?1 EEl 0 and CP2 = 0 EEl fJ?2' 
The basic field and momentum operators in this 
representation are given as a combination of two 
different terms. On comparison with (4.13b), we 
determine that 

cp(f) = CP1(f) + (A2' if!(f)A2)' 

17(g) = 171 (g) + (A2' iT(g)A2)' 

(5.23a) 

(5.23b) 

where fJ?1 and 171 are given by Eqs. (5.lla) and (5.12a). 
Note that the field operators involve one term which is 
linear in A and A t and another term which is quadratic. 
This is a characteristic feature of such representations. 
Since 

[(A2' if!(f)A2), (A2' iT(g)A2)] = (A2' [if!(f), iT(g»)A2) 

= 0, (5.24) 
it follows that 

f
EB 

92 = C dft(a, b), (5.26a) 

ei[q;(f)-;(Y)] = ei[(a.f)-(b,y)] dp,(a, b), f
EB 

(5.26b) 

such that 

f
EB 

fJ?0 = dp,(a, b). (5.26c) 

Here a = a(x) and b = b(x) are elements of~' and the 
integration is over the space ~' X ~'. Note that 

IIfJ?o112 = f dp,(a, b) = ftC'])' x'])'), (5.27) 

which must be finite in the present case. In this lan
guage, the expectation functional (5.16), for example, 
takes the form 

EU, g) = E1U, g) exp [f (ei[(a,fHb,9)] - 1) dft(a, b)} 

(5.28) 

Evidently, other expressions may be "diagonalized" in 
92 and given a concrete representation in similar 
fashion. As a specific example, it may be assumed that 
ft is concentrated on (J functions at a specific point 
z, just as was assumed for Eq. (3.63). 

We turn now to another set of solutions of the 
basic relations (5.7) in which the translation vector 
~ '" O. In essence, we will retain the second form of our 
solution, in which 9 = 91 EEl 92, and consider ~ = 
~1 EEl ~2' The role of ~1 is especially simple. From the 
form of fJ?1[j, g] in (5.8), it is clear that ~1 does not 
influence Eq. (5.7) in any way. The only appearance 
~1 makes is in the phase factor which accompanies 
(5.5). We can relate any solution with ~1 '" 0 to the 
corresponding solution with ~1 = 0 by appending the 
phase factor e-i 1m ($l,'I'1[I,9)), where CPl[J, g] is given in 
(5.8), to the expectation functional for the case when 
~1 = O. The effect of ~1 , stated otherwise, is to add to 
CPl and 171 constant multiples of the identity. For con
venience, we shall confine our attention to the conse
quences of ~2' and we set ~1 = O. 

With these remarks in mind we choose as our 
solution to (5.7) the relations 

~ = 0 EEl ~ 2 == 0 EEl ¢o, 

fJ?'[j, g] == CP1[j, g) EEl cP~[f, g), 

(5.29a) 

(5.29b) 
[cp(j), 17(g)] = [CP1(f), 171(g)] = i(j, g), (5.25) 

as desired. The reducibility of this representation is 
evident, assuming that if! and iT are not both identically where 
zero. cp~[j, g) = (!io[f, g) - 1)¢0· (5.30) 
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Here CPll.f. g) E ~l has the same form as before, and 
likewise for the Abelian group ilo[f, g). The expecta
tion functional to which this solution leads, 

E(f, g) = E1(f, g) exp (rpo, {17o[f, g] - 1 }rpo) 

= E1(f, g) exp (rpo, {ei[~ (f)-; (glJ - 1 }rpo) , 

(S.31 ) 

is similar to the one in (S.16). A real difference arises 
only when Ilrpoll = 00, corresponding to an improper 
translation. Since this is the most interesting case, we 
shall concentrate on improper translations. 

Although rpo ¢ ~2' we assume that cp~[j, g) E ~2 and 
that (rpo, cP~[j, g]) makes sense. Moreover, for con
venience, let us assume that ip(j)rpo and if(g)rpo are in 
~2' and that (rpo, ip(f)cpo) and (CPo, if(g)rpo) make sense. 
With these assumptions, which are like those made in 
conjunction with Eq. (4.23), we can determine ex
pressions for the field operators cP(j) and 7T(g). 

We define the operators A' (A), A E ~1 <:B ~2' accord
ing to the relation 

A'(A)<I>'[j, g) = (A, p'[f, g])<I>'[j, g]. (S.32) 

If we set A = Al <:B 1..2 , then we define 

A'(A) = A'(AI <:B 1..2) = A'(AI <:B 0) + A'(O <:B 1..2) 

== A1(A) + A~(A). (S.33) 
Since 

A~(A)<I>'[f, g] = (1..2' p~[f, g])<I>'[f, g] 

= (1..2' {170[/, g) - 1 }rpo)<I>'[f, g), (S.34) 

it is clear that 

A~(A) = A2(A) - (A, rpo), (S.3S) 

where here rpo = 0 <:B rpo is understood. Since Ilrpoll = 
00, it follows that A2 and A~ are unitarily inequivalent 
and, in particular, that A2 is (now) inequivalent to the 
Fock representation A~. 

The basic field and momentum operators of this 
solution have the same form as in (5.23), namely, 

p(j) = Pt(j) + (A2' ip(j)A2), 

7T(g) = 7TI(g) + (A2, if(g)A2), 

(S.36a) 

(5.36b) 

but are inequivalent to those previous solutions. The 
latter terms in each expression may be interpreted in 
the manner of (4.23). General criteria for equivalence 
of two such representations follow the discussion per
taining to Eq. (4.24) (in addition to taking into account 
the equivalence of the first term). In particular 
(assuming nand r remain fixed), two such repre
sentations are equivalent, provided that there exists a 
unitary v which commutes with ip and if such that 

(5.37) 

To demonstrate the reducibility of these representa
tions, we need only exhibit one operator, different 
from unity, which commutes with p and 7T. Although 
(A2' A2) fails to be an operator when A2 is not equiv
alent to the Fock representation, we have, by 
assumption, the fact that 

Y == (A2' ip(e)A2)' (5.38) 

for some fixed but arbitrary test function e, is a 
meaningful operator. Since ip and if commute, it is 
clear that 

[Y, p(!)] = 0 = [Y, 7T(g)], (5.39) 

which demonstrates reducibility. 
The commutativity of ip and if permits us again to 

diagonalize them both simultaneously. In particular, 
we let 

f
EB 

~2 = C dp,(a, b), (S.40a) 

f
EB 

rpo = dp,(a, b), (S.40b) 

f
EB 

p~[f, g] = (ei[(a,fHb,g» - 1) dp,(a, b). (S.40c) 

As before, the integration is over ~' x ~', but now 
we assume that 

IIrpol12 = f dp,(a, b) = p,(~' x ~') = 00. (S.41) 

With this expression, it follows that 

E(f, g) = E1(f, g) exp [I (ei[(a,!)-(b,g)]_ 1) dp,(a, b)} 

(5.42) 
Among the many possible ways in which improper 

translations can be used, we shall consider only two 
basic examples. Initially, let us create a translationally 
invariant expectation functional exhibiting cluster 
decomposition. This we may do, following the lead of 
Eq. (3.73), by assuming that 

L(f, g) ==f(ei[(a,fHb,g)]_ 1) dp,(a, b) 

= I (ei[(a,f.)-(b,g.n - 1) dp,o(a, b) dz, (5.43) 

where ,10 is concentrated on distributions "at or near" 
the origin. As a further specialization, we may let 
,10 be concentrated on t5 functions at the origin so that 

L(f, g) = f (ei[).f(z)-vg(z)] - 1) dao()., 11) dz. (5.44) 

Such a specialization would be an ingredient in leading 
to an ultralocal representation [in the sense of (3.78)
(3.80)]. Note that it is not necessary that ao have a 
finite measure. For example, a possible choice for ao 
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would be 

dao()" v) = (),2 + v2rl e-U.
2
+v2) d)' dv. (5.45) 

We have already noted that when Illfoll = 00, the 
representation of ({I and rr is inequivalent to that based 
on a Fock representation for A 2 • In light of the dis
cussion in Sec. 4, it should be clear that in the example 
discussed above, if ao has infinite measure, the repre
sentation of ({I and rr is not even "locally Pock." The 
issues of unfaithful representations which arose in the 
group case do not arise for the canonical operators, 
for it is impossible to fulfill the Heisenberg commuta
tion relation, if there is a subspace where (p or rr or 
both act as zero. This is reflected in the fact that all 
solutions have the property that ((I(f) and rr(g) have a 
strictly absolutely continuous spectrum, as may be 
seen by applying the test of Eq. (4.22). In all such tests 
the properties of ({II and rrI are controlling.33 

6. NONTRIVIAL NATURE OF HAMILTONIAN 

As our concluding remarks we want only to indicate, 
in a simple and heuristic fashion, that the Hamil
tonians associated with exponential representations 
are generally far from trivial and contain terms for 
production, annihilation, and scattering. Elsewhere6 

we shall study these models in their own right for 
their physical content and predictions. 

33 H. O. Tucker, Pacific J. Math. 12, 1125 (1962). 

JOURNAL OF MATHEMATICAL PHYSICS 

A very common feature of a canonical theory is the 
identity between the momentum operator rr(x) and the 
first time derivative of the field rp(x) . .Jf :re denotes 
the Hamiltonian for the problem, then we require that 

i[:re, ((I(x)] = rr(x). (6.1) 

Roughly speaking, this means that 

:re = t J rr2(x) dx + 'ill, (6.2) 

where ['ill, ((I(x)] = O. This form holds true whether or 
not the canonical operators are given by an irreducible 
representation. In an exponential representation of the 
canonical variables, as we considered in Sec. 5, 
the momentum operator rr(x) is a bilinear expression 
in annihilation and creation operators, as is made 
explicit in Eq. (5.36b). Consequently, :re, being quad
ratic in rr(x), is (at least) a quartic in these operators, 
much as in Eq. (2.13). Thus, it is clear that theories 
exhibiting production, annihilation, and scattering
as these terms are conventionally understood-can be 
constructed with the aid of exponential representa
tions, since such terms appear in the Hamiltonian. It 
is noteworthy that these terms already appear in the 
kinetic energy factor,· usually treated as part of the 
free theory. This is, of course, a consequence of the 
uncommon representations which we have employed. 
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In this work we study the consequences of locality and Galilean covariance for the operators that 
occur in Landau's quantum hydrodynamics. We specifically consider the following requirements: (1) 
Galilean covariance of the velocity field, (2) locality of the velocity field, and (3) Landau's assumption 
that the momentum density is a symmetrized product of the velocity and density operators. It is demon
strated that the density-velocity commutation relation of the Landau theory is essentially a direct conse
quence of (1) and (2). The addition of (3) is sufficient to determine the velocity-velocity commutation 
relation, also in agreement with Laudau. We further show that the density-velocity commutation 
relation, independent of (3) or any specific form for the velocity field, is inconsistent with the nonnegative 
character of the local density. 

1. INTRODUCTION 

In this paper we will be exclusively concerned with 
the theoretical efforts, initiated by Landau,l to 
formulate a description of superfluid helium in terms 
of a quantized version of the equations of classical 

• Work performed under the auspices of the U.S. Atomic Energy 
Commission. 

I L. D. Landau, J. Phys. Moscow S, 71 (1941). 

hydrodynamics. Our work does not apply to other 
hydrodynamic theories such as those which use the 
phase of an appropriately defined condensate wave
function as a velocity poteqtia1. 2 Landau's original 
proposal was to define a local velocity field in terms 
of the current and mass density for a many-body 

2 P. W. Anderson, in Quantum Fluids, 1965, D. F. Brewer, Ed. 
(North-Holland Pub\. Co., Amsterdam, 1966), p. 146. 
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free theory. This is, of course, a consequence of the 
uncommon representations which we have employed. 
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In this work we study the consequences of locality and Galilean covariance for the operators that 
occur in Landau's quantum hydrodynamics. We specifically consider the following requirements: (1) 
Galilean covariance of the velocity field, (2) locality of the velocity field, and (3) Landau's assumption 
that the momentum density is a symmetrized product of the velocity and density operators. It is demon
strated that the density-velocity commutation relation of the Landau theory is essentially a direct conse
quence of (1) and (2). The addition of (3) is sufficient to determine the velocity-velocity commutation 
relation, also in agreement with Laudau. We further show that the density-velocity commutation 
relation, independent of (3) or any specific form for the velocity field, is inconsistent with the nonnegative 
character of the local density. 

1. INTRODUCTION 

In this paper we will be exclusively concerned with 
the theoretical efforts, initiated by Landau,l to 
formulate a description of superfluid helium in terms 
of a quantized version of the equations of classical 

• Work performed under the auspices of the U.S. Atomic Energy 
Commission. 

I L. D. Landau, J. Phys. Moscow S, 71 (1941). 

hydrodynamics. Our work does not apply to other 
hydrodynamic theories such as those which use the 
phase of an appropriately defined condensate wave
function as a velocity poteqtia1. 2 Landau's original 
proposal was to define a local velocity field in terms 
of the current and mass density for a many-body 

2 P. W. Anderson, in Quantum Fluids, 1965, D. F. Brewer, Ed. 
(North-Holland Pub\. Co., Amsterdam, 1966), p. 146. 
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system. As a simple example, we may consider a 
system of identical, spinless bosons of mass m 
described by a second-quantized field operator lp(x). 
The mass and momentum densities are then given by3 

p(X) == mlpt(x)lp(x), 

J(x) == (2i)-1[V./(X)Vlp(x) - Vlpt(x)lp(x)], 

and Landau's velocity field is defined by 

veX) == t[p-l(X)J(X) + J(X)p-l(X)]. (1.1) 

By using this definition, one can, at least formally, 
obtain the commutation relations involving v; they 
are4 

[veX), p(x')] = -iVb(x - x'), (1.2) 

[Vj(X), Vk(X')} = ip-l(X)[V' ;vk(x) - V' kV l\')]b(x - x'). 

(1.3) 

The order of factors on the right-hand side of (1.3) is 
irrelevant, since (1.2) implies 

[p(X'), curl vex)] = o. 

The problem of imposing these commutation 
relations on the classical hydrodynamic equations has 
been extensively studied, but we will not review this 
aspect of the theory, since it does not enter into our 
considerations. Instead we will be concerned with 
difficulties which arise directly from the commutation 
relations. In this connection we should first mention 
several objections which have previously been made 
to Landau's program. The first is essentially mathe
matical: namely, it is highly unlikely that any sensible 
meaning can be attached to the inverse of the mass
density operator; one can always construct a state in 
which there are no particles in the vicinity of some 
point. From the physical point of view, Londons 

argued that the existence of a velocity operator 
defined at a point would contradict the uncertainty 
principle. While this reasoning is suggestive, its 
exactness is open to question, since the argument 
of a field operator need not be identified with the 
position of any particle. 

An alternative versio'n of Landau's program was 
suggested by Kronig and Thellung6; however, their 
theory only allowed irrotational flow. A complete 

• We put'1i = 1 and use the notation x = (x, t). All commutators 
are to be understood as equal-time commutators. 

• We should remark that the sign of the right-hand member of 
(\.3) is opposite to that given in Landau's original paper (Ref. 1.). 
This is undoubtedly due to a misprint, since the commutation 
relations, as given there, are inconsistent with the equations of 
motion, which are given correctly. 

• F. London, Rev. Mod. Phys. 17, 310 (1943). 
• R. Kronig and A. Thellung, Physica 18, 749 (1952). 

theory was formulated by Thellung,7 Ito,s and Ziman.9 

The Ziman version has been applied by several 
authors1o,1l to obtain various properties of the 
excitation spectrum of superfluid helium. Instead of 
proposing a microscopic definition for the velocity 
field, Ziman remarked that the equations of classical 
hydrodynamics could be obtained from a variational 
principle. The existence of a Lagrangian then allowed 
the use of the general technique of canonical quantiza
tion. Since the theory has no necessary connection 
with an underlying particle theory, it is rather striking 
that the commutation relations involving v are 
exactly those obtained earlier by Landau. 

A rather serious objection to the Ziman theory 
has been made recently by Frohlich,12 who showed 
that the existence of a quantity canonically conjugate 
to the mass density is inconsistent with the fact that 
the spectrum of the total number operator is the set 
of nonnegative integers. 

The purpose of the present paper is to establish 
two results: In Sec. 2 we show that the Landau com
mutation relations represent the simplest solution 
to the constraints imposed by locality and Galilean 
relativity. Thus they are not necessarily associated 
with the specific microscopic definition used by 
Landau or the canonical formalism constructed by 
Ziman. In Sec. 3 we further show that the commuta
tion relation (1.2) is inconsistent with the physical 
requirement that the expectation value of the mass 
density be nonnegative. In Sec. 4 we briefly discuss 
the meaning of these results. 

2. THE LANDAU COMMUTATION RELATIONS 

The only Galilean transformation we have to con
sider is the so-called velocity transformation 

x' = x + ut, 

with the corresponding transformations for 11' and v: 

11" (x') = exp [im(u • x + iu2t)]1p(x), 

v'(x') = vex) + u. (2.1) 

The second of these equations constitutes the require
ment of Galilean covariance for the velocity field. An 
application of conventional field-theory techniques13 

to the Galilei group yields a unitary operator corre
sponding to the transformation of 11': 

lp'(x) = UVJ(x)U-t, (2.2) 

1 A. Thellung, Physic a 19, 217 (1953). 
81. Ito, Progr. Theoret. Phys. (Kyoto) 9,117 (1953). 
• J. M. Ziman, Proc. Roy. Soc. (London) A219, 257 (1953). 

10 G. R. Allcock and C. G. Kuper. Proc. Roy. Soc. (London) 
A231, 226 (1955). 

11 A. Thellung, Helv. Phys. Acta 29,103 (1956). 
12 H. Frohlich, Physica 34, 47 (1967). 
13 J. Schwinger, Phys. Rev. 82, 914 (1951). 
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where 

and 
U = exp [i(tu • P - u • X - IMu2t)], 

P = f d3xJ(x) , 

X = f d3
xxp(x), 

M = I d3xp(x). 

The operator P represents the total momentum, 
while X is related to the center-of-mass position and 
M is the total-mass operator. Note that (2.2) is an 
active transformation; that is, the functional form of 
'IjJ is altered while the argument remains unchanged. 
However, by making use of the fact that P is the 
generator of spatial translations, one can construct 
a unitary operator which yields the transformation 
(2.1) directly.14 Thus, if we define S(u) by 

S(u) = exp [-i(u . X + tMu2t)], (2.3) 

then we find 
'IjJ'(X') = S(u)'IjJ(X)S-I(U). (2.4) 

Alternatively, the validity of (2.4) can be established 
by direct calculation. 

We now introduce the basic assumption that vex) 
has no explicit x dependence. Since every operator 
can be regarded as a function of 'IjJ, 'IjJ t, and their 
spatial derivatives, it follows that the transformation 
of the velocity field is also effected by S{u); therefore, 
in view of (2.1), we have 

vk(x) + Uk = S(u)ViX)S-I(U). 

In order to see the consequences of this equation, we 
first operate on both sides with (%u i ) and use the 
explicit expression (2.3) to obtain 

()ki = is(U)[Vi(X), (Xk + Mukt)]S-I{U). 

Next operate from the left with S-l and from the 
right with S to find 

[vi(x), Xk] + tuk[v;(x), M] = -i()kj' (2.5) 

which yields 
[Vj (x) , M] = 0, 

[vi(x), Xk] = -i{)ki' 

(2.6) 

(2.7) 

since (2.5) is an identity in u. Now we are ready to 
impose a precise statement of locality. We require 

N 

[v;(x), p(x')] = I Tfk, ... kn(X)'Yk, ... 'Ykn{)(x - x'), 
71=0 (2.8) 

,. This is easily seen by first considering infinitesimal transforma
tions and then exponentiating. 

where the coefficients in the finite-order differential 
operator on the right may be q-numbers.16 The rela
tions (2.6) and (2.7) are simply the first two moments 
of (2.8), so we immediately conclude that 

Ti(X) == 0, 

Tik(X) = -i()jk' 

Then we can write (2.8) in the form 

[Vj{x), p(X')] = -i'Yj{)(x - x') + 02(x)c5(x - x'), 

(2.9) 

where O2 is a finite-order differential operator with 
order at least two. Thus the simplest solution to the 
constraints imposed by locality and Galilean covari
ance is (1.2). 

In order to obtain the remaining commutation 
relations, we assume that the operator K, defined by 

K = t f d3x[p(x)v(x) + v(x)p(x)], (2.10) 

differs from the total momentum P by an operator 
which commutes with both p{x) and vex). This con
dition is certainly satisfied in the Ziman theory, for 
which K and P are identical; and it appears to have 
been assumed by Landau. Our assumption therefore 
contains the relevant aspect of both theories, and 
we have 

[Kj' vk(x)] = i'Yh(x). 

Then, from (2.10) and (1.2), we obtain 

iI d3x' {p(x')[vj(x' ), vk(x)] + [vj(x'), Vk(X)]P(x' )} 

= i['Yjvk{x) - 'Ykv;(x)]. (2.11) 

The apparent difficulty caused by the symmetrized 
form of the integrand can be eliminated by using the 
Jacobi identity: 

{p(x'), [vj(x"), vk(x)]} + {Vk{X) , [p(x'), vj(x")]} 

+ {vj(x"), [vk(x), p(X')]} = O. 

Since the commutator of p and v is a c-number, the 
second and third terms above vanish, and we conclude 
that p commutes with the velocity commutator. It 
then follows easily that the simplest local commutation 
relation consistent with (2.11) is 

[vi(x'), vk(x)] = ip-I(X)['Y iVk(X) - 'Y kVi(x)]c5(x - x'), 

(2.12) 

which is the same as (1.3) after interchanging x and x'. 
So far, we have not specified the domain of definition 

16 We use Dirac's terminology in which operators acting in the 
Hilbert space of many-body wavefunctions are called q-numbers, 
while ordinary (complex-valued) functions are referred to as c
numbers. 
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of the commutation relations; they are, as usual, 
assumed to hold on a common dense subspace of the 
physical Hilbert space. We also assume that the 
commutation relation (1.2) holds in the so-called 
Weyl form,16 which in our case becomes 

exp {ip(f)} exp {iv(g)} 

with 
= exp {i(f, V· g)} exp {iv(g)} exp {ip(f)} 

P(f) == f d3xp(x)f(x), 

v(g) == f d3xg(x) • vex), 

(j, V . g) = f d3xf(x)V • g, 

where f and gk are suitable real-valued test functions. 
This assumption is required in order to guarantee 
the existence and differentiability of the unitary 
operator U(A) introduced in the following section. 

Thus we see that the Landau commutation relations 
follow in a natural way from the requirements of 
Galilean relativity and locality, together with the 
assumption that K is the generator of spatial transla
tions. Consequently, the commutation relations do 
not depend on the explicit, constructive definition 
given by Landau or on the canonical formalism of 
Ziman. 

3. DIFFICULTIES ARISING FROM THE 
COMMUTATION RELATIONS 

We will now establish that the Landau commuta
tion relations are not consistent with the fact that 
the mass density has nonnegative expectation values. 
As a special case we will recover the result of Frohlich 
mentioned in Sec. 1. Both results follow from a 
slightly more general mathematical fact which we 
state in the form of a theorem. First, we define the 
numerical range of an operator as the set of complex 
numbers obtained by forming the expectation value 
of the operator with respect to all normalized state 
vectors in the space upon which the operator acts. 

Theorem: Let A(x) and B(x) be q-number fields 
with B Hermitian, and assume the following com
mutation relations: 

N 
[B(x'), A(x)] = i I Ck1. "k,,(X)'Vk1 ... 'Vkn~(X' - x), 

n=O 

11 H. Araki, J. Math. Phys. 1, 492 (1960). 

where at least one of the C's is nonzero; then the 
numerical range of A includes the entire real axis. 

Proof" Define 

U(A) = exp (iAf d3X'!(X')B(X'») , 

where f is a suitable real-valued c-number function 
(e.g., a test function in the sense of distribution 
theory). Since B is Hermitian, U(A) is unitary for any 
real A. We now transform A by U(A) to get 

A(x, A) = U(A)AU-l(A). 

The new operator satisfies a simple differential 
equation 

aA~~ A) = i U(A) f d3x'!(x')[B(x'), A(x)] U-1(A) 

= - U(A)! Ck1 ... k"(x)'V'kl ... 'V'kJ(X)U-1(A) 
n 

= - ! Ck1·· 'k,,(X)'V'kl ... 'V'k./(X), 
n 

The second and third lines follow from the assumed 
commutation relations. The solution is 

A(x, A) = A(x) - A! Ck1 .. 'k.(X)'V'kl ... 'V'kJ(X). 
·ft 

(3.1) 
( 

Let 0/ be any normalized state vector and define 0/(,1,.) 
by 

0/(,1,.) = U-l(A)o/. 

Then (3.1) yields 

(o/(A) 1 A(x) I'Y(A» = (0/1 A(x) 10/) 

- A! ('YI Ck . 'k.(X) 10/) 'V' kl ... 'V' k./(X). 
n 

We see that Re ('Y(A)I A I'Y(A» can be made to have 
any desired value by a suitable choice of A, unless 0/ 
satisfies 

This relation cannot be satisfied by all 'Y's since that 
would imply that all the C's are zero, which would 
contradict the hypothesis of the theorem. Conse
quently, we can always pick'Y so that (3.2) is not 
satisfied, and the conclusion of the theorem follows. 

The result of Frohlich can be obtained by setting 
A(x) = p(x) and B(x) = cp(x), where cp is canonically 
conjugate to p; that is, 

[c/>(x'), p(x)] = i~(x' - x). (3.3) 

The hypothesis of the theorem is satisfied by this 
choice. Since the numerical range of a Hermitian 
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operator is necessarily a subset of the real axis, we 
conclude in this case that the numerical range of p(x) 
is the entire real axis. In other words, it is always 
possible to find a state in which the expectation value 
of p(x) is any desired negative number. Thus a 
canonical commutation relation such as (3.3) cannot 
be satisfied by a nonnegative operator. 

It might still be thought that the situation could be 
saved by giving up the canonical formalism. However, 
if we choose B(x) = C • vex) with a fixed real vector 
C, then (1.2) gives 

[B(x'), p(x)] = iC· Vb(x' - x). 

Again we can invoke the theorem to show the existence 
of states in which the expectation value of p(x) is 
negative. Thus the difficulty lies in the relation 
(1.2) itself, not in the specific definition of v or in any 
underlying formalism. 

4. CONCLUSION 

In discussing the significance of the results we have 
obtained, it is necessary to differentiate between 
theories of the Landau type, which are directly based 
on an underlying microscopic theory, and those of 
the Ziman type, which involve the ad hoc procedure 
of quantizing classical hydrodynamics as a field 
theory. 

We begin with theories of the Landau type, for 
which it is possible to make more definite statements. 
In this case the mass-density operator is certainly 
nonnegative; therefore. we can definitely conclude 
that any such theory that includes (1.2) is not inter
nally consistent, either physically or mathematically. 
In particular, the formal definition (l.1) is inadmis
sible. It should be emphasized again that (1.2) follows 
from locality and Galilean con variance alone: neither 
(1.0 nor the identification of K as the generator of 
spatial translations is required. This situation leaves 
open the possibility of different definitions of v which 

do not lead to (1.2). One alternative is that v is still 
a local operator, but that some higher-order terms, 
as indicated in (2.9), are included in the commutation 
relation. As a consequence of the theorem proved 
in Sec. 3, the coefficients retained in the differential 
operator O2 would have to be q-numbers not com
muting with v; otherwise the contradiction would 
still follow. Another possibility is that v is nonlocal; 
that is, it does not satisfy a local commutation rela
tion of the form (2.9). In this connection it might be 
useful to look for an operator formalism analogous to 
the nonlocal definition of the c-number velocity field 
in terms of the one-particle density matrix developed 
by FrohlichY,18 

The case of theories of the Ziman type is less clear 
for the simple reason that the physical basis of such 
theories is itself unclear. Thus it might be argued that 
the existence of negative density states is an unfor
tunate but curable sickness, somewhat similar to the 
difficulty of states of negative norm in the Gupta
Bleuler version of electrodynamics. If such an interpre
tation of the Ziman theory is to succeed, it must be 
shown that the subsidiary conditions required to 
eliminate the states of negative density are consistent 
with the dynamics of the system. That is, one must 
show that there are no transitions from physical to 
unphysical states. In the absence of such precautions, 
any results obtained should be viewed with consider
able skepticism. 
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A network model is developed for electrons in molecules and crystals. Wavefunctions and energy 
levels can be calculated exactly. A network which is topologically equi~alent to that. of the molecule .or 
crystal of interest is constructed. One-dimensional bonds connect vanous node POInts. The potential 
V(x) = - Vo sech2 yx is postulated to act along each bond so that a potential well exists at each node 
point (atom) of the network. For some values of Vo the ~avefunctions are elem~ntary w~ile gene~ally 
they are hypergeometric functions. When the parameter y IS very large, the model IS esse~tlally. the tight 
binding model and, when it is very small, one has the free-e~ectron network model Investigated by 
Ruedenberg and Scherr, Griffith, Coulson,and others. The denSity of states, energy band structure, and 
other features are discussed. 

I. INTRODUCTION 

Exploratory investigations of internal vibrations of 
molecules and -crystal lattices generally start from a 
network model of masses connected by springs. Those 
of phase transitions generally start with the Ising 
model, which is also a network model, but one with 
two possible states identified with each node of the 
network. The author has occasionally wondered why 
network models have not been used more extensively 
in solid-state physics courses and as a basis for the 
analysis of complex phenomenon in the electronic 
theory of solids. 

Free electrons on zigzag wires and various ring 
structures have been used by a number of authorsl - 6 

for discussions of the spectra of hydrocarbon chains 
with conjugated double bonds and for a variety of 
ring-structure organic molecules. Coulson7 (see also 
Hoerni8) has investigated free-electron network models 
of various lattices. He has, among other things, found 
the density of states for such a model of graphite. 
Della Riccia9 has investigated the free-electron net
work model for diamond. However, in recent years the 
computer has taken over; very complicated calcula-

* This work was partially supported by the Office of Naval 
Research. 

1 L. Pauling, J. Chern. Phys. 4, 673 (1936). 
2 H. Kuhn, Helv. Chirn. Acta 31,1441 (1948); J. Chern. Phys. 18, 

840 (1948); ibid. 22,2098 (1954). 
a J. R. Platt. J. Chern. f'hys. 17,484 (949); 21, 1597 (1953). 
4 N. S. Bayliss, J. Chern. Phys. 16, 287 (1948). 
• J. S. Griffith, J. Chern. Phys. 21, 174 (1953); Trans. Faraday 

Soc. 49, 345 (1953). 
8 K. Ruedenberg and C. W. Scherr. J. Chern. Phys. 21, 1565 

(1953); 22, 151 (1954); C. W. Scherr, ibid. 21, 1582 (1953); K. 
Ruedenberg, ibid. 22, 1878 (1954). 

7 C. A. Coulson. Proc. Phys. Soc. (London) 67, 608 (1954); 68, 
1129 (1953). 

8 J. A. Hoerni, J. Chern. Phys. 34, 508 (1961). 
, G. Della Riccia, Proceedings of the Semiconductor Conference, 

Exeter (Institute of Physics and the Physical Society, London, 1962), 
p.570. 

tions are being made on complex models, and the 
simple network theory has become neglected. 

Recent conversations with Pell and Matthias about 
complicated materials such as amorphous semi
conductors and superconducting alloys have stimu
lated the author to examine certain "solvable" network 
models of periodic lattices. It is his feeling that, before 
introducing complications into a system, one should 
have a simple model whose unperturbed properties 
can be easily described without requiring perturbation 
theory. 

The model which we analyze in this paper is the 
microscopic scaled-down version of the ball and wire 
models of crystals used in lecture demonstrations and 
by researchers who want to visualize the structures of 
the crystals they are dealing with. We consider a 
network (periodic in the case of crystals and not 
necessarily so in the case of molecules) of atoms, 1, 
2, ... , with bonds hi; connecting the ith and jth, as 
shown in Fig. 1. Electrons are postulated to be re
stricted to move only along the bonds so that the 
electron wavefunction in a segment between two 
connected node points is a I-dimensional wavefunc
tion. In this paper spins are ignored as are electron 
correlations through Coulomb interactions. All node 
points will be held fixed. The influence of these 
neglected effects will be discussed in later papers. 

We will associate a potential well with each node 
point and choose it so that a single electronic bound 

FIG. 1. Net
works. aperiodic 
and periodic. 
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state would exist for each node point if there were no 
connections to other node points. In this paper the 
potential will be chosen so that the wavefunctions 
along any bond connecting two node points are 
elementary functions. Energy bands, density of states, 
etc., will be derived for various lattice structures. All 
calculations will be exact and, indeed, very similar to 
certain lattice-vibration calculations. 

II. BOUNDARY CONDmONS AT NODE POINTS 

Assume that the wavefunction at a distance Xii from 
the ith point in the direction of the jth is 

~ii(Xij) = aiih,;{xij, r5ij' k), (1) 

where aii and r5ii are the two integration constants 
which appear in the integration of the second-order 
Schrodinger equation. If Iii is the length of bond bii , 
then 

0< Xii < Iii' (1') 

The parameter kin (1) is the quantum number which 
tells us which wavefunction is being discussed. 

The first boundary condition required is that the 
wavefunction be continuous everywhere on the net. 
Hence, at node point j, 

aii/iil(O, r5ii ) = aii.!iis(O, r5iis) 

= ... = aiip/U(J(O, r5iip)' (2a) 

if h ... jp is the set of fl nodes to which node j is 
attached. 

It has been shown by Ruedenberg and Scherr6 that, 
as a consequence of momentum conservation at each 
node ("Kirchhoffs law"), 

~ a iirz (df iirz ) = 0, 
rz dxurz 0 

(2b) 

so that, after dividing (2b) by au/iiI' we have 

(3) 

The 0 subscript on the parenthesis indicates that the 
derivatives are to be evaluated at Xii« = O. By com
bining (2a) and (3), we find 

line away from the node and ~ represents the wave
function at the node. 

III. FREE PARTICLES ON NET 

In order to see how the boundary conditions are 
applied, we first consider briefly free particles on a 
network. 7•6 

The wavefunction of a free particle with energy 
E = /j2k2/2m is 

~(x) = a cos (kx + 15) 

= a(cos kx cos 15 - sin kx sin 15). (5) 
Hence, 

~(O) = a cos 15, (6a) 

~(l) = a cos r5(cos kl - sin kl tan 15), (6b) 
so that 

~(l) = ~(O)(cos kl - sin kl tan 15) (7) 
and 

tan 15 = [cos kl - ~(l)/~(O)]/sin kl; (8) 
also 

a2 = ~2(0)(1 + tan2 r5). (9) 
Finally, 

~'(x) =' ak( -sin kx cos 15 - cos kx sin 15) (10) 
and 

~'(O)N(O) = -k tan 15. (11) 

Hence, for this case, using the notation of Eqs. (2) 
and (4), we have 

(
d(l08fHII») = -k tan 15;;11' (12) 

dXiirz 0 

Then, our conservation of momentum condition (4) 
becomes 

~ tan 151111 = 0, j = 1,2, ... , n, (13) 

" 
or, from (8), if all bonds have length I, 

nJ~[j] cos kl - ~ ~[j,,] = 0, j = 1, 2, ... ,n, (14) 
" 

where we use the following notation: ~[j] is the 
wavefunction at the jth node of the network; rpii,,(l) of 
(7) becomes ~[jrz] if I is the distance j to j,,; nj is the 
total number of bonds which are connected to j. 

The set of equations (14) are identical with those 

~ (d logfiirz) = 0, j = 1,2,3, .... 
" dxurz 0 

which appear in the vibration of lattices whose atomic 
(4) displacements in the X, y, and z directions are inde

pendent of each other and in which central- and non
central-force constants are identical. The rp's would 
correspond to the spatial-dependent factor in the 

The conservation condition (2b) is the statement 
that at all nodes 

!grad ~ = 0, 

where the gradient is measured along each network 

displacement of atoms from their equilibrium posi
tions. The factor mw2j2y which appears in lattice
vibration theory (m being the mass of the vibrating 
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V(x) 

FIG. 2. Schematic 
form of the potential 

X Y(x) = - Yo sechl x. 

particle, w the normal mode frequency, and y the 
force constant) is the analog of nj(I - cos kl). As we 
shall see in the following sections, replacement of the 
free-electron condition by one with the electrons in an 
atomic force field introduces a more complicated 
"form factor" than nj cos kl. However, the general 
structure of the equations still have the form (when 
all Iii = I) 

F(k, 'f)cp[j] = I cp[j,,], (14') 

" 
where the form factor F depends on the energy through 
k and the parameters 'f) which characterize the atomic 
potential which effects the electrons. In this form, all 
the mathematical apparatus which has been developed 
for the theory of lattice vibrations is immediately 
applicable. 

IV. A POTENTIAL WITH A SINGLE BOUND 
STATE AND ELEMENTARY 

WA VEFUNCTIONS 

Once a 2- or 3-dimensional assembly is modeled by a 
network, the wavefunctions are defined only along 
the various I-dimensional bonds which connect node 
points. There are a number of I-dimensional solvable 
potentials1o whose wavefunctions are tabulated func
tions. 

The particular potential which we use in this paper 
is V(x), such that 

2mV(x)11i2 = _2y2 sech2 xy. (I Sa) 
If we set 

(ISb) 

the SchrOdinger equation becomes 

cp" + (k2 + 2ys sechs yx)cp = O. (lSc) 

This I-parameter potential is a special case of the more 
general potential 

Vex) = - Vo sech2 yx, (lSd) 

which has the form plotted in Fig. 2. If the center of 
the well is located at the node positions, this makes 
each atomic center an attractive center to an electron 
in the network. The general solution of the Schro
dinger equation with the potential (1Sd) is in terms of 

10 M. F. Manning. Phys. Rev. 38, 161 (1935). 

FIG.3. Ring of circumference I with potential well centered at origin. 

hypergeometric functions.ll Its application to net
works will be discussed later by Mills and the author. 
Here we limit ourselves to the special relation between 
Vo and y which leads to wavefunctions which depend 
only on circular and hyperbolic functions.12 The main 
ideas of the theory can then be presented with a 
minimum of mathematical complexity. 

The general solution of (1Sc) can be shown to be 

cp(x) = a[cos (kx + 15) 

- (Ylk) sin (kx + 15) tanh yx] (16) 

by direct substitution into (lSc). We will use a circular 
ring configuration and set the well of the potential 
at the origin as shown in Fig. 3. The length of the 
chain is postulated to be I. The derivative of (16) is 

cp'(x) = -ak[sin (kx + 15) 

+ (Ylk) cos (kx + 15) tanh yx 

+ (y2/k2) sech2 yx sin (kx +15)]. (17) 

If we close the ring by connecting the point at x = 
il with x = -ii, the function cp(x) as wen as its 
derivative must be continuous at the point of closure. 
The continuity of cp(x) implies 

cos (lkl + 15) - (Ylk) sin (lkl + 15) tanh iyl 

= cos (lkl - ~) - (Ylk) sin (lkl - ~) tanlt tyl, 

so that 

sin b[sin tkl + (ylk) cos tkl tanh tyl] = O. (18) 

The required continuity of cp'(x) at the closure point 
yields 

cos ~{sin lk/[l + (Ylk)2 sech2 lyl) 

+ (Ylk) cos tkl tanh ty/} = o. (19) 

There are then two classes of wavefunctions: thbse 
with sin b = 0 and those with cos b = O. In the first 
case, fJ = 0 [while a choice b = '1T is possible, it is 
equivalent to merely changing the sign of the constant 
a in (16) and is, therefore, not a new solution]. In the 

11 L. D. Landau and E. M. Lifshitz. Quantum Mechanics (Perga
mon Press. New York. 1965). 

11 E. W. Montroll and G. F. Newell. I. Appl. Phys. 23,184 (1952). 
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f (K) 

----~--~--~--~--~--~K 

FIG.4. Each intersection ofa branch of tan KwithftK) is associated 
with a conduction-electron energy-state. 

second case, J = b. When J = 0, the wavefunction 

cp(x) = a cos kx[l - (Ylk) tan kx tanh yx] (20a) 

is symmetrical. When t5 = 17T, we find that 

cp(x) = b sin kx[l + (Ylk) cot kx tanh yx], (20b) 

which is antisymmetrical. 
Let us first consider the symmetrical wavefunctions 

by choosing t5 = O. The only way both (18) and (19) 
can be satisfied is by letting k satisfy 

sin ikl[1 + (y2Ik2) sech2/!yl] 

= -(ylk) cos iklltanh 11'/ (21) 
or, if we let 

K = ikl and 11'1 = oc, 

K 
_~( 1X-!.../K~),-t_an_h_lX_ 

tan =-
1 + (1X2 / K2) sech2 oc 

Koc tanh IX 
= -

K2 + oc2 sech2 IX • 
(22) 

To find the roots of this equation, we plot left- and 
right-hand sides (see Fig. 4) on the same graph and 
search for intersections. There is an intersection 
and, therefore, a root in each interval (±7T, ±37T), 
(±37T, ±57T), etc., as well as one at the origin. 

The wavefunction associated with k = 0 is 

CPo (x) = a(l - yx tanh yx), if -il < x < il 
(23) 

and the associated energy is E = O. 
A bound-state solution can be found by letting 

K = ifl. (24a) 

Then, (22) becomes 

tanh fl = (flOC tanh OC)/(p,2 - oc2 sech2 IX). (24b) 

FIG. 5. Each intersection of tanh p. with the three branches of the 
function on the right-hand SIde of(24b) corresponds to a bound-state 
energy. 

The analog of Fig. 4 is given in Fig. 5. Since E oc k 2, 

E oc - fl2 which corresponds to a bound state. 
Notice that, as IX -- (X) (which is the case as 1-- (X) 

ory-- (X), oc2 sech2 OC'" (oc2/4) exp (-2oc)--0. Hence, 
fl -- oc and the bound-symmetrical-state wavefunction 
becomes 

cp(x) '" a sech (2ocx/l), as 1-- (X) or I' __ 00, 

'" 2a exp (- 20c lxI/I), as !XX __ (X) 

with y and I fixed. (25) 

The energy of the bound state 

E = /i2k2/2m ~ _y2/i2/2m (26) 

is approximately one-half the well depth YeO) = 
_y2/i2/m and is, indeed, exactly one-half in the limit 
1-- 00 or 1' __ (x). 

The antisymmetric wavefunctions which result from 
t5 = !7T must have k values which are roots of 

tan K = -(IX/K) tanh IX, (27) 

if both (18) and (19) are to be satisfied. Every point 
which corresponds to an intersection of the function 
on the left with that on the right yields a possible K 
value and, hence, a possible energy level; such an 
intersection appears in each of the intervals (i7T, i7T), 
07T, i7T), (tw, fir),"', and (-i7T, -lw), (-t7T, 
-i7T), etc. The energy associated with each intersec
tion is positive. If one lets K = ifl, then (27) becomes 

fl tanh I-' = IX tanh IX, 

so that I-' = IX and E oc -1-'2, which means that the 
state with this energy would be a bound state. How
ever, this solution is physically impossible, since the 
antisymmetrical wavefunction (20b) vanishes identi
cally when k = 2ioc/l == iy. 
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V. NETWORK WITH SINGLE BOUND STATE 
AT EACH NODE 

Consider again the Schrodinger equation (l5a) with 
the potential (15c) which leads to a bound state. Also, 
consider a network such that along each bond (15) 
is valid when x is the distance from a node of interest 
in the direction of another node which is connected to 
it by the bond. Then, 

,p(x) = a[cos (kx + b) - (Ylk) sin (kx +b) tanh yxJ 

= a{cos [b + kx + O(x)]}/cos O(x), (28) 

where we define O(x) by 

tan O(x) = (y/k) tanh yx, with -71' < O(x) < 71'. 

(29) 

j' and bi'i' then from j' to j. The wavefunction associ
ated with point j must connect at x in a continuous 
manner with that associated with j'. The two deriv
atives must also be continuous at that point. We use 
the notation ,p [j] to represent the wavefunction at node 
point j. Then at x we have 

,p(tT) = ,pU] cos (0 + ikl + r5u')/cos 1511" (36a) 

cp( -il) = ,prj'] cos (0 + ikl - r5i'i)/cos lJi'i' (36b) 

Equating these two, we derive 

,p[j](e - stan lJu ') - ,p[j'J(e + stan lJ1'1) = 0, (37a) 

where 

e = cos (lkl + 0) and s = sin (lkl + 0). (37b) 

Also, Similarly, if one equates the two derivatives at x, he 

dO(x) = (1':) cos2 O(x) sech2 yx, (30) finds 
dx k cp[j][(e + u) tan lJ11 , + s + vJ 

so that - cp[j'](e + u) tan 151'1 - s - vJ = O. (38) 

cp'(x) = _ak[Sin [lJ + kx + O(x)] The phase factor r5i'i can be eliminated from (37) 
cos O(x) and (38) to obtain the following relationship between 

(
1')2 J,p [j] and ,p [j']: + k sech2 yx sin (lJ + kx). (31) 

[2s(e + u) tan lJii' + S2 - e2 + sv - cu]cp[j] 

We find from these equations that, since 0(0) = 0, + (1 + eu + sv)cpU'] = 0, (38') 

,p(0) = a cos lJ; 

cp'(O)j,p(O) = -k[1 + (ylk)2] tan lJ. 

(32a) 

(32b) 

If 1 is our bond length and we define O(i/) == 0, then 
we have O( -i/) = -0. Also, 

,p(±il) = cp(O)[cos (0 + ikl ± r5)J/cos 15,. (33) 

,p'(±tl) = -k,p(O) (Sin (d ± ilk ± 0) 
cos 0 cos 15 

+ (~rsec lJ sech2 (tyl) sin (d ± ik1»). 

(34) 

We must now work on the network aspects of our 
problem. Let ja be the node points connected to node 
pointj. Then, from (4) and (32b), 

I tan dUa = 0, 
a 

(35) 

where the sum extends over all IX which represent 
nodes connected to j. If we take a typical pair (j,j'), 
we specify the center of the bond connectingj and j' by 
an x as indicated by 

--x:--......, 
j' 

> ( 
j" j j 

Here 1511' represents the phase factor going from j to 

where 
u = (y/k)2 cos 0 sech2 iyl cos ilk, 

v = (Ylk)2 cos () sech2 tI'l sin ilk. 

(39a) 

(39b) 

If we set j' == ja., sum over all ja points which are 
attached by bonds to j, and employ (35), we find 

ni(e
2 

~:2::: SV)cp[j] = ~CP[jIZ]' (40) 

where ni is the number of bonds connected to node 
pointj. This is the generalization of (14) . 
. After some algebra we find that 

(c2 - S2 + cu - sv)/(1 + cu - sv) 

= [1 + (y/k)2]-1{[1 + (Ylk)2(1 - 2 tanh2 iyl)J cos kl 

- (y/k)[2 + (yjk)2 sech2 iI'/] sin kl tanh hoI} == F. 

(41) 

If I' = 0, this reduces to the free-electron case, cos kl 
[see Eq. (14)]. Bound states correspond to a purely 
imaginary k. Let 

€ = ikjy and IX = tyi. (42) 
Then, 

F(e, at) = (c2 - S2 + eu - sV)/(1 + cu + sv) 

= fe(e2 -1)]-lfe(e2 -1 + 2tanh2 at)cosh2ate 

- (2e2 - sech2 at) tanh at sinh 2ate]. (43) 
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a=l a=2 

10 

F(k.a) 

1 

While there are apparent singularities at E = 0 and 
E = I, a more careful limit analysis shows that our 
ratio has the limit values 

F(O, «X) = sech2 «X - tanh2 «X - 2«x tanh oc sech2 oc, (44a) 
F(l, «X) = sech2 «X - «X sech2 «X tanh «X. (44h) 

Now that the form factor F(E, IX) is known (see 
Fig. 6), we can discuss the energy levels in o~r net~ork 
as well as the density of states. We start with a hnear 
chain to see how the analysis proceeds in a simple 
case. 

VI. ONE-DIMENSIONAL RING 

In the case of a I-dimensional ring of N particles, 
the jth is connected to (j - 1) and (j + 1), while 
ni = 2 for allj. Then, Eq. (40) becomes 

2F(E, «x)q,[j] = q,[j + 1] + q,[j - 1], (4Sa) 
q,[j + N] == q,[j], (45b) 

from ring arrangement. A possible solution of these 
equations is 

q,[j] = A exp 27Tijs/N, (46) 

where A is a normalization constant. Then, E is a 
solution of 

while 
F(E, IX) = cos (27TS/N), 

(siN) = (27T)-1 cos-1 (F(E, IX)]. 

(47) 

(48) 

The function F(E, «X) is plotted in Fig. 6 as a function 
of E and E = -tEZ (dimensionless energy) for various 
values of IX. Since -1 ~ cos (27TS/ N) ~ 1, the possible 
range of the F(E, «X) for bound states is -1 < 
F(E, «X) < 1. The band structure is clear from the 
figure. The band edges correspond to the value of E 
which makes F = ± 1. These values of E and -IEz 
are plotted in Fig. 7. If q,[j] is known, one can find 
the value of ~(ja + x) from (28) for points along our 
network such that 0 < x < a. 

The density of states is, by definition, 

_ d(s/N) _ d(s/N) dE = _! d(s/N) dF(E, IX) 
G(E) - dE - dE dE E dF(E, IX) dE 

1 1 1 dF(E, IX) 

= 27T ~ [1 - F2(E, oe:)]* dE 
(49) 

where 

FlO. 6. Form factor F. 
The region to the right of the 
origin corresponds to kl'Y ~ 
O[Eq. (S2)). The region to the 
left corresponds to purely 
imaginary kl'Y with II == ikl'Y 
[Eq. (43»). 

dP(E, «X) 2 tanh «X cosh 2«XE 
= -

dE E(E2 - 1)2 

X [2E2 tanh IX + OC(E2 - 1)(2E2 - sech2 «X)] 

sinh 2«XE 
+ E2(E2 _ 1)1I 

X ([2E2(E2+ 1) -(3E2-l)sech2 oc]tanhlX 

+ 2OCE2(E2 - l)(ES - 1 + 2 tanh! «X)}. 

(50) 

All Ell in (49) and (50) are to he replaced hy - 2E in the 
final formula so that G(E) is a function of E rather 
than of K. The function dF/dE is plotted in Fig. 8. 

In the conduction hand, we let 

I( = k/y and oc = tyl. (51) 

Then our structure function is 

F(I(, oc) = [1«(1 + 1(2)]-1(I«k2 + 1 - 2 tanh21X) cos 21(<<X 

- (21(2 + sech2 IX) sin 21(oc tanh IX}. (52) 

The density of states in the conduction band, since 
E = f1(2, is 

d(s/N) d(s/N) dK 1 d(s/N) dP(K, oc) 
G(E) = --;m- = ~ dE = ~ dP(K, IX) dK 

= _1_ [1 _ p2(K, oc)r* dF(K, OC), I( > 0, (53) 
27TK dK 

where now 

dP(K, oc) = 2(21(2 tanh oc _ oc(1 + K2)(2K2 + sechll oc)] 
dK 

X tanh oc cOS 2KOC + sin 2ocl( 
K{ 1 + K2)2 1(2(1 + 1(2)2 

X ([2K2(K2 - 1) + (3K2 + 1) sech21X] tanh oc 
- 2a.K2(1 + 1(2)(K2 + 1 - 2 tanhll «X)}. 

(54) 
This function is plotted in Fig. 8. 

We can now use Eqs. (49) and (53) to obtain the 
density of states at all energies. This is plotted in Fig. 
10 for several values of IX. 
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FIG. 7. Location of band edges as a 
function of potential-well depth. 

7 

6 

5 

4 

Curves of E as a function of (J = (21TS/ N) are plotted 
in Fig. 9. Such curves are usually known as E vs k 
curves. However, since we have used k for another 
purpose, we call them E vs (J curves. 

Now let us refer back to Fig. 6. The points e where 
the graphs of F(e, IX) intersect the lines F = ± 1 repre
sent the location of the band edges. In Fig. 7, curve 
B represents the intersection with F = 1 and represents 
the bottom of the band, while C is the intersection 
with -1 and represents the top of the band. When 
"II < 2.4, there is no intersection with F = -1, and 
there is no gap between C and the energy E = O. 

VII. TWO-DIMENSIONAL SQUARE LATTICE 

We characterize a lattice point on a 2-dimensional 
square lattice by j == (h, ja), so that (40) becomes 

4F(e, lX)cp(h,h) = CPUI + I,},] + CP[jl - I,js] 

+ cp[jl,h + 1] + cp[h,h - 1], (55a) 

while periodic boundary conditions yield 

A 

A possible solution of these equations is 

cp(jl>hl = A exp [21Ti(jISI + hss)/N] , (56) 

where A is a normalization constant. Then e is a 
solution of 

2F(e, IX) = cos (21TS1/N) + cos (21TS2/N), 

SI' S2 = 0, 1, 2, ... , N - 1. (57) 

The first step in the determination of the density of 
states is to find the distribution function of the sum 
of the two cosines on the right as SI and S2 range from 
o to N - 1, Since it is just as easy to formulate the 
problem with n cosines as with 2, we do so. 

Let 

x,. = cos (21TSl/N) + cos (21TSslN) 

+ ... + cos (21TS,./N) (58) 

and 
P,.(x) dx = Prob (x < x" < x + dx), 

Then the distribution function of e is 

dF 
F(e) = P .. (nF(e, IX» - , 

de 

(59) 

(60) 
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FIG. 8. Derivative of form factor as a function of lk. 

so that that of E (the density of states) is, in the band 
of bound states, df./dE = l/f., 

dF 
Gn(E) = -(IMP n(nF(f., a» df. ' (61a) 

where Eqs. (59) and (60) are to be employed and f.2 
is to be replaced by - 2E after all formulas are inserted 
in G(E). In the conduction band, 

dF 
GnCE) = (l/k)P n(nF(k, a» dk . (6lb) 

It remains to determine P2(x), which we do by first 
finding the formula for Pn{x). Let 

In(a) = (exp iaXn)&v (62) 

be the characteristic function of Xn; i.e., the function 
whose Fourier transform is Pn(x): 

P n(x) = .l fro fn(a)e-ilZa: drl.. (63) 
217 J-oo 
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FIG. 9. Variation of dimensionless energy mE/hlys = k l /2,,!, with 4> 

for I-dimensional chain. The curves correspond to IX = ty/ = 2. 

Then, 

fn{oc) = -;; I ... I exp ioc cos 7TS1 1 N-l N-1 [ (2 ) 
N 81=0 8,.=0 N 

(
27TSn) ] + ···+COS Ii" 

{
I N-1 [ (27TS) ]}n = N 8~ exp ioc cos Ii . (64) 

But 

lim 1. 11 exp [iOC cos (27TS) ] 
N-+oo N 8=0 N 

expansions are given in the next section. The functions 
P1{x) , P.,Jx), and Pa{x) are plotted in Fig. 11. It is 
easily seen that, by combining (61) and (66), one 
obtains the I-dimensional result (49). 

The 2-dimensional density of states is obtained by 
combining (61) and (67b). Then, in the band of bound 
states, E2 = -2E and 

G2{E) = - (2:7T2)K{1 - [F{E, ocW}i dF~: oc) , 

if IF{E, oc)1 < 1. (68a) 

In the conduction band (with E ~ 0), 

G
2
{E) = (~)K{1 - [F(I(, ocW}! dF(I(, ex) , 

21(71' dK 

if I( > O. (68b) 

The F-functions are given by (43) , (50), (52), and 
(54). The 2-dimensional density of states is plotted in 
Fig. 12. 

The curves of constant energy in (01 , ( 2) space with 

(01, ( 2) = (27TS1/N,27TS2/N) (69) 

are obtained from examining the curves 

Hcos 01 + cos O2] = const = C. (70) 

The values of the constant range from -1 to + 1. 
C = -1 corresponds to the origin in Fig. 13 and + 1 
corresponds to the corners {±7T, ±7Tl, (±71', =f7l'). 
The identification of the various values of C with the 
dimensionless energy mEfh2y2 = tk2/y2 is to be made 
with graphs such as those in Fig. 6. For example, when 
oc = lly = 2, C"";' 1 corresponds to ik/y = 0.56 so 
that tk2/y2 = -0.16. 

VIII. SIMPLE CUBIC LATTICE 
where Jo{oc) is the zero-order Bessel function. Hence,13 

The lattice points of a 3-dimensional simple cubic 
(66) lattice are expressed as j == (jl,h,ja), and (40) be-1 Joo . P n{x) = - e-'IX<t[Jo{oc)]n doc. 

271' -00 

The value of this integral is, for n = 1, 2, 

P1{X) = (1 - x2)-i/7T , if Ixi < 1, 

=0, if Ixl > 1, (67a) 

=0, if Ixl > 2, (67b) 

where K(z) is the complete elliptic integral of the 
second kind. The explicit formula for P3(x) involves 
generalized hypergeometric functions which are not 
very helpful for calculations. However, various useful 

18 E. W. MontroIl. Proc. Berkeley Symp. Math. Stat. Prob. 3, 
209 (1956). 

comes 

6F(E, oc)cP[A,j2,ja] 

= rp[jl + l,h,ja] + rp[A - I,j2,ja] 

+ rp[A,j2 + I,ja] + rp[j1,h - I,ja] 

+ rp[jl>jais + 1] + rp[jl>h,ja - 1], (71) 

which can be solved with periodic boundary con
ditions so that 

rp[A,h,ja] = A exp 271'i(Asl + hSa + jasa)/N. (72) 

Then E is a solution of 

3F(e, oc) = [cos (271'Sl/N) + cos (271'sa/N) 

+ cos (271'sa/N)]. (73) 



                                                                                                                                    

644 

-0.2 

FlO. 11. Distribution of the variable 
Xn = cos 61 + cos 6. + ... + cos 6", 
with all 6 uniformly distributed in 
range (-1T, 1T). 
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FIG. 12. Two-dimensional density of 
states. 
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Flo.l3. Curves ofconstanti(cos 01 + 
cos 0.) = C. The numbers given along 
the diagonal represent the values of C 
associated with the curve nearest that 
number. 

The identification of a given value of 
C can be obtained from curves such as 
those in Fig. 6. The dimensionless en
ergy is mE/hay. = ik'/y'. If, for ex
ample, we choose ex == i"Il to be I, then 
we use that curve in Fig. 6. The value of 
/; = Ik/y = 0.46 is associated with 
C = F(/;, ex) = O. Hence, the curve 
above with C = 0 corresponds to the 
energy mE/hl"ll = -0.106. 

The distribution Ps(x) does not have a simple 
analytical expression such as (67).- However, its graph 
is given in Fig. 11. Certain series expansions allow one 
to calculate Pa(x) with an accuracy of about one part 
per thousand. First, 

Ps(O) = .l. lCX> [lo(ot)]S dot = iw(!-)r(f)r1 

21T -CX> 

= 0.2853. (74) 

The function Pa(x) has an infinite slope at the points 
x = ±1 as well as x = ±3. Pa(x) vanishes if Ixl > 3. 

In the neighborhood of x = 1 [and similar results 
exist for x = -1 since Ps(x) is an even function], 

Ps(x) = Pa(1) - - (e-i« - e-ilZ~[lo(ot)]S dot. (75) 1 lCX> 
21T -CX> 

Since the quantity in the parenthesis has the form 

i(x - l)ot + lot2(x2 - 1) + ... 
when ot is small, we see that the small-IX range does not 
contribute significantly to the integral. However, 
when ot is large, the two exponentials do not tend to 
cancel each other, so that the range of large IX can be 
expected to contribute more to the integral. On this 
basis, we follow Baroody14 and introduce the expatl,
sion 

Jo(ot) = (2/1Tot)i[cos (ot - l-rr) 
+ (81X)-1 sin (ot - l-rr) + ... ] (76) 

It E. M. Baroody, J. Math. Phys.19, 475 (1969). 

into (75). Then a number of useful expansions for 
PS<x) result. As x-I from above, 

PSCx) = Ps(1) - 3
2 

[l(x - 1)]1 
1T 

(77a) 

while, as x - -1 from below, 

Pa(x) = Pa( -I) - 3
2 

[-1(1 + x)]t 
1T 

+ _I [-l(1 + x)]t + . . . . (77b) 
21T2 

In the interval -1 < x < 1, 

Pa{x) = Ps( -1) - ~ {3 + 2~ 
21T 

i 
+ ~ ([1(1 + Ix)]l(7 + x) 

41T 

+ [l(1 _lx)]l(7 - x)} + . .. (77c) 
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and, as x -+ -3, 

x {4[1 -ld1 (1 +~) - !d2 (1 + ~r 
- lda( 1 + ~r .. J - 3[-1(1 + X)]t}. 

(77d) 

The coefficients d1, d2 , • • • are exhibited in Table I. 

TABLE I. Coefficient d j of expansionu of p.(x) as given 
in Eq. (77d). 

j dj j dj 

1 ~ 7 0.90 .. 
2 .t. 8 2.20 .. 0 

3 .!.u 
1110 9 5.5 

4 .-Yo 10 13.7 
5 0.1861 11 34.3 
6 0.382 12 87.0 

The quantity P3(1) == P3(-I) which appears above 
can be obtained from (77c) by setting x = 0 and using 
(74). As a check of consistency it can also be found 
from (77d). The two values check very well and, 
indeed, 

Pa(1) = PaC-I) = 0.289. (78) 

To obtain an expression for Pa(x) as x -+ +3, we 
replace x by -x in (77d). 

By referring back to (61), we can obtain the density 
of states of a simple cubic lattice. This is plotted in 
Fig. 14. The variables analogous to (58) for face
centered and body-centered cubic lattices are, respec
tively, 

The distribution functions of these variables has been 
discussed by JelittO.15 Their use in the construction of 
the density of states will be presented elsewhere. 

IX. DIATOMIC LATTICES 

The above discussion can easily be generalized to 
diatomic lattices. Let us suppose that there is a set of 
lattice sites which we identify as sites of kind "1" and 
that the remaining ones are of kind "2." Furthermore, 
let the value of the parameter y associated with a site 
of kind 'JI be y •. 

The first step in the analysis is to relate the wave
function at node point j to that of a nearest-neighbor 
node point j'. As was done in Sec. V, we must choose 
the various integration constants so that the wave
function and its derivative along the line connecting 
j and j' are continuous at the point il. We define the 

15 R. J. Jelitto, J. Phys. Chern. Solids 30, 609 (1969). 
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wavefunction atjto be CP.[j], if j is a site of type v, and 
cpix) to be the wavefunction at a distance x from node 
j on the way to node j'. 

One finds the generalization of (36) to be 

epI(!l) = epl[j] sec bii' cos [01(1l) + !kl + bji']' 

(79a) 

CP2( -tl) = CP2[j'] sec on cos [02(11) + !kl - bn ]· 
(79b) 

Since the network wavefunction is continuous at the 
midpoint between nodes j and j', we find the general
ization of (37) to be 

where 

Fl = nj cos O2 (Cl(C2 + U2) _ S2(SI + VI») 
1 + C2U2 + S2U2 cos O2 cos 01 

(S4) 

and F2 has the same form with subscripts 1 and 2 
interchanged. 

Now define16 

FtCPl[j] == tp[j], if j is a type-1 site, (85a) 

FtCP2[j] == tp[j], if j is a type-2 site. (85b) 

Then, for all node points j, 

(FIF2)ftp[j] = L tp[j .. ]. (S6) 
CPl[j](CI - SI tan bif) - CP2[j'](C2 + S2 tan bj'j) = 0, a 

(SOa) This has the same mathematical form as (40) if we 

where 

c. = cos [!kl + O.(tl)], s. = sin [lkl + 0.(11)], 

(SOb) 

tan O.(x) = (yv/k) tanh xY.. (SOc) 

Furthermore, since 

cp~(x) = _kCP2(0)[Sin [0 + kx + 0ix)] 
cos Oix) 

+ (~)2sech2 XYa sin (b + kX)} (S1) 

we find the following generalization of (3S) after 
equating ep~ (II) to cp~( - tl): 

(sec (1)CPl[j][(CI + ul) tan bji' + SI + vd 

where 

- (sec (2)CP2[j'][(C2 + u2) tan Of} - S2V2] = 0, 

(S2a) 

u .. = (y .. /k)2 cos Oa sech2 fly cos lkl, 

Va = (Ya/k)2 cos Oa sech2 tly sin tkl, 

0. == Oltl). 

(S2b) 

(82c) 

The quantity tan bj'j can then be eliminated from 
(SOa) and (S2a) to yield the generalization of (3S'): 

epl[j][C1(C2 + u2) _ S2(SI + VI) - ( ... ) tan Oii'] 
cos O2 cos 01 

= 1 + C2U 2 + S2V
2 ep2[j']. 

cos (}2 

The quantity ( ... ) is irrelevant because Eq. (4) implies 
that, after summing j' over all nearest neighbors to j, 

Flepl[j] = .2 ep2[ja], if j is a type-l site, (S3a) 
a 

F2ep2U] = .2 eplUa], if j is a type-2 site, (S3b) 
" 

identify (F1F2) with F. 

X. SOME EXTENSIONS OF THE MODEL 

There are various ways in which our model can be 
made more realistic. While these will be discussed in 
detail elsewhere, we wish to identify a few of them 
here. 

First, we introduce the influence of more distant 
neighbors. Let us suppose that the node points to 
which a given node point are connected can be divided 
into a number of classes: those a distance II away, 
those 12 away, etc. If node j is a distance l/l from j', 
then the generalization of (3S') is 

where 
(tan Ow + G/l)ep[j] = H/lcp[j'], 

G /l = (c; - s; + c/lu/l - s/lv/l)/2si c/l + u/l)' 

H/l = (1 + c/lu/l + s/lv/l)/2s/l(c/l + u/l)' 

c/l = cos (lkl/l + 01')' with 01' = O(tl/l)' etc. 

(S7) 

(S8a) 

(SSb) 

(SSc) 

Then, from (35) after summing over all neighbors j' 
ofj, 

cP[j] L n/lG/l = .2 HI' L ep[j~), (S9) 
I' I' a/l 

where j/l represents all neighbors to j of class ft. The 
summation extends over all members CI./l of class 
and over all classes of neighbors. Also, n/l is the 
number of neighbors of j which are of class ft. 

Let us apply (S9) to a square lattice (see Fig. 14). 
Then 

I(G1 + G2)ep[jl,j2] 

= H!(cP[jl,j2 - 1] + cP[h,h + 1] + cP[j1 - l,j2] 

+ cP[j! + 1,hD + H2(cP[j1 + l,h + 1] 

+ cP[j1 + l,j2 - 1] + cP[jl - l,j2 + 1] 

+ cP[h - l,j2 - 1]). (90) 

18 A. A. Maradudin, P. Mazur, E. W. Montroll, and G. H. Weiss, 
Rev. Mod. Phys. 30,175 (1958). 
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(0) 

(b) 

FIG. 15. Examples of 
decorated lattices. 

Following (72), the energy levels are to be found from 

2(G1 + Ga) = H1(cos CP1 + cos CPa) 

+ 2Ha cos CP1 cos CP2' (91) 

The corresponding expression for a simple cubic 
lattice is 

3(G1 + 2Ba) = H1(cos CP1 + cos CP2 + cos CP3) 

+ 2H2(COS CP1 cos CPa + cos CP2 cos CP3 

+ cos CP3 cos CP1)' (92) 

If we set 11 == I, then 12 = 2tl. 
The main difference between Eq. (40) and Eqs. (91) 

and (92) is that in (40) the geometrical character of the 
lattice is reflected on the right-hand side of the equation 
and the force law on the left. This separation is no 
longer possible when second neighbors are included. 
As will be discussed elsewhere, the determination of 
the density of states is more difficult in this case. 

Now, suppose we wish to return to the nearest
neighbor model, but also wish to give more variety to 

FIG. 16. Lattice on which two end states are possible and on which 
spin flipping can occur between lattice points. 

the electron density distribution in the neighborhood 
of each node point. This can be accomplished by 
decorating the lattice with bonds which start and end 
at the same node point, as exhibited in Fig. 15(a) or 
by changing the local connectivity as shown in Fig. 
15(b). 

Finally, if one wishes to give each electron a spin, 
it can be done through the introduction of two node 
points at each atomic site, the spin-up node point and 
the spin-down node point with spin-up and spin-down 
tracks connected to the appropriate node point, as in 
Fig. 16. A "junction box" can be placed between each 
neighboring pair of atoms such that switching from a 
spin-up to a spin-down track can be achieved in the 
junction box. Since the junction box relates two inputs 
to two outputs, it can be described by a 2 x 2 matrix. 
The wave functions at each node point has two com
ponents, the spin-up and spin-down components. 
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A comparison of a variety of standard variational methods with a new method due to Harris is made 
with a view towards selection of the optimal method to be used in realistic many-body scattering calcu
lations. Numerical results for two short-range potentials, the attractive exponential and the attractive 
Yukawa potential, are given and compared with exact results obtained analytically or by direct numerical 
integration. It is demonstrated by calculation that the source of an anomaly observed in earlier studies 
by Schwartz is not due to the attributed reason and, furthermore, we find the Kohn method significantly 
more accurate at the Harris eigenvalues than any of the other methods. Therefore, we propose the use 
of the Kohn method at the eigenvalues of the matrix Hamiltonian in the trial function subspace as the 
optimal method to be used in variational scattering calculations. 

I. INTRODUCTION 

Although scattering theory has been one of the 
most active areas in physics for many years and, 
consequently, is a well-mined field of research , 1 high 
precision computations of scattering parameters 
(phase shifts) are rare in atomic and molecular 
physics when compared with bound-state computa
tions. The reason is twofold: the many-body nature 
of a problem like electron-atom scattering presents 
formidable obstacles in the positive energy region (we 
note that apart from e±-H and e-He+ scattering, 
few other problems have been tackled quantitatively, 
i.e., beyond tentative applications of various theoret
ical schemes) and, secondly, the scattering data have 
only recently started to reach accuracies warranting 
a more detailed push for numerical precision on the 
theoretical and computational front. 

In view of the existence of large scale computers 
and groups expert in their use, it is to be expected 
and, in fact, is already partly a fact, that massive 
computations in the scattering region (elastic as 
well as inelastic) are going to supplement the great 
amount of computational work done in bound-state 
applications, which will be of great use and value in 
that task. In view of this trend and in analogy to the 
bound-state problem, it is interesting to consider and 
compare the status of existing variational procedures, 
so as to get an idea about optimal methods as well as 
accuracy, speed of convergence, and size of basis sets 
necessary for high precision results, which we 
arbitrarily take to mean agreement to one part in 106 

with exact results in the variational determination of 
the phaseshift. 

In the following article we study potential scattering, 
i.e., the one-body problem, and, in particular, choose 

1 Any textbook on scattering theory, e.g., N. F. Molt and H. S. 
Massey, The Theory of Atomic ColliSiOns, International Series of 
Monographs in Physics (Oxford University Press, London, 1965), 
3rd ed. 

two well-behaved short-range potentials, the attrac
tive exponential V(r) = _e-r and the attractive 
Yukawa potential V(r) = -e-rjr, to calculate s-wave 
scattering from them. Because of the dearth of exactly 
soluble potentials, much effort has gone towards 
finding approximate solutions for the phase shifts.2-7 
Our interest lies in the usefulness of variational 
methods and the development of optimal methods 
for the determination of the phase shifts by varia
tional means. In particular, a difficulty with the 
standard Hulthen-Kohn formulation,2.3 noted by 
C. Schwartz,8 is discussed, and it is shown how a recent 
approach proposed by Harris9 points a way toward 
a new look at the problem, closely related to the 
bound-state problem1o and resonance scattering,u·12 
For potential theory, of course, we can always calcu
late the phase shifts directly by numerical integration,7 

which is a straightforward task with available high
speed computers. The motivation of this study is, 
however, the exploration of an optimal numerical 
approach to be used on the much more formidable 
problem of doing good calculations on genuine many
body systems, such as the scattering of electrons from 
atoms and molecules, as well as nucleon-nucleus 
scattering. 

The choice of the two potentials considered here 
is to be attributed to their importance in atomic and 

2 L. Hulthen, Kgli. Fysiograf. Sallskap. Lund, Forh. 14, I (1944). 
3 W. Kohn, Phys. Rev. 74, 1763 (1948). 
4 J. Schwinger (unpublished lectures, 1947). 
6 T. Kato, Progr. Theoret. Phys. (Kyoto) 6, 295 (1951). 
6 L. Spruch, in Lectures in Theoretical Physics, W. E. Brittin 

et al., Eds. (Interscience Publishers Inc., New York, 1961), Vol. IV; 
Y. Hahn, T. O. Malley, L. Spruch, Phys. Rev. 118, 184 (1960); 130, 
381 (1963); 134, B911 (1964). 

7 F. Calogero, Variable Phase Approach to Potential Scattering 
(Academic Press Inc., New York, 1967). 

8 C. Schwartz, Ann. Phys. (N.Y.) 16, 36 (1961). 
9 F. Harris, Phys. Rev. Letters 19, 173 (1967). 
10 J. S. Slater, Quantum Theory of Atomic Structures (McGraw

Hill Book Co., Inc., New York, 1960). 
11 E. P. Wigner, Phys. Rev. 70, 15,606 (1946). 
11 H. Feshbach, Ann. Phys. (N.Y.) 19, 287 (1962). 
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nuclear physics as well as their analytic simplicity. 
Furthermore, one of them, the exponential potential, 
possesses an analytic solution for the s-wave scattering 
amplitude; i.e., the Fredholm determinant for the 
s-wave radial function can be given in closed form.13.14 

This fact has also been used in a study of. various 
approximate methods in perturbation theory.15 The 
plan of this paper is first to construct exact solutions 
for the s-wave scattering from the closed expression 
(for the exponential potential) or by direct numerical 
integration, utilizing the integral equation for the 
radial s-wave function, and then to calculate succes
sively the same parameters by using standard varia
tional techniques (Hulthen-Kohn approach) as a 
function of the size of the set of trial functions. 

Finally, we compare these with the results obtained 
by directly looking at the eigenvalues and eigenvectors 
of the finite n x n matrix problem (Hij - EFij)IXj = ° 
(where Hij = (XiHXj) is the matrix element of the 
Hamiltonian Hand Fij = (XiXj) the overlap integral 
in the space of expansion functions Xi and IX; are the 
n variational determined expansion coefficients of the 
internal part of the wavefunction for scattering 
energy E). The phase shift for the n eigenvalues of this 
problem is then found according to a suggestion by 
Harris,9 which requires (rfo(m), (H - Em)(S + AC» = ° 
where rfo(m) = D~m)Xi is the appropriate eigenvector 
corresponding to eigenvalue Em of the matrix problem 
and Sand C are the two linearly independent sinelike 
and cosinelike continuum solutions at energy E = Em' 
while A is the Harris value of the tangent of the 
phase shift. 

II. CALCULATION OF s-WAVE PHASE SHIFT 
BY DIRECT ANALYTICAL AND NUMERICAL 

METHODS 

For the exponential potential V = _e-r
, Bethe and 

BacherI3 have long ago given an analytic solution for 
the s-wave phase shift: 

k cot 150 

00 ( _ 2r n ( _1)m+! m 
I+L--L 2 2 

n=1 n! m=I(n - m)! (m - I)! m + 4k 
00 (_2)n n (_1)m+I 1 

2n~l--;! m~1 (n - m)! (m - 1)! m 2 + 4k2 

= k Re D(k) . (1) 
1m D(k) 

For our choice of range and strength parameters, k = 

TABLE J. Scattering length Go and scattering 
amplitude for V = _e-r• 

tan oo(k) 
Go = - lim --k- = 8.693254 

k-O 

k = (2E)t I Tol = (sin oo)/k 

0.1 
0.3 
0.5 
0.7 
0.9 
1.0 
2.0 
4.0 

6.998826 
3.333307 
1.870210 
1.193395 
0.8266603 
0.7033727 
0.2196898 
0.06014139 

tion14 D(k) is given in terms of standard functions 

D(k) = J2ii2)/f(1 - 2ik). (2) 

Taking the limit k - 0, we find from (1) directly, 
for the scattering length ao, 

00 (_2)n 
1+L--

1 n=l(n!Y 
lim k cot boCk) = - - = - (3) 
k-+O a o 2 i (-2r i 1. 

n=1 (n !)2 m=1 m 

The sums in (1) and (3) converge rapidly, and a 
few terms suffice to evaluate them. The results for 
the scattering amplitude I Tol = sin bolk for the 
exponential potential are shown in Table 1. Atomic 
units are used throughout. 

For the Yukawa potential we compensate for our 
lack of an analytical solution by using the integral
equationI6 version of the Schrodinger equation for the 
radial s-wave function uo(r), 

() sin kr 2lT

.• k k' . k' k ) uor =--+- (sm rcos r-sm rcos r 
k k 0 

x V(r')uo(r') dr, (4) 

and read off the asymptotic form (r - 00). The 
tangent of the phase shift boCk) is given directly as 
the ratio of the coefficients of the cosine and sine 
terms of (4) as r - 00: 

21 00 

sin kr'V(r')uo(r') dr' 
tan boCk) = - 0 • (5) 

1 + 2 LXlCOS kr'VCr')uoCr') dr' 

(2E)t, where Eis the scattering energy. The Jost func- Equation (4) is readily integrated numerically, and 

13 H. A. Bethe and R. Bacher, Rev. Mod. Phys. 8, 111 (1936). 
14 H. Jost, Helv. Phys. Acta 20,756 (1949). 
15 J. D. Bjorken and A. Goldberg, Nuovo Cimento 16, 539 (1960). 

we also find the scattering length ao by taking k - 0 

16 B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950). 
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TABLE II. Scattering length ao and scattering amplitude for 
V = -e-r and V = -e-r/r from numerical integration of 
integral equation, VCr) = _rr, VCr) = -e-r/r, 

k = (2£)1 

0.1 
0.3 
0.5 
0.7 
0.9 
1.0 
2.0 
4.0 

in (5): 

. tan (Jo(k) 
ao = - 11m --k- = 8.693260, 

k-O 

. tan (Jo(k) 
ao = - IIm--

k
- = 7.911394. 

k-O 

I Tol = (sin 0o)/k I Tol = (sin 0o)/k 

6.998845 6.457029 
3.333317 3.277175 
1.870210 1.986129 
1.193395 1.364755 
0.8266603 1.011:m 
0.7033732 0.8877534 
0.2196900 0.3545005 
0.06014158 0.1284343 

. tan boCk) 21
00 

VCr')uoCr')r' dr' 
ao = 11m - k = i . (6) 

k-+O 00 

1 + 2 0 V(r')uo(r') dr' 

We repeat the calculation for the exponential 
potential as well to determine the accuracy of our 
numerical integration. The computing time for 
evaluating (4), (5), and (6) is negligible, and we 
exhibit in Table II the scattering amplitude for both 
potentials for the energy range 0 ~ Ek ~ 227 eV [Ek = 
tk2 and ° S; k S; 4(a1?)]. We note the familiar general 
result that, despite the (-l/r)-type singularity for the 
Yukawa potential at the origin not shared by the 
exponential potential, the scattering is rather similar 
as we picked the same two parameters (g = I, ro = 1) 
for potential strength and range, respectively. That is, 

VCr) = gf(r); ro = loo V(r')r' dr'. 

III. STANDARD VARIATIONAL APPROACHES 
(HULTHEN-KOHN) 

Armed now with reliable data, we are prepared to 
enter the domain of variational approaches. We will 
first repeat the standard treatment of the variational 
type to define our notation and then proceed to use 
the familiar results in order to study their rate of 
convergence, efficiency, and accuracy. We will also 
come to grips with the source of previous difficulties8 

and show how these can be exploited to lead to a new 
insight and approach to the calculation of scattering 
parameters. The study of the functional I(E) = 
S u(H - E)u dr under variations of u is equivalent 
to the solution of the partial differential equation 
(H - E)u = 0, if u is expanded in a complete set of 

eigenstates of H. The idea of the variational approach 
is to work with a finite basis set and try to get a good 
approximation to the wavefunction or the energy by 
taking a sufficiently large number of terms in a linear 
expansion of u in terms of suitable functions. J n bound
state calculations the Hylleras-Undheim principle 
provides the basis for a monotonic approach to the 
correct (negative) energy which is a lower bound, so 
that an increase in the number of trial functions 
necessarily leads to an improvement in the calculated 
energy. 

For positive energies the energy spectrum of H 
becomes continuous, and, although Spruch, Rosen
berg, and coworkers6 have in a large number of papers 
established minimum principles for single as well 
as multichannel scattering, the use of these requires 
considerable numerical work on the static approxi
mation wavefunction as well as information concern
ing the number of discrete eigenvalues of the modified 
Hamiltonian below the scattering energy. 

From the point of view of a purely variational 
(Hulthen-Kohn) approach, it has been shownI7 that 
if one uses the standard Hulthen-Kohn variational 
principle and performs enough calculations with 
different size basis sets and a variable nonlinear 
parameter, one sees the emergence of some conver
gence towards a reasonable solution for the scattering 
amplitude. Since this approach is rather prohibitive 
in view of the large computational labor in actual 
situations of interest, we will, after rapidly using the 
Hulthen-Kohn approach for our case, go on and 
point out how to get around its main defect. 

We define a trial wavefunction for the s-wave 
function: 

ut(k, r; .1.0 , A; IX!, ••• , IXn) 

(
sin kr cos kr ) 

= .1.0 -k- + A -k-(l - e-r
) + lXiXi , (7) 

where the Xi' 

Xi = {(21X)i+1-j[(2i) !]!}rie-«r, (8) 

are our normalized basis functions chosen to describe 
the wavefunction inside the potential (IX is a non
linear scale parameter and we use the Einstein 
summation convention). If we assume that our trial 
wavefunction U t is reasonably good, such that 
bu = U t - U is a small quantity (in some sense), we 
can construct the functional 

[t(Ao, A; IX!, ••• , IXn) = f ut(k, r; .1.0 , A; IX!, ••• , IXn) 

X (H - E)utCk, r; .1.0 , A; IXI ,' ", IXn) dr (9) 
---

17 R. Armstead, theSis, University of California Berkeley Calif: 
1965. ' ,., 
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and study it under variations of the n + 2 parameters 
Ao, A, OCI,' •• , oc ... Because of the nonvanishing of 
the continuum solutions as r -+ 00, we find by 
partial integration 

M 
oA = -tk, (10) 

since 

I = f u(r)(H - E)u(r) dr = 0 (9') 

for the exact solution u(r), which asymptotically tends 
to 

(sin kr)/k + tan oo(k)(cos kr)/k. 

Variation with respect to the remaining n coefficients 

~It = 0, i = 1, ... , n, (11) 
UOCi 

and variation with respect to Ao gives 

It = 0 (9") 

for the correct trial function which we want to deter
mine. We now face the problem of overdetermination, 
since we have n + 2 conditions for n + I unknowns 
OCi , i = 1, ... , n, and A as the over-all normalization 
is arbitrary (nonnormalizable solutions, since the 
continuum solutions are nonzero throughout space). 
The Hulthen and Kohn methods differ by dropping 
(10) or (9"), respectively, to determine A. The Kohn 
approach goes beyond solving (11) and (10) simul
taneously by further extrapolation 

(II'), so that the inverse exists]: 

(13) 
with 

(13') 

in terms of the eigenvectors and eigenvalues of G, 
where 

G. D(ml = lJ D(ml 
'k k m;' 

and the remaining symbols are defined as 

G;k = (X;, (H - E)Xk) = Hi} - EPi}' 

Sm = (Xm' (H - E)S), 

Cm = (Xm, (H - E)C), 

om = Em - E. 

(14) 

(15) 

All these quantities are well defined for our choice 
of VCr) and Xm' Using (13), we rewrite 

rfo(r) = (oc~·l + Aoc~c)x;(r) = rfo.(r) + Arfoir), (16) 

and, utilizing (16), we obtain 

(rfo, (H - E)(S + AC + rfo» = O. (17) 

We can, therefore, simplify (9) to 

It = (S, (H - E)(S + rfo.» + A(S, (H - E)(C + rfoc» 

+ A[(C, (H - E)(S + rfo.» 

+ A(C, (H - E)(C + rfoc))] 

= Goo + ..1.001 + ..1.(010 + AOn) = Go(A) + AGIO.) 

(18) 

(12) in self-explanatory notation and, further, 

which is stationary to second order in 0..1. because of 
(10). Equation (11) is kept in both approaches to 
eliminate the oci . Let us write out Eqs. (9)-(11) to 
get a feeling for the difficulties. 

Write tit schematically 

ut = S + AC + rfo, (7') 

and rewrite 

It = «S + AC + rfo), (H - E)(S + AC + rfo». (9"') 

Then (11) can be written as an inhomogeneous 
matrix equation, using the hermiticity of (H - E) 
with respect to the basis functions Xi because of their 
vanishing, as r -+ 00, 

(Xi' (H - E)X;)OC; = -(Xi' (H - E)S) 
- A(Xi, (H - E)C), (II') 

from which we determine the IXi by inverting [if 
E '" Ei' the ith eigenvalue of the left-hand side of 

(19) 

We observe that all this is possible only if 
det IGI '" 0, i.e., if we are not encountering any 
eigenvalues 0; = O. [The scattering energy has to be 
kept away from the eigenvalues of the finite matrix 
equation (Hii - EFi})oc; = 0.] 

The expressions for the Hulthen and Kohn varia
tional estimates for the tangent of the phase shift 
follow directly by solving the following: 

(A) the HuIthen expression [It (}.) = 0]: 

AH = 201} 
X ([-(GIO + GOl) - [(G)O + GOl)2 - 4GooGu )I}; 

(20) 
(B) the Koho expression: 

oIt = -lk 
GA "2 , 

GOI + GOI + 2A(lIGn = -ik, (21) 
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which, using (19), gives 

,1(l) = -(010/0n). (21') 

This also corresponds to taking G1(,1) = O. Extrap
olating to obtain the Kohn expression, we form 

AK = ..1.(1) + ~ [liA(l)] 
k 

= ,10) + ~ G
O
(,1(I) = _ 010 + ~(Ooo _ 010

( 01). 
k On k 011 

If 

the Hulthen and Kohn expressions agree, i.e., 

AH = AK = - 010/0n = - 0~/001 , 

(22) 

(23) 

as we verify by substitution of OooOn = 010001 in the 
square root in (20). We can get to additional varia
tional estimates for A, which we will label as I and II, 
by taking 

Go(A) = 0, Al = -000/001 , (24) 

G1(A) = 0, An = -OlO/On, (25) 

which reduces to (23) for 000011 - 010001 == o. 
These two methods always give worse results than 
the Kohn formula, but approach the Hulthen formula 
for large basis sets. Most of this is covered in textbooks, 
and we give in Table III the results for both potentials 
for the s-wave scattering amplitude. We have used sets 
of basis functions up to ten functions, and point out 
that the results have converged to six decimals for 
n > 6 except at the lower limit. The relatively rapid 
convergence is nO doubt due to the simplicity of the 
situation we are studying and the smooth nature of the 
potentials, a feature not expected to be present in 
electron-atom scattering calculations. 

IV. THE HARRIS METHOD 

We now shift our viewpoint and ask whether there 
is another way to choose the internal wavefunction 
4>(r) defined in (7'), suitably expanded in a variable 
size set of basis functions Xm, so as to get a good 
estimate of the phase shift. In particular, it would be 
preferable to have a way of choosing 4>(r) without 
having to study the scattering amplitude at a particular 
energy under variation of the size of the basis set and 
nonlinear parameters, in order to find a stationary 
value of the scattering amplitude. We go back to Eq. 
(11') and obtain 

(II If) 

The root of the difficulties with the Hulthen and 
Kohn methods was the appearance of eigenvalues 
6; = 0 corresponding to eigenvalues of the Hamil
tonian matrix (in our finite basis set) equal to the 
scattering energy. Suppose we take the opposite 
approach9 and look directly at the eigenvalues and 
eigenvectors of 

(26) 

This is equivalent to transforming our basis set of 
functions Xm to a new orthogonal basis 4>(m)(r), such 
that 

(Hmn - EFmn)ocn = 0, (26') 

where we have written out 

Gmn = (Xm' (H - E)Xn) = Hmn - EFmn (15') 
and 

(27) 

is the mth eigenfunction of H in the finite function 
space of the Xm, corresponding to the eigenvalue Em· 

Writing 
(28) 

and multiplying (11') by R~, where RjI is the orthog
onal matrix with columns D:iI (Hmn and Fmn are sym
metric matrices) which diagonalizes Gi ;, we obtain 

and, using 

R~GiiR1! = (Ek - E)6k1 , (29) 

we find, at E = Ek for A, the tangent of the approxi
mate phase shift 

.1.( ) = _ R{;Si = (4)(k), (H - Ek)S) (30) 
Ek R:;Cj (t/>(k), (H - Ek)C) 

corresponding to the use of the internal wavefunction 

(31) 

We obtain, therefore, n values of the approximate 
phase shift 60( Ek) at scattering energies equal to the 
eigenvalues of (26'). This is the prescription for 
determining the phase shift given by Harris.9 An 
alternate way of interpretation18 is the use of 
Feshbach's projection operator technique 

(Q = W~) W~)I) 

to construct the scattering amplitude at E = E". 
We find a simple pole at E = E" (on the real axis in 
the complex energy plane), and the correct choice of 
the tangent of the phase shift in the matrix element of 
the numerator (32) cancels the singularity and gives, 

18 H. Morawitz, Ann. Phys. (N.Y.) SO, 1 (1968). 
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TABLE 1lI. Hulthen, Kohn, I, and II methods scattering amplitude for V = _e-r and V = -e-r/r with n trial functions, 
with Xn = {(2oc)n+i/[(2N)!]i}r"r ar as a function of n and for oc = 1.0 and oc = 2.5, respectively, V = -e-r, oc = 1.0. 

k = (2E)! 

H 
K 

0.1 I 

II 

H 
K 

0.3 I 

II 

H 
K 

0.5 I 
II 

H 
K 

0.7 I 

II 

H 
K 

0.9 I 

II 

n = 1 

7.07560 
7.09828 
7.63197 
7.30054 

3.33333 
3.33333 
3.32289 
3.33333 

1.89096 
1.85069 
1.81599 
1.72899 

1.17661 
1.18561 
1.13430 
1.14726 

0.821441 
0.822736 
0.703994 
0.801599 

n=3 

7.00162 
6.99914 
7.01928 
7.02005 

3.33331 
3.33331 
3.33223 
3.33331 

1.87020 
1.87021 
1.87716 
1.86844 

1.19354 
1.19302 
1.19959 
1.21308 

0.820293 
0.826561 
0.848774 
0.834332 

n=5 

6.99885 
6.99885 
6.99739 
6.99504 

3.33291 
3.33331 

1.86933 
1.86992 

1.19465 
1.19192 

0.820623 
0.826645 
0.829425 
0.828389 

n=7 

6.99883 

7.00793 
7.03638 

3.33291 
3.33331 

1.87051 
1.86996 

1.19246 
1.19362 

0.820594 
0.826660 
0.826190 
0.826193 

n=9 

7.00867 
7.03919 

3.33291 
3.33331 

1.87039 
1.87023 

1.19329 
1.19336 

0.826691 
0.826723 

n = 10 

7.00859 
7.03921 

3.33293 
3.33331 

1.87006 
1.87024 

1.19361 
1.19332 

0.827511 
0.826749 

exact 

6.998845 

3.333307 

1.870210 

1.193395 

0.8266603 

V = [( -e-r)/r] , oc = 2.5 

H 
K 

0.1 I 
II 

H 
K 

0.3 I 
II 

H 
K 

0.5 I 

II 

H 
K 

0.7 I 

II 

H 
K 

0.9 I 

II 

6.56755 
6.60752 
6.11879 
6.32152 

3.26713 
3.27973 
3.22745 
3.24371 

1.97142 
1.95355 
1.99999 
1.98046 

1.13148 
1.33476 
1.42856 
1.36734 

0.966966 
0.982351 
0.532526 
1.02310 

6.46426 
6.47009 
6.75237 
6.58055 

3.27723 
3.27739 
3.28970 
3.28079 

1.98612 
1.98380 
1.98655 
1.99954 

1.36373 
1.36433 
1.37679 
1.36996 

1.00999 
1.01059 
1.05665 
1.01922 

as approximate (finite) value of To(€,,), 

I To(€a) I 

6.45702 
6.45740 
6.49450 
6.48024 

3.27717 
3.27717 
3.27740 
3.27747 

1.98612 
1.98612 
1.98805 
1.98635 

1.36457 
1.36474 
1.34242 
1.36565 

1.01122 
1.01122 
1.01069 
1.01161 

I
. (sinkr + [tanc5ocoskr](l- e-r),(H - €a)4>(") 

=c 1m 
E-+Ea E - €a 

X (4)(a), (H-€a) si:kr), (32) 

C = {(4)(a), (H - €a) sin kr)2 

+ (4)(a), (H - €a) cos kr(l - e-r»2t!. 
Analytically, this corresponds to replacing the 

usual right-hand branch cut in the scattering amplitude 

6.45693 
6.45697 
6.46193 
6.46134 

3.27681 
3.27736 

1.96519 
1.98617 

1.36476 

1.36495 
1.36459 

1.01123 
1.01123 
1.01277 
1.01189 

6.45696 

6.45769 
6.45784 

3.27700 
3.27720 

1.98611 
1.98613 

1.36499 
1.36484 

1.01118 
1.01125 

6.45725 
6.45736 

3.27704 
3.27719 

1.98614 
1.98613 

1.36496 
1.36479 

1.01133 
1.01115 

6.457029 

3.277175 

1.986129 

1.364754 

1.011231 

by a simple pole at E = €". Variation of the size of 
the basis set and the nonlinear parameter or. allows 
one to reach almost any scattering energy as experience 
with reasonably sized matrices and scale parameters 
shows. The limit of going to a complete set of basis 
functions implies convergence to the exact result. 
The merit of the method lies in its rapid convergence 
to the exact result by optimal choice of the internal 
wavefunction. The frontal assault on the main diffi
culty (working directly at E = €a) thus overcomes the 
previous source of convergence problems due to the 
appearance of an increasing number of poles in (22), 
because Gll = O. By considering the homogeneous 
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form of (11'), we arrive at a single equation determin
ing the phase shift, which is physically equivalent to 
the choice of an internal wavefunction cp(m)(r) at 
scattering energy Em' such that the continuum parts 
of the wavefunction [sin kr, cos kr(1 - e-T

)] exactly 
cancel inside the range of the potential, when inte
grated over cp(m)(r). This condition fixes the asymp
totic relation between the two linearly independent 
solutions of the free-particle equation and thus 
determines the phase shift. The only drawback is 
that once one has chosen a certain size basis set and 
specific nonlinear parameters, the eigenvalues Em' 

at which the scattering amplitude is to be calculated, 
are fixed. In contrast, one chooses an arbitrary energy 
in the standard variational methods and works at 
that energy until numerical convergence emerges. 
Therefore, it is suggested to consider the various 
methods as complementary. 

V. RESULTS AND CONCLUSIONS 

We have used (30) for both potentials and calculated 
the eigenvalues and eigenvectors of GZm for 0.5 :$; 
IX :$; 3.0 and basis -sets Xm from 2 to 20 functions. 
The numerical results agree very well with our earlier 
results. In practice, the various steps are part of a 
simple Fortran computer program which calculates 
the matrix elements in the particular basis set chosen, 
diagonalizes the matrix, and computes the scattering 
amplitude. In Table IV we exhibit some typical 
eigenvalues and scattering amplitudes To( Ea) for 
various values of n and IX. Even for very small basis 
sets (n = 2) the numerical accuracy is high. To 
compare the variational Hulthen, Kohn and I, II 
methods with the Harris method directly, we choose, 
for different values of IX and different size basis sets n, 
eigenvalues of the latter method and compare the result 
of the variational program with these input data with 
the value of I Tol = (sin bo)/k obtained from the Harris 
method. The results are exhibited in Table V, and we 
note that numerical agreement is excellent, particularly 
for larger n, where it again reaches the numerical 
limit of accuracy of our calculation, i.e., one part in 
106• Additionally, we note that IX = 2.5 gives some
what better results for all methods than IX = 1.0 for 
the potential parameters chosen. In general, the 
values of To calculated from the Hulthen, I, and II 
methods are very close to those obtained from the 
Harris method, while the Kohn formula is noticeably 
closer to the exact number for ITol. We consider this 
a significant result of our calculations, supporting 
the preference of the Kohn method over the other 
studied variational formulas. We suggest, therefore, 
that the optimal procedure for finding phase shifts and 

TABLE IV. Some values of the scattering amplitude obtained 
from the Harris method for V = -e-r and V = -e-r/r for 
different size basis sets n and different values of 0( in the n
dimensional trial function space of 

0.590159 
5.06620 
0.310458 
2.00004 
0.317372 
3.00940 
0.592386 
1.99404 
0.403675 
0.184817 
0.140357 
0.114078 
0.487047 
0.406544 

0.114551 
1.11738 
0.284122 
0.519956 
0.504376 
1.01550 
0.615976 
0.998357 
0.727807 
0.592412 
0.0905956 
0.309523 
0.585738 
4.20888 

X(n) = {(20()n+l/[(2N)!]i}r"e-Otr. 

V = _e-r 

0.5 
3.0 
0.6 
3.0 
0.9 
2.5 
0.8 
2.5 
0.7 
0.9 
3.0 
0.5 
1.5 
3.0 

n 

2 
2 
4 
4 
6 
6 
8 
8 

10 
10 
10 
20 
20 
20 

V = -e-rfr 

0.8 2 
3.0 2 
0.6 4 
3.0 4 
0.5 6 
1.5 6 
0.6 8 
2.0 8 
0.5 10 
1.5 10 
3.0 10 
1.0 20 
1.5 20 
2.0 20 

1.46680 
0.03692 
3.21778 
0.217182 
3.14871 
0.10303 
1.50127 
0.220917 
2.42147 
5.05029 
6.00879 
6.64135 
1.93271 
2.40170 

6.40158 
0.79707 
3.41342 
1.90546 
1.97307 
0.871354 
1.57858 
0.889832 
1.30557 
1.65045 
6.66360 
3.14956 
1.69651 
0.157604 

scattering amplitudes is to select scatter.ing energies 
determined by diagonalizing the matrix Hamiltonian 
in the subspace of expansion functions Xi (as in the 
Harris method). The use of the Kohn formula then 
leads to the best variational estimate of the phase shift. 

We note that the direct use of the Kohn method at 
arbitrary scattering energies is faster, if one is inter
ested in only a few scattering energies, since one can 
solve Eq. (18) directly without constructing Gil or 
finding its eigenvectors and eigenvalues. Variation of 
the nonlinear scale parameter 0(, as done in Refs. 8 
and 7, forces one to repeatedly solve these equations 
the nonlinear scale parameter IX, as done in references 
8 and 7, forces one to repeatedly solve these equations 
at the same energy to avoid possible singularities. 
These are due to the vanishing of Gll [Eq. (22)] in the 
Kohn formula as noted by Nesbet.19 If one has to 
solve Eq. (13) many times over, it becomes simpler 

,. R. Nesbet, Phys. Rev. 175, 134 (l968). 
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TABLE V. Comparison of the scattering amplitude for V = -e-' and V = -e-'jr obtained from the Harris method with the 
Hulthen, Kohn, I, and II variational methods at a Harris eigenvalue for different size basis sets and different values of IX.. 

IX. = 2.5, V = -e-' 

n k r'rrr r~ r: rl rJI r:xact 

2 1.12907 0.5603282 0.5602522 0.5798384 0.560382 0.5603870 0.5808257 
4 0.492075 1.89945 1.899398 1.907729 1.899453 1.899453 1.908088 
6 0.264369 3.76536 3.765392 3.764224 3.765362 3.765362 3.764254 
8 0.766193 1.04872 1.048632 1.048950 1.048725 1.048725 1.048950 

10 0.620347 1.41033 1.410399 1.410395 1.410331 1.410330 1.410395 

IX. = 2.5, V = -e-'jr 
2 0.864666 1.07859 1.078646 1.060304 1.078585 1.078585 1.061822 
4 0.389493 2.56653 2.566524 2.566571 2.566525 2.566525 2.566571 
6 0.205068 4.44529 4.445375 4.443515 4.445292 4.445292 4.443532 
8 0.716891 1.32771 1.327591 1.327388 1.327711 1.327711 1.327386 

10 0.582987 1.68025 1.680205 1.680200 1.680250 1.680250 1.680198 

IX. = 1.0, V = -e-'jr 

2 0.192450 4.69922 4.699406 4.647494 4.699217 4.699217 4.643500 
4 0.525406 1.88405 1.884033 1.883143 1.884051 1.884051 1.883171 
6 0.341028 2.91579 2.915783 2.916023 2.915788 2.915788 2.916027 
8 0.472234 2.10982 2.109837 2.109847 2.109847 2.109820 2.109846 

10 0.2021 4.48943 4.489427 4.489262 4.489449 4.489449 4.489282 

IX. = 1.0, V = -e-' 

2 0.214283 4.49304 4.493255 4.514291 4.493052 4.493052 4.514167 
4 0.565136 1.59780 1.597772 1.597459 1.597804 1.597804 1.597465 
6 0.360080 2.75384 2.753819 2.753638 2.753837 2.753837 2.753639 
8 0.490367 1.91625 1.916270 1.916401 1.916248 1.916248 1.916401 

10 0.2100 4.58747 4.587366 4.587385 4.587466 4.587465 4.587387 

to find the eigenvalues and eigenvectors of Gij once of course, corresponds to the internal wavefunction 
and for all, and to obtain the relevant quantities by approaching an exact solution of the Schrodinger 
multiplication [see Eq. (13')]. We feel, therefore, that equation over the range of the potential. 
our prescription leads to the best variational result in 
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. By Fourier-transformin& the author's recently proposed state functional formalism for the BBGKY 
hierarchy, a new perspective of nonequilibriu~ statistical mech~nics is given: the basic equation is 
form~lIy ver'y cl.ose to ~h~ .Fokker-PI~nck equatton and may readily be modified to a universal master 
equatton (with Irreverslblhty) by a ~hght ch~nge. Hence, the problem reduces to one of a generalized 
random-walk such that the stochast~c q~antlty to be considered is the particle-number density in the 
I-body phase space. A general solutIOn IS formulated for the weak interaction case. 

1. INTRODUCTION 

Recently the functional formalism of classical 
nonequilibrium statistical mechanics was proposed by 
the author! to search for general closed-form solutions 
for distribution functions governed by the Bogoliubov
Born-Green-Kirkwood-Yvon (BBGK Y) hierarchy 
for the infinitely-many-particle system with a finite 
average density. There the state functional, which 
embraces all distribution functions in itself as the 
coefficients of the functional Taylor expansion (except 
for the numerical factors), was introduced. It is gov
erned by a single second-order functional-differential 
equation. This formalism originates with Bogoliubov,2 
but a basic modification was necessary for a meaning
ful functional calculus to be performed within the 
formalism. Be that as it may, it would be quite in
convenient if the state functional were too fine grained 
to represent a real irreversible process, even if the 
solution could be numerically pursued. In fact, on the 
basis of the exact dynamics, i.e., the Liouville equation 
or its equivalent, we can hardly expect all possible 
arbitrary states to develop into a unique, steady (e.g., 
equilibrium) state. This is obvious, if we remember the 
time-reversibility of the equation as well as the fact 
that the entropy in Gibbs's sense is conserved so that 
the maximum entropy is never achieved, starting from 
a state of lower entropy. In order to establish an 
entropy-productive nonequilibrium statistical me
chanics, some modification of the basic equation, 
comparable with coarse-graining procedure, also 
seems to be unavoidable in our state functional for
malism. 

The first aim of this paper is to find the best irre
versible perspective for the evolution of the state 

: NRC-NASA Resident Research Associate. 
I. Hosokawa, Progr. Theoret. Phys. (Kyoto) 36 420 (1966)' 

J. Math. Phys. 8, 221 (1967); Progr. Theoret. Phys. (Kyoto) 39 24i 
(1968). ' 

functionaJ.3 We first notice that the Fourier-trans
formed basic equation in the cylinder functional 
approach (established in Sec. 2) has a structure very 
close to the Fokker-Planck equation which describes 
a Ma~k?: stochastic process, but retaining the time
reverSIbIlity as a natural consequence of its equiv
alence to the BBGKY hierarchy (in the limit when the 
number of particles tends to infinity). The best method 
of modifying the equation into a real Fokker-Planck 
equation at the expense of losing the time-reversibility 
is described in Sec. 3. As a result, our problem reduces 
to nothing but the problem of a generalized random 
walk played within the special function space equiv
alent to a certain Riemannian space by the so-called 
stochastic particle-number density function in the 1-
body phase space. The mathematical procedure of such 
a modification is unique in the sense that any other 
Ma~k~v process expected to simulate nonequilibrium 
statIstIcal mechanics is not closer to the dynamical 
process than the present one; but it seems somewhat 
diffi~ult to re-~xpress the procedure in simple con
ventIOnal phySIcal words, such as coarse graining. 
A~ the paper's second object, the general method is 

apphed .to the case o~ a gas or a weakly interacting 
p~asma In Sec. 4. In thIS case, the equivalent Rieman
man space reduces a~pr~ximately to a Euclidean space, 
so that the compleXIty In calculation is reduced. The 
close~-form general .solution of the initial-value prob
~em IS fo~ulated ~n term~ of a repeated multiple 
Integral, whIch can, In practIce, be conveniently solved 
by the Monte Carlo quadrature. Since in our theory 
~he ac~uracy of ca~c~l~tion is increased simply by 
IncreasIng the multIphcIty M of cylinder functional 
but not by changing (or deepening) the formulation in 
a complicated way and, moreover, since there is no 
difficulty in principle in applying the theory to the 
strong interaction case, the proposed approach seems 

• N.N.8ogoliubov, in: Studies in Statistical Mechanics, J. deBoer and 3 A short explanation orth 'd ed . 
G. E. Uhlenbeck, Eds. (North-Holland Pub!. Co. Amsterdam Conference on St t' ti' 1 Me Ih ea.wa(s present at the InternatIOnal 
1962) Vol. I. " a IS ca ec amcs Kyoto, September, 1968); see 

, J. Phys. Soc. Japan SuppJ. 26, 224 (1969). 
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to have the proper advantage which is not found in 
other analytical approaches to the BBGK Y hierarchy 
or the Liouville equation which exploit the more or 
less sophisticated series expansion in a small param
eter,2.4·5 which may not necessarily be convergent. 

Another type of statistical-dynamical research, 
which may be also called a functional approach, has 
been developed by considering the evolution of the 
probability on an ensemble of the events, a member of 
which evolves strictly according to some dynamics 
such as the Vlasov equation, the Langevin equation, 
etc. 6.7 Of course, this research is different in principle 
from ours, except for the case of taking the Klimon
tovich equationS as the dynamics, when the character
istic functional equation is formally equivalent to the 
BBGKY hierarchy, as was verified by Nakayama and 
Dawson. 6 However, it will be seen (in Sec. 3) that, if 
the Vlasov equation is taken as the dynamics, there is 
a somewhat close relation between this ensemble 
mechanics and the presented perspective of our 
formalism. 

For simplicity the discussion is restricted to a single
component system. Extension to a multicomponent 
system is straightforward. 1 

2. FOURIER-TRANSFORMED STATE 
FUNCTIONAL FORMALISM 

According to the previous paper, 1 if the s-body 
generic distribution function is denoted by Fs ' the 
state functional is defined as 

tp(y, t) = 1 + I ~ J .. ·JrFS(X1, ... , x., t) 
s~lS. X X 

x y(xl ) ... y(x.) dXl ... dx., (2.1) 

where i = .J -1, X is the entire I-body phase space, 
Xl, ••• , Xs E X, t is the time variable, and y(x) is a 
real-valued function. Once the state functional is 
introduced, the BBGKY hierarchy for the infinitely
many-particle system with a finite average density is 

4 E. A. Frieman, J. Math. Phys. 4, 410 (1963); J. E. McCune, G. 
Sandri, and E. A. Frieman, in Rarefied Gas DynamiCS (Advances 
in Applied Mechanics, Suppl. 2; Third International Symposium 
on Advances in Applied Mechanics, Paris, 1962), J. A. Laurmann, Ed. 
(Academic Press Inc., New York, 1963), Pt. I. A classification of 
kinetic equation approaches is given in T.-Y. Wu, Kinetic Equations 
of Gases and Plasmas (Addison-Wesley Pub!. Co., Inc., Reading, 
Mass., (966). 

6 I. Prigogine and R. Balascu, Physica 25, 281, 302 (1959); 26,145 
(1960); I. Prigogine, Non-Equilibrium Statistical Mechanics 
(Interscience Publishers, Inc., New York, 1963). 

6 T. Nakayama and J. M. Dawson, J. Math. Phys. 8, 553 (1967). 
7 G. Vojta, J. Phys. Soc. Japan Supp!. 26, 221 (1969); W. E. 

Brittin and W. R. Chappell, J. Math. Phys. 10, 661 (1969). 
8 Iu. L. Klimontovich, Zh. Eksp. Teor. Fiz. 33, 982 (1957) [Sov. 

Phys.-JETP 6, 753 (1958}); Statisticheskaya Teoriya Neravnoves
nyikh protsessov v plazme (Moscow State University, 1964) [English 
trans!.: The Statistical Theory of Non-equilibrium Processes in a 
Plasma (Pergemon Press, Inc., New York, (967»). 

completely replaced by the following single basic 
equation with functional differentiation: 

:tp = iJ y(X)[Hl(X); ~J dx 
ut x ic5y(x) 

-if r [y(x)y(x') - iny(x) - iny(x')] 
x.x 

X [<fo(lq, - q'l); .2c5 (j2tp ] dx dx', (2.2) 
I y(x)c5y(x') 

where Hl(X) is the I-body Hamiltonian, [ ; ] the 
Poisson bracket, n the average number density, and 
<fo(lq - q'l) the interaction potential between particles 
in which q denotes the c!isplacement vector in the 
physical space. The operator r5j r5y (x) denotes a 
functional derivative. 9

•
1o tp should be subject to the 

following two associative conditions1 : 

tp(O, t) = 1, (2.3) 

. J r5tp dx hm ---= tp 
v .... oo x ir5y(x) V ' 

(2.4) 

where V is the volume containing the entire system. 
Both conditions emerge from the form of (2.1) on 
using the definition of Fs' 

Here we introduce a kind of cylinder functional 
approach to functionals. If {Sj(x)} is an orthonormal 
function set in X, we can calculate aj = f x Sj(x)y(x) dx 
to define a new function 

ill 

yM(x) = 2 ajslx). (2.5) 
j~l 

We call tp(ylll) the cylinder functional tpM(y), which is 
still a functional of y through the definition of aj , 

though it can essentially be considered a function of M 
variables {aj }. Then, tp is understood as tpM in the 
limit M -+ 00 if it is convergent (for example, with 
respect to the "maximum" norm). If tp is replaced by 
tpM, the basic equations (2.2)-(2.4) become more 
feasible to treat, since then we have the relation 

15 "If r5a. 0 M 0 
-=2-3 

- =2Sj(x)- (2.6) 
r5y(x) j==l r5y(x) r5a j H oa j 

and, thus, (2.2) becomes just a partial differential 
equation. From a practical point of view we always 
consider tpM first, assuming that the converging 
sequence {tplll} of state cylinder functionals exists. 
Then, we can introduce a new functional pM(z, t) as the 
Fourier component of tpM; namely, we have 

tpM(y, t) = LM pM(z, t) exp [i J yM(X)zM(x)dx ] r5z M, 

(2.7) 
• V. Volterra, Theory of Functionals and of Integral and Integro

differential Equations (Dover Publications, New York, 1959). 
10 E. Hopf, J. Ratl. Mech. Anal. 1, 87 (1952). 
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where 

(2.8) 

and ZM(X) = L bjsj(x). For simplicity, we omit all the 
superscript M hereafter, unless necessary for clarity, 
keeping in mind that every functional is a cylinder 
functional. 

As a result of the transformation (2.7), the basic 
equation (2.2) transforms to the following equation 
for p: 

ap = _ [ _0_ {Qz(x)p}dx + 1 [f 0
2 

at Jx oz(x) 2 Jx x oz(x)oz(x') 

x ([c/>(Iq - q'l); z(x)z(x')]p} dx dx', (2.9) 

where Q denotes the nonlinear operator such that 

Qz(x) = [HI(x); z(x)] 

+ n JxdX'[c/>(lq - q'l);z(x)z(x')]' (2.10) 

It is notedl that ozjot = Qz is nothing but the self
consistent Vlasov equation and, therefore, Q may be 
called the Vlasov operator. Corresponding to (2.3) 
and (2.4), we have the conditions 

[ pOz = 1, 
JA 

J p[ lim [ z(x) dx - 1J 
A v--+C() Jx V 

(2.11 ) 

x exp [iJxy(x)z(X)dxJOZ = O. (2.12) 

From (2.12), p should vanish for all z(x) unless z(x) 
is such that 

lim r z(x)dx=l, 
V--+C() Jx V 

(2.13 ) 

which defines a hyperplane in R,lI. We may call this 
the hyperplane A I' The restriction (2.12) is conserva
tive in time, since the conservation of (2.4) was proved 
by the previous paper.! Therefore, without any incon
sistency, we have only to consider the basic equation 
(2.9) always in this hyperplane rather than RM. Ac
cordingly, A in (2.7) and (2.11) may be read as Al on 
the understanding that SAIOZ indicates the volume 
integral over AI' The time invariance of the condition 
(2.11) is evident by virtue of (2.9). 

Since our basic equations obtained so far are equiv
alent to the BBGKY hierarchy or the Liouville 
equation in the limit N = nV --+ 00 (n finite), any 
dynamical property of the particle system is preserved 
in our formalism. It is easy to verify the time-reversi
bility of the basic equation (2.9): if p(z(q,p), t) is a 

solution, then p(z(q, -p), -I) becomes another solu
tion, p denoting the momentum part of the vector x. 
Also, it is possible to derive the conservation laws of 
mass, momentum, angular momentum, and energy 
directly on the basis of (2.9). In this case, on comparing 
(2.1) with the series expression of (2.7) in powers of y, 
we first have 

Flx) =1 p(z, t)z(x)oz, 
Al 

(2.14) 

F2(x, x') =1 p(z, t)z(x)z(x')oz; 
Al 

(2.15) 

we then can proceed with examining the time evolution 
of each physical quantity related with p through the 
above relations. 

As a representative example, let us examine the 
momentum case. From (2.14) and (2.9), we calculate 

~ r npFb) dx = n [ op r pz(x) dxoz 
otJx JAlotJX 

= n r f pQz(x)p dxoz, .IAI X 

where use was made of partial integration, keeping in 
mind that Ipl--+ 0 at infinity (Ix Z2 dx = 00) in Al in 
order for SAl Ipl Oz to exist. As is easily seen, there is 
no effect of the term with a second-order functional 
derivative in (2.9) in this case, since Ix pz(x) dx is a 
functional of no higher order than linear in z. A 
further calculation gives 

~ [ npFIdx 
otlx 

= n1 p{ f p[HI;z(x)] dx 
Al .x 

+ nJ f p[c/>;z(x)z(x')]dx dX'}OZ 
x~x 

= nJ p[-J oH
I 

z(x) dx 
Al x oq 

- nf J (oc/> + oc/»Z(X)Z(X') dXdx'J Oz. (2.16) 
x x oq oq' 

Here the boundary condition on z(x) was taken into 
account: z(x) --+ 0 for Ipl --+ 00 and on the boundary 
of the configuration space. The second term in the 
curly bracket vanishes because oc/>/oq = -oc/>/oq'. 
(This illustrates that the sum of internal forces vanishes 
because of the action-reaction law.) The first term also 
vanishes if there is no external force (OHI/Oq = 0). 
Otherwise, it expresses the total external force. There
fore, we can see in (2.16) the generalized conservation 
law of momentum. It is needless to say that total 
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momentum j x npFI dx is infinite in the limit N = 

nV -- 00, but it can be meaningful if we consider the 
average momentum per particle or per unit volume. 
The other conservation laws are quite similarly ex
amined, except for the energy case in which care 
should be taken of the fact that the effect of the term 
with a second-order functional derivative in (2.9) 
appears for the part of the interaction energy including 
the expression (2.15), which has the factor quadratic 
in z explicitly. 

Finally, we add a comment on the other functional 
formalism equivalent to the BBGKY hierarchy by 
Nakayama and Dawson.6 In this formalism the charac
teristic functional plays a main role of describing the 
state according to the theory of Hoppo for turbulence 
mechanics. There the evolution of an ensemble is 
considered, all members of which are microscopic 
states evolving according to the Klimontovich equa
tionS starting with various initial positions and 
momenta of particles given in the I-body phase space. 
The basic equation, i.e., the Hopf equation for this 
ensemble, is somewhat different from (2.2); in partic
ular, it is remarkable that it has no term with a 
coefficient quadratic in y(x). Correspondingly, the 
characteristic functional itself is different from the 
state functional (2.1). A difficulty with this formalism 
(occurring if we want to develop the theory in a 
functional-analytical way), however, stems from the 
fact that every solution of the Klimontovich equation 
does not represent a microscopic state. Hence, all 
solutions of the Hopf equation are not realistic, even 
if they satisfy the general conditions on the character
istic functional. For the solution to be realistic, the 
members of the ensemble should be restricted to 
Klimontovich's special class of singular functions in 
terms of superposed 0 functions. s This limits the class 
of allowed characteristic functionals severely, and it 
would not be easy to formulate this restriction in a 
simple manner. Another disadvantage may be seen in 
the difficulty in finding an appropriate simple-form 
initial characteristic functional which can be used in 
practice; for the state functional it is easy, as described 
in Ref. I and shown in the next section. 

3. MASTER-EQUATION APPROACH 

The basic equation (2.9) is very close in form to the 
Fokker-Planck equation which describes a Markov 
stochastic process. The first term of the right-hand 
side is the analog of the so-called friction term and the 
second resembles the diffusion term. However, there is 
a difference in principle between (2.9) and the Fokker
Planck equation; the former is time reversible, as was 
mentioned already, but the latter is time irreversible. 

This reflects the fact that the coefficient function 
[ep; z(x)z(x')] inside the second-order derivative is not 
positive-definite. This similarity and difference may 
contain a key to solving the noted historical question: 
how to bridge the microscopic reversibility and the 
macroscopic irreversibility in the system evolution in 
a general way. 

Now, if the coefficient function is considered as the 
sum of the positive-definite and negative-definite parts 
at each local point in AI, the former plays a role of 
creating an irreversible process, while the latter that of 
destroying it or creating an anti-irreversible process so 
that both roles may offset each other to cause the 
reversible process exactly. So,_ in order to extract a 
purely irreversible process from the dynamical process, 
evidently it is necessary and sufficient to retain only the 
former part of the coefficient function, so that (2.9) 
reduces to a real Fokker-Planck equation. This is 
the simplest universal way of introducing the 
pqsitive time arrow in the system evolution. There is 
no further assumption in this procedure, such as weak 
interaction, diluteness, etc. Therefore, its application 
will be free from any such restriction on physical 
conditions. Let the Fokker-Planck equation thus 
obtained be written as 

....f!.. = - -- [Qz(x)p] dx a- f 15 
at x 15z(x) 

+ l f f 15
2 

{nep; z(x)z(x')]P} dx dx', 
2 x x 15z(x)15z(x') 

(3.1) 

where the symbol p has been replaced by p to dis
tinguish its approximate nature because of the above 
procedure and :f is the operator on the coefficient 
function to make it positive ·definite in the way just 
described. There can still be many ways of constructing 
a Markov process starting from (2.9); for example, 
:f[ep; z(x)z(x')] plus any nonnegative function can also 
be positive definite. But it is natural that (3.1) is the 
closest approximation to (2.9) among them, since in 
this modification the first term is invariant and the 
second term was minimumly changed to make a real 
diffusion term. Then, the error bound sup Ip - pi 
would be minimum. Thus, (3.1) may be called 
diffusion term. Then, the difference Ip - pi on an 
average would be minimum. Thus, (3.1) may be called 
the master equation in the sense that it masters the 
irreversible system evolution which is the most loyal 
to the basic dynamical rule. 

By the property of the Fokker-Planck equation it is 
possible to interpret p as the probability density in the 
space AI' The condition (2.11) plays an important 
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role for this interpretation; that is, 

i p~z = 1. 
~1 

(3.2) 

If the diffusion term is neglected in (3.1), it can be 
found that the equation governs the time evolution of 
the probability on an ensemble of the trajectories in 
the space AI, which develop from various initial values 
according to the Vlasov equation, ozjot = Qz. (Con
sider the characteristic curves in AI') This fact is 
obvious from the perfect analogy with the Hopf 
equation in turbulence mechanics,l° if we go back 
to the equation for the characteristic functional if 
which corresponds to p [defined in the same way as 
(2.7)]. In this case, we really deal with nothing but a 
so-called turbulent field which is basically governed 
by the Vlasov equation instead of the Navier-Stokes 
equation. Here we find a complete coincidence with the 
other statistical-dynamical research based on the 
Vlasov equation mentioned in the introduction.6 .? If 
the diffusion term in (3.1) is included, the coincidence 
breaks down and the motion (expressed by z) is 
affected by some internal random force implied by 
!J'[q,; z(x)z(x')]' as is well expected from the Langevin 
equation for Brownian motion; thus, what we may 
call a turbulence will be more irregular and more 
random. For this case, there is the analogy with the 
Novikov equation in the turbulence mechanics with 
random force actionll (though there is a slight differ
ence in situation in that the random force in the 
Novikov equation is not internal but externally given 
independently of the field z). Fr9m all these facts, 
it is quite reasonable to interpret z(x) as the sto
chastic particle-number density in X, normalized in the 
sense of (2.13). Obviously, z(x) is not a macroscopic 
observable [as is also known from the relations (2.14) 
and (2.15)], nor is it a microscopic density such as con
sidered by Klimontovich,8 since it can be a regular 
function; but it may be understood as a fictitious, 
mathematical working field with an intermediate 
property. [See Appendix for the essential nonnega
tiveness of z(x).] 

Let us see if (3.1) is consistent with the conservation 
laws in spite of its modification by !J'. It is known from 
the discussion of the previous section that the term 
with the second-order functional derivative in the 
basic equation has no effect on the conservation laws 
except for conservation of energy. Accordingly, it is 
evident that the conservation laws of mass, momen-

11 E. A. Novikov, Zh. Eksp. Teor. Fiz. 47, 1919 (1964) [Soviet 
Phys.-JETP 10, 1190 (1965»); I. Hosokawa J. Phys. Soc. Japan 
15, 271 (1968). ' 

tum, and angular momentum hold also for (3.1). For 
the energy case, however, we have 

:tLL nH1(x)F1(x) dx 

+ Ix Ix!n2q,(Q - q')F2(x, x') dx dX'J 

= !n2 r f f q,!f[ q,; z(x)z(x')] dx dx' p~z, (3.3) 
J~l x x 

which cannot vanish in general. The right-hand side is 
O(n2A2) (A being the representative order of magnitude 
of q,), but the error will accumulate with time. There
fore, it is necessary to correct this error in our master 
equation some way. This can be made by confining the 
space for z into a manifold in which the conservation 
of energy is strictly insured. Indeed, since the total 
energy found on the left-hand side of (3.3) is rewritten 
in terms of (2.14) and (2.15) as 

L/[Ix nHlz(x) dx + Ix Ix!n
2
q,z(x)Z(X') dx dx'Jaz, 

we can impose the condition on z, 

Ix nH1z(x) dx + Ix Ixtn2q,z(X)Z(X') dx dx' = const, 

(3.4) 

to guarantee the constancy of the total energy. 
Equation (3.4) prescribes a subset of AI' which may 
be called a quadratic hypersurface. [The difficulty 
arising from the singularity of q, at the particle-core 
region (Iq - q'l ~ 0) is excluded by limiting the 
domain of the double integration to the outside of the 
core.] 

It is thus essential that our basic equation (3.1) 
should be redefined in such a Riemannian space as 
prescribed by (3.4). There is no special difficulty in 
dealing with the Fokker-Planck equation in a Rieman
nian space.12 As is well known, a Fokker-Planck 
equation governs a generalized Brownian motion and, 
hence, we may imagine from our equation a general
ized Brownian motion or random walk in the 
Riemannian space. 

It is known that there is a unique steady state of 
p, and p tends asymptotically to this state irrespec
tively of any initial condition.13 It is unfortunate 
that we cannot at present have any explicit form of the 
steady-state solution to be compared with the equi
librium canonical distribution for the Gibbs ensemble. 
However, some similarity in situation may be ex
pected. Namely, the final asymptotic state is the state in 

~: A. Koimogoroff, Math. Ann. 108, 149 (1933). 
A. H. Gray, Jr., J. Math. Phys. 6, 644 (1965). 
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which all Brownian particles have fully diffused over 
the whole Riemannian space, i.e., the quadratic hyper
surface (3.4) that corresponds to the constant-energy 
shell in the grand (6N-dimensional) phase space; and 
then every point in that space is realizable with some 
measure (possibly including zero) irrespective of an 
initial state, just like a grand phase point in the energy 
shell in the equilibrium state. Entropy may be intro
duced as SM = S pM log p1ll6zM 1M, 14 and then it can be 
identified that the diffusion term of (3.1) takes charge 
of entropy-productive action. But we note that, in our 
theory, the concept of entropy is not particularly 
necessary to conclude the one-directional evolution 
of the system, since we have already the uniquely 
given asymptotic state. 

The initial condition imposed on p is easily formu
lated, if the initial correlations among particles are 
neglected. Namely, on starting from the initial state 
functionaP 

"p = exp [i ixY(X)Fo(X) dX]' (3.5) 

where Fo(x) is the given initial I-body distribution 
function, we have 

p = b[z(x) - Fo(x)] (3.6) 

by means of the relation (2.7). (See Ref. 1 for the 6 
functional b[ ].) Naturally, here we rewrite p as p. 
This means that our random walk begins from the 
single point in the Riemannian space which is given 
as Fo(x). Then, the total of the Brownian trajectories 
beginning from this point provides all the physical 
information of the irreversible system evolution. In
deed, as is known from comparing (2.1) and (2.7), all 
FH (the symbol F8 means the approximation to F8 in the 
sense of our master-equation approach) are given as 
the sth-order correlation function of the stochastic 
field z(x): 

Fixl' ... , xs ' t) = f z(x t ) ••. z(xs)p(z, t)bz, (3.7)

where the integration is taken over the Riemannian 
space in AI; and all physical quantities are related to 
Fs. It may be further noted that, since the fluctuation 
of a macroscopic quantity is closely related to the 
behavior of F2 ,'J. an observable macroscopic turbulence 
should be related through F2 [in (3.7)] with the tur
bulence in z which is strong enough to have a corre
lation length over a macroscopic scale. This is an 
interesting situation which opens a new way of statis
tically pursuing a turbulence in plasma. 

In order to compute pin (3.7) for a given M, it is 

14 According to Shannon, in C. E. Shannon and w. Weaver, The 
Mathematical Theory of Communication (University of Illinois Press, 
Urbana, Ill., 1964). 

necessary to solve the Fokker-Planck equation with 
many variables. A practically useful formula for 
solving the Fokker-Planck equation is presented in the 
next section for the simple case where the Riemannian 
space can be approximated by a Euclidean space. 
This formula tells us how to follow the generalized 
random walk with the aid of a high-speed computer 
to constitute the solution of our initial-value problem. 
It will turn out that, the principle of the calculation is 
nothing but the Monte Carlo quadrature. This method 
of solution is, in principle, available also to the (not 
simple but) general case, for which we should consider 
the random walk on the Riemannian space. Indeed, 
since such a Riemannian space is always approximated 
by the tangential hyperplane locally, the infinitesimal 
random-walk motion around the tangential point can 
be followed by quite the same way as given for the 
simple case, and continuation of this process would 
complete a chain of random walk on the hypersurface. 

Finally, it is interesting to point out that a new 
hierarchy similar to the BBGK Y hierarchy can be 
obtained from our master equation. Let us multiply 
(3.1) by z(x) and integrate it with respect to (Jz over the 
Riemannian space, taking into account (2.10), (2.14), 
and (2.15). Then, we have 

oFI - f' -I. -- = [HI; Fd + n dx ['f'; F2] at x 
(3.8) 

in the limit M ---+ 00. Here use was made of partial 
integration with respect to 6z and the closure property 
of {Sj(x)}. This is formally the same as the first equa
tion of the BBGKY hierarchy. However, if we multiply 
(3.1) by z(x)z(x') and integrate it to obtain the second 
equation which governs F2 , we easily find that the 
equation obtained is not the same as the second equa
tion of the BBGK Y hierarchy because now the second 
term of (3.1) comes into play to give an effect of the 
modification caused by the operator a'. The same is 
true for the higher-order equations of the hierarchy. 
Thus, F2 , F3 , ••• cannot be time reversible, so that FI 
is also time irreversible. This is an essential difference 
between (3.8) and the corresponding equation for 
Fl' From the viewpoint of the new hierarchy, it is no 
puzzle that the proper irreversible approximation to 
F2 in (3.8) as seen in Born and Green'sI5 work gives 
rise to the Boltzmann equation with irreversibility. 
One may see a coarse-grained aspectI6 of Fl from this 

.. M. Born and H. S. Green, Proc. Roy. Soc. (London) A188, 10 
(1946). 

16 J. G. Kirkwood, J. Chern. Phys. 15, 72 (1947); J. G. Kirkwood 
and J. Ross, in Transport Processes in Statistical Mechanics, I. 
Prigogine, Ed. (lnterscience Publishers, Inc., New York, 1958), Vol. 
I; N. G. Van Kampen, in Fundamental Problems in Statistical 
Mechanics, E. G. D. Cohen, Ed. (North-Holland Pub!. Co., Amster
dam, 1962). 
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fact, but we will come back to this matter in the final 
subsection of Sec. 4. 

4. APPLICATION TO THE WEAK-INTERACTION 
CASE 

By the weak-interaction case, we mean the case 
where the total interaction energy between particles is 
far less than the whole energy of the system, such as 
the case of a gas or sometimes a plasma. In this case, 
the Riemannian space reduces to the fixed hyperplane 
in Al which satisfies 

n H1(x)z(x) -:- = e, e = const. J 
dx 

x V 
(4.1) 

This constitutes a subspace of A l , which we may call 
B. Our problem thus reduces to solving, in general, 
the master equation (3.1) in B. Here we give the 
explicit formulation of the operator cr' and next de
scribe the practical program of how to calculate a 
physical quantity on the basis of our functional 
random-walk model with the use of a high-speed 
computer in mind. 

A. Euclidean Coordinates in B 

To represent a point in B in terms of a set of the 
Euclidean coordinates, we derive an orthonormal 
function set in B, starting from {Sj(x)}. The limiting 
process V -* 00 is put off until we arrive at the final 
formula. 

Now in the representation z(x) = 2, bjsj(x), Eq. 
(2.13), defining A l , is given as 

IbjJ s;(x)dx = 1. (4.2) 
i x V 

To find a rotation of RM such that one· of the basic 
vectors becomes normal to the hyperplane AI, the 
transformation matrix (tij), such that 

b j = I bil)tki or bil) = I tkjb i (4.3) 
k i 

is introduced. {W'} are the new coordinates, and the 
normal coordinate to Al is taken as b~I). If we put 
bk1 ) = 0, except for k = 1 and b~l) = 1, then (4.3) 
gives 

J/lx)dXfV 

tlj = 2 ! ' (4.4) 

{f [LSk(X) dXfVJ } 

since {bi} in this case are nothing but the direction 
cosines of a normal to A I' This fixes a part of elements 
of the matrix (t i ,). The other elements, however, can 
be arbitrarily given except under the condition that 
(tij) should be an orthogonal matrix; this arbitrariness 

corresponds to the frt:edom of space rotation within 

Al · 

In the new coordinate system, the hyperplane can 
be expressed by b~o = b~~) (a certain const). This 
constant, which is the distance between the hyper
plane and the origin of RM, is found by the substitution 
of (4.3) into (4.2), together with bk1 ) = 0 except for 
k = 1. Namely, 

bW = (t tiJ/;(X) d:r or [t (Ls;CX) d:n-1. 
(4.5) 

Thus, a function in Al can be expressed as 

z(x) = I b~l)S~I)(X) + ctCx), (4.6) 
j~2 

where 
s~l)(x) = I tjkSk(X), (4.7) 

k 

c1(x) = bl~)s~l)(x). (4.8) 

In quite a similar way, we can find a rotation of Al 
such that one of the basic vectors becomes a normal to 
the hyperplane B. This time we note that the trans
formation matrix (tH) is of (M - 1) dimensions with 
the suffix conveniently beginning with 2. Correspond
ing to (4.4), we have 

J HIS~l)(X) dxfV 

t~~) = l' j ~ 2, (4.9) 

LtJJx HISkl)(x) dxfV T} 
on account of (4.1). The distance between B and the 
origin of Al is given as 

e - nJH1CI(X) dxfV 
b~~) = ! . (4.10) 

nLtJJx HIS~l)(X) dxJV T} 
As a result, a function in B is expressed as 

z(x) = 2, bj2)S~2)(X) + C2(X) + c1(x), (4.11) 
j~3 

where 
S~2)(X) = I tWs~l)(x), (4.12) 

k>l 

(4.13) 

Hence, we know that an orthonormal function set in 
B is given by (4.12), i.e., 

(4.14) 

and {b~2)} is a set of the Euclidean coordinates based 
on it; but note that the space RM-2 spanned by (4.14) 
is not equal by itself but parallel to B, as is seen from 
(4.11). 
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B. The Explicit Form of a' 

In the frame of RM-2 now obtained, z(x) in the 
master equation (3.1) should be replaced by 

z(x) = z(x) + cI(x) + ca(x); (4.15) 

here and hereafter a function with a bar on top indi
cates that it belongs to E == RM-2 [spanned by (4.l4)]. 
Differentiation is invariant to this replacement: 

tJ/tJz(x) = tJ/tJz(x). 

In this frame, let us consider the functional quadratic 
form with the coefficient kernel function [4>; z(x)z(x')]. 
After the orthogonal transformation in E to make it 
diagonal, it can be written as 

f f ji(x)ji(x')[ 4>; z(x)z(x')] dx dx' = La 1'2 D ,(z), 
x x ,2:3 

(4.16) 
where aj are the Euclidean coordinates of ji(x); the 
(real) eigenvalues D, depend on 4> and z. Thus, the 
minimum modification of (4.l6) to make it positive 
definite is simply to neglect D,(z) when D,(z) < O. 
This leads to the formula 

J r ji(x)ji(x')n4>; z(x)z(x')] dx dx' = I aj215 j (z), x Jx ,2:3 

where (4.17) 

= 0, D, ::;;; O. (4.18) 

Although this means just "completely prohibiting 
the anti-irreversible process from happening," as al
ready described, an interesting relation with the coarse
graining idea will be explained in the final subsection. 

C. General Solution for p 
A general solution for p can formally be constructed 

in the form of a repeated multiple integral by the 
propagation kernel method. I That is, 

p(z, t) = lim r .,. r Pt.izLfzL-I) . .. Pl1tCz2fzl) 
I1t-+O JB JB 

I.-I 

X p(z\ 0) II tJZk, (4.19) 
k~1 

where z = ZL, I:!.t = tfL, and the superscripts indicate 
the order of the time subintervals. The infinitesimal 
kernel P.:lt is explicitly obtained from (3.1) as 

PAt (zk+Ifzk) 

= t exp {i l/k(x) [Zk(X) - zk+\x) + I:!.tQZk(X)] dx 

- !I:!.t Ix Ix~(X}j1«X') 

(4.20) 

and p(ZI, 0) is the initial condition on p. It should be 
noted that the arguments in p and P.:lt are actually Zk 
rather than z\ through (4.15) in the present frame of 
E. The present notation of arguments is entirely for 
convenience. 

The expression (4.20) may be rewritten in terms of 
the Euclidean coordinates for jik(X): 

jik(X) = I a~*s~*(x), (4.21) 

where {~*(x); j ~ 3} is the orthonormal function set 
in jj which is related to (4.14) by the orthogonal 
transformation described in the preceding subsection. 
By noting (4.17), we have 

P4f(zk+1fzk) = 1:· . ·1: exp h~:3a~* 

x [p~* - b~+U + I:!.t Jxs~*(X)QZk(X) dxJ 

- tl:!.t I (a~*)2 15 '(Zk)} II da~*, (4.22) 
,2:3 12:3 (21T)1 

where 

and 

b~+U = Ls~*(X)Zk+1(X) dx, 

which is further calculated as 

P4f(Zk+Ifzk) = II [l:!.t.o,(zk)r1 , 

(4.23) 

(4.24) 

x exp { - [p~* + I:!.t f/~*(X)QZk(X) dx 

- b~+Ur[2I:!.t15'(Zk)J-I}. (4.25) 

Here we note that the jth factor with .oj = 0, if any, 
reduces to the tJ function 

tJ(p~* + I:!.t L s~*(X)QZk(X) dx - b~+1*) 
times (21T)!. 

P.:lt in (4.25) is a generalized Gaussian measure 
factor with respect to {~+1*}, so that it may be inter
preted as the probability density for the stochastic 
quantity {~+1*}. Since this probability depends on Zk 
and since {~+I*} represents ZkH in the manner of 
(4.24), it may be understood as the transition prob
ability that a random walker in the space B (or B) 
moves from the point Zk (or {b~*}) to the point zk+1 

(or {b7+1*}) in a small time I:!.t. A great difference in 
our random walk from the simple Brownian motion is 
seen in the complicated dependence of P.:l t on Zk, i.e., 
the starting point at each instant. As a consequence, 
the measure pM established by (4.19) together with 
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(4.25) is far more complicated in shape than the Wiener 
measure. However, it is worth noting that the present 
master-equation approach has the great mathematical 
advantage over the original state-functional approachl 
in that the existence of the integral 

VJ = JB exp (i J yz dX) pM 

is guaranteed by establishment of the measure pM 
even in the limit M ->- 00,17 Hence, it is concluded that 
aU Fs converge as M ->- 00. 

D. The Monte Carlo Quadrature 

It is now obvious that, if (3.6) is adopted for 
P(Zl' 0), (4.19) expresses the probability of finding the 
random walker, which started from Fo(x) in B, at z(x) 
after a continuous chain of random walk during the 
time t. The whole integration in (4.19), however, is 
analytically impossible. It is rather fortunate that the 
first integral with respect to Zl can be calculated as 

J/At(Z2/Z1)p(Z\ O)(jZl 

= LPA/(Z2/Z1)(j[Zl(X) + c1(x) + c2(x) - Fo(X)](jZl 

= PAt (z2/Fo) . (4.26) 

But the next successive integrals with respect to Z2, 
Z3, .. " i.e., in the Euclidean coordinates {b~*}, 

{br}, ... , are involved enough to recommend the 
Monte Carlo quadrature with the use of a high-speed 
computer, although then we should be satisfied with 
an approximate value to the true integral. 

It is nice for an importance sampling to be applied 
that the integrand itself constitutes a product of 
conditional probability densities. Then, the first task 
to estimate the second integral with respect to {b~*} is 
just to sample values for {b~*} out of the ensemble with 
the probability distribution P t!.t(z2/Fo) and to insert 
them through Z2(X) into P t!.t(z3fz2). [{s}*(x)} is known 
as a set of eigenvectors with the eigenvalues {D;(Fo)}. 
Hence, Z2(X) is solved for by (4.24). Together with 
{D;(Z2)}, a new set of eigenvectors {s~*(x)} is found and, 
hence, {,8~*} is solved for.] Thus, the probability for 
{b~*} is decided, and so the same sampling process can 
be done for {b~*} and further for {b~*}, ... until we 
arrive at {br--a }, when one round of the importance 
sampling for the whole integral (4.19) finishes. The next 
task is the average over many rounds of sampling. 

If we wish to estimate Fa by the formula (3.7), 
another sampling is necessary for the integration with 
respect to {bf*}. In this case, we only have as the 

11 P. R. Halmos, Measure Theory (D. Van Nostrand Co., Prince
ton, N.J., 1950). 

estimator a function Z(X1)··· z(x.), made of the 
sampled values for {hf*}, so that the average over 
many such sample functions may give F.(xl , ... , X. , t). 
This is the principle of the Monte Carlo quadrature 
for ca!culating Fs. Since (4.25) is a Gaussian prob
ability distribution for {b~+1*}, we can sample the 
values for {b~+1*} out of normal random numbers 
with proper variances and averages. It is interesting to 
note that each round of the importance sampling 
simulates nothing but each chain of random walk 
during the time t in a segmented way. In the limit 
when I:1t ->- 0 or L ->- 00, the simulation becomes 
perfect. Also, it is expected that the other approxi
mations included in the present procedure are improved 
with the values of M and V increasing independently. 

E. The Relation with the Coarse·Graining Idea 

We may point out a slight relation of our master
equation approach with the coarse-graining idea. The 
prescription of (4.17) and (4.18) may also be under
stood to limit the space for ji(x) into a smaller sub
space than RM-2 by neglecting all the jth eigenvectors 
of the space when Dj ~ O. This means that ji(x) has 
been coarse-grained by losing many orders of ortho
normal functions which are not desirable for the 
irreversible description of the system. However, this 
coarse-graining procedure is not so fixed an operation 
as the conventionally understood one,l6 but is very 
flexible because it depends on z. If we proceed so 
thoroughly with the physically motivated coarse
graining idea that we artificially change the domain of 
integration in (4.22) from RM-2 to the subspace 
described above, the transition probability in (4.25) 
will be the product of only the jth factors with Dj(Zk) > 
O. Then, b~+1 with the same j as that of the neglected 
eigenvector in rex) does not appear in P t!.t' so that 
Zk+1(X) and, hence, Zk+1(X) would be coarse-grained in 
the same way (depending on Zk) as jik(X). Hence, we 
can coarse-grain the distribution function Fs (in a 
flexible sense) through the relation (3.7). The above 
discussion, based on the artificial change of the domain 
of integration, is interesting in suggesting the physical 
meaning of our master-equation approach to some 
degree, but obviously such an artifice is strictly inexact. 
Therefore, we can only see by this discussion a 
roughly sketched, probable physical picture of our 
theory. All that we may say is that some very flexible 
kind of averaging process must have been introduced 
as a result of the operation ~. 

5. CONCLUSION 

A minimum modification of the functional formal
ism of classical nonequilibrium statistical mechanics 
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was performed (on the basis of the cylinder functional 
approach) such that the basic equation turns into the 
master equation, which includes the irreversible 
system evolution. The general theory was applied to 
the case with a gas or a weakly interacting plasma. 
The method of solution proposed in Sec. 4 has no 
great technical difficulty but for the use of a high.speed 
computer. All calculations with the Monte Carlo 
quadrature will be rather simple for the machine. It 
may be said that the possibility suggested in Ref. 1 of 
approaching nonequilibrium statistical mechanics by 
the Monte Carlo quadrature has been clarified in this 
paper. It is expected that this method will clarify many 
unsolved problems in relation with the irreversible 
process of the many-particle system, even for the case 
with spatial inhomogeneity. If we are interested in a 
steady state, it can be studied by examining an asymp
totic behavior of the solution as t -+ 00 for an 
arbitrary type of initial condition. Together with the 
tangential approximation to the Riemannian space, 
the method of solution can extensively be used for the 
general strong-interaction case with an additional 
analytical-geometric care. In these respects, the prac
tical value of the present theory depends to a large 
extent on future works employing a computer. It is 
interesting to note that a similar type of functional 
integral (with the Gaussian measure), which corre
sponds to a solution for the characteristic functional 
for the Burgers model turbulence, was recently calcu
lated by the Monte Carlo quadrature with promising 
success.IS 
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APPENDIX 

Since z(x) has been interpreted as the stochastic 
particle-number density, it is undesirable on a physical 
basis that j5 does not vanish in the domain of Al where 
z(x) is not nonnegative. First, it is natural that we 
restrict an initial value of j5 to the desirable class in 
which all j5 may be positive only for an nonnegative 
z(x). The initial condition (3.6) belongs to this class. 
Second, what we need is to prove that j5 in the desirable 

'8 J. Hosokawa, Phys. Fluids 11, 2052 (1968). 

class never evolves outside the class. This is formally 
possible as follows. 

As is seen from (4.19), p at time t may be given as 
the population density of all possible random-walker 
locations at t in the subspace of Al with the condition 
(3.4). If there is no diffusion term in (3.1), which means 
all Dj = 0 in (4.17) and (4.25), the so-called, random
walk trajectories are no longer random and their 
differential path in /).t becomes the projection on the 
subspace of Al [with (3.4)] of the differential evolution 
of z(x) subject to the Vlasov equation. Since the 
Vlasov equation does not lead to any negative value in 
solution for a nonnegative initial value, our trajec
tories remain in the desirable domain of Al where z(x) 
is nonnegative, if they were initially inside. Therefore, 
the possibility of a trajectory's migrating outside may 
only arise through the diffusive action because of a 
nonvanishing value of (4.17). 

Here, let us take the more direct representation of 
functions Y and z which has been explained in the 
second paper of Ref. I; i.e., any functional of Y and z 
can be considered as a function of {Y(Xk)(/).Xk)!} and 
{z(Xk)(/).Xk)!}, respectively. [We divide X into many 
cells and denote the representative value and the 
volume of the kth cell by Xk and /).Xk , respectively. 
The representation {ai } is obtained from {Y(Xk)(/).Xk)!} 
by a special transformation.] Then, (4.17) is expressed 
in the form 

I Y(Xk)(/).xk)iji(xm)(/).xm)fR(z)km, (AI) 
k,m 

where R(Z)km is the matrix element which depends on 
Z and its (first-order) derivative at x = Xk and X m • 

The most interesting diffusive action is that which 
occurs in the neighborhood of points in X where 
z(x) = O. If the eigenvalues of R(Z)km just like Di do 
not vanish for these points, our random walk may at 
the next instant yield a negative z(x) there. [See (4.25).] 
However, it is obvious that 

R(Z)km = 0, (A2) 

if either z(xk ) or z(xm ) = 0, because the first-order 
derivative of z(x) with respect to x should also be zero 
at the points where z(x) = 0 so long as z(x) is analytic 
enough and belongs to the desirable domain of AI. 
Equation (A2) just shows that the eigenvalue for the 
coordinate Y(Xk)(/).Xk)t should vanish if z(xa ) = 0, so 
that we have no diffusive action around the points in 
X where z(x) = O. Namely, it never happens that a 
trajectory starting from within the desirable domain of 
Al migrates to a z(x) with a negative value somewhere 
in X. This concludes the proof. 
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Solution of the Differential Equation 

( 
02 a a a) 

oxoy + ax ax + by oy + exy + at P = 0 

Subject to the Initial Condition 

P(x, y, 0) = <!>(x, y) 

M. E. GOLDSTEIN 

Lewis Research Center, Cleveland, Ohio 

(Received 2 July 1969) 

A simple form of the solution to the differential equation 

( 
iJ" 0 0 0) 

oxoy + ax ax + byay + cxy + at P = 0, 

subject to the initial condition 

is given. 

1. INTRODUCTION 

P(x, y, 0) = <I> (x, y), 

subject to the initial condition 

P(x,y, O) = <!>(x,y), 
will be sought. 

(2) Lambropoulos1 derived a solution to the initial
value problem described above, which is most con
veniently applied -when the initial data <!>(x, y) can 
easily be expressed as a Taylor series about the point 
(x = 0, y = 0). However, the solution which he 
obtained is rather cumbersome. This situation was 
recently alleviated by Neuringer2 who obtained a 
solution to this initial-value problem in a reasonably 
compact closed form. Neuringer's solution, however, 
only converges if r)."v<!>(x, y) has a 2-dimensional 
Fourier transform [J. is defined by Eq. (4) below]. It 
will be shown herein that a solution which is useful 
when r)."v<!>(x, y) is expressible as a Taylor series and 
not necessarily as a Fourier integral can also be 
obtained in a simple form. Both the method developed 
herein, and that developed by Neuringer ,2 can be 
readily adapted to obtain solutions to combined initial 
and boundary-value problems associated with the 
equation. Since the form of the solution obtained 
herein is quite different from that given by Neuringer, 
it is likely that this form of the solution may be more 
useful than that given by Neuringer for certain com
bined initial and boundary-value problems. 

To this end,introduce a new dependent variable Q 
defined by 

2. SOLUTION 

Let a, b, and c be constants. A formal solution to the 
differential equation 

02p oP oP oP -- + ax- + by- + cxyP + - = 0, (1) 
oxoy ax oy at 

1 P. Lamhropoulos, I. Math. Phys. 8, 2167 (1967). 
2 I. Neuringer, I. Math. Phys. 10,250 (1969). 

P(x, y, t) = e).(.,y-tlQ(x, y, t), (3) 

where A. is given by Neuringer's2 equation (6)~i.e., 

A. = H -(a + b) ± [(a + b)2 - 4c]1}, (4) 

and either sign may be used. 
Then Q is a solution of the differential equation 

oQ + (a + J.)x oQ + (b + J.)y oQ + 02Q = 0, (5) 
at ox oy oxoy 

subject to the initial condition 

Q(x, y, 0) = e-)."v<!>(x, y). (6) 

In order to obtain a solution to Eq. (5) by separation 
of variables, introduce the new dependent variables 
~, 'f}, and ,. defined by 

~ = xe-(a+).) t, (7) 

'f} = xy~/(efJt - 1), (8) 

,. = -fJt + In (ellt - 1), (9) 
where 

~ = a + h + 2A.. (10) 

Upon introducing (7), (8), and (9) into Eq. (5), we 
find 

;Q<~ + 'YJQ~~ + (1 - 'YJ)Q~ + Qr = O. (11) 

667 
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This equation is now separable; hence, we seek a 
solution in the form 

Qa, n, T) = T(T)N(n)Za)· (12) 

Upon substituting this into Eq. (11) and separating 
variables, we find, 

dT 
- = -aT. 
dr ' 

dZ 
;- = -yZ, d; 

(13) 

(14) 

where L!Y) is the generalized Laguerre or Sonine 
polynomial, and 

• 
(1 + y). = IT (y + k - 1). (21) 

k=l 

Hence, Eq. (19) shows that the solution to Eq. (5) is 
in this case 

x (1 - e-fJt),L(k) ( XYP ) (22) 
S efJt _ 1 ' 

(15) where C!~ and C!~~ are arbitrary constants. Now, for 
t = 0, 

where a and yare the separation constants. The 
solutions to these ordinary differential equations are 

Z(~) = ~-Y, 

N(n) = A.,y IF1(a; 1 - y; n) 

(16) 

(17) 

+ BuynY IF1(a + y; 1 + y; n), (18) 

where A"y and Buy are arbitrary constants and IFI is 
the Pochhammer-Barnes confluent hypergeometric 
function. 

Hence, reverting to the original independent 
variables, the elementary solutions to Eq. (5) can be 
written as 

where we have put s = -a and y = -y to obtain the 
first term and s = -(a + y), keeping y fixed, to 
obtain the second term. The most general solution to 
any initial and boundary value problem for Eq. (5) 
can presumably be obtained by superimposing the 
elementary solutions (19) for suitable values of y and 
s. However, we are interested here in the solution to an 
initial-value problem, and for this purpose let the 
values of sand y be the nonnegative integers. Now for 
s = 0,1,2,'" the series representing IFl(-S; 1 + 
y; n) terminates after a finite number of terms, and 
we have, in fact, 

Hence, 
ro P' 

Q(x, y, 0) = 1 ., (C~~kx(k+')yS + C~~~y<k+S)x·). (23) 
',k=O s. 

Upon setting C(l) = C(2) for s = 0 1 2 ... and 
8,0 StO , " , 

defining Pr.n by 

P(k+8),S = (k + s)! P8C~~k, 
p',(k+s) = (k + s)! P8C!~~, 

P = 2C(1)P8S ! = 2s! P'C(2) s,S 8,0 8,0, 

where k = 1, 2, 3, ... and s = 0, 1, 2, ... , we find 
after some manipulation that 

Q(x, y, 0) = i ~r'8, xry' . (24) 
8,r=O s. r. 

Hence, 

(26) 

where L. = L!O) is the simple Laguerre polynomial. 
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The method of point transforms is extended to the consideration of the truly many-body terms of 
many-body systems. The point transformation is taken to be regional (one body isolated, two bodies 
interacting, three bodies interacting, ..• , N bodies interacting) and continuous in the 3N-dimensional 
transformed space. The transformed Hamiltonian and wavefunction of an N-body system can then be 
easily approximated by one-body, two-body, three-body, '" ,or N-body additivity. As an example of 
the use of this method, a set of regional point transforms is developed for the short range, strongly 
repulsive, or hard-core many-body problem. Applying these transforms to the many-body Hamiltonian, 
we obtain a set of equivalent Hermitian Hamiltonians which are Fourier analyzable and amenable to 
ordinary perturbation and variational techniques. Assuming two-body additivity, this set is shown to be 
the set of pairwise point transformations developed by Eger and Gross. 

1. INTRODUCTION 
In this paper we extend the method of point trans

forms to include the truly many-body terms of many
body systems. The basis of the method is to perform 
a classical canonical transformation on the variables 
of the system and then quantize these transformed 
variables. The requirement for this transformation to 
be equivalent to a unitary transformation of the 
original quantized variables is that the canonical 
transformation can be generated by a series of infini
tesimal canonical transformations from the Cartesian 
variables. 1 For simplicity we choose time-independent 
point transforms. 

Previous investigations2- 6 using this method have 
assumed pairwise additivity, wherein the system is 
assumed to be sufficiently dilute to enable one to 
neglect configurations in which more than two 
particles interact. The original Hamiltonian can then 
be approximated by the sum of pairwise interactions 

where 

N 

H = 2 Hii , 
•• 1=1 
i< i 

(Ll) 

Hij = ..!.. ±(P:" + P~,,) + V(Rij, Pij)' (1.2) 
2m,,=1 

Our notation for equal-mass particles shall be 

Xii" = Xi" - Xi'" Xii" = Xi" - Xi'" (1.3) 

PH" = HPj" - Pi")' PH" = Hpj" - Pi")' (1.4) 

• This research is based upon a portion of a dissertation submitted 
to Brandeis University, Waltham, Massachusetts (1968) in partial 
fulfillment of the requirements for the Ph.D. degree, and supported 
in part by the U.S. Air Force Office of Scientific Research. 

1 This requirement excludes, for example, the transformation to 
polar coordinates. 

IF. M. Eger and E. P. Gross, Ann. Phys. (N.Y.) 14, 63 (1963). 
• F. M. Eger and E. P. Gross, Nuovo Cimento 34, 122S (1964). 
, F. M. Eger and E. P. Gross, J. Math. Phys. 6, 891 (196S). 
• F. M. Eger and E. P. Gross, 1. Math. Phys. 7, 578 (1966). 
• N. Witriol, thesis, Brandeis University, Waltham, Mass., 1968. 

where the X i« (the R.) are the original coordinates, 
the Xi" (the ri ) are the transformed coordinates, the 
Pi" are the original momenta, the Pi" are the trans
formed momenta, Latin indices stand for particle 
numbers and run from 1 to N, and Greek indices stand 
for the Cartesian coordinates with the range 1 to 3. 
Under the pairwise point transformation 

(1.5) 

(1.6) 

each Hi; is transformed into 

H;; = i (2J.. (P:a< + P~«) + -4
1 i Piia<C«P(rH)PHft) 

01=1 m mp=1 

where 
+ W(ri;) + V(ri;' PH)' (1.7) 

B is the J,acohian loxill/oXi,B1 of the inverse transfor
mation (r - R), and V(riJ' p,,) is V(Rij, Pi') written 
in terms of riJ and Pi!' In addition, the original 
normalized wavefunction "'t;(Rij) is related to the 
transformed normalized wavefunction ",:/(r,,) by 

"'li(Ri;(r;;» = [B(rH)]t",:;(rij)' (LlO) 

W(r) represents a new coordinate dependent potential 
and pCp represents a new coordinate-and momentum
dependent potential. The range in coordinate space 

669 
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of Wand C is determined by the transformation 
function! For the pairwise assumption to be reason
able in the transformed space, we must require 

f~O, r~ro, 

=0, r>ro, (1.11) 

where ro is the average interparticle separation.' The 
Hamiltonian H is then transformed into the Hermitian 
Hamiltonian H', 

N 

H' = 2. H:j 
£,;=1 
i<i 

+ W(rij) + V(ri;' PH»)' 

(1.12) 

(1.13) 

The transformed Hamiltonian H' is a function of the 
transformation function fer). Therefore, Eq. (1.13) 
represents a set of Hermitian Hamiltonians. Each 
element H' is specified by a particular fer) and is 
equivalent, to the extent of the validity of the pairwise 
approximation in the transformed space, to the 
original Hamiltonian H. By properly choosing f(r) , 
we can include part of the interaction in the trans
formation and thereby weaken the interaction term 
dealt with by means of perturbation theory. For 
example, if the potential VCR, P) in Eq. (1.2) contains 
a hard-core (hc) interaction part, 

Vhc(R) = 00, R < c, 
=0, R> c, (1.14) 

the class of functions 

f = clrcp(r) , (1.15) 
where 

cp(r) = 1, r = 0, 

~O, r~ro, (1.16) 

=0, r> '0' 

removes it3-i.e., from Eq. (1.5) we obtain Vhc(r) = ° 
over all space. The effects of Vhc(R) are now contained 
in W, C, and B. The advantage of this method is that 
. W, C, and VCr), are Fourier analyzable. The trans
formed Hamiltonian H' is therefore Fourier ana
lyzable, Hermitian, and amenable to ordinary 
perturbation and variational techniques while being 
equivalent to the original Hamiltonian. Taking the 
Fourier transform of H', and introducing the standard 
second quantization formalism, one can obtain a 

7 Note, from Eq. (1.5) and Eq. (I.lI), that ro is the interparticle 
separation in both the original and transformed spaces. 

convenient form of the Hamiltonian for calculating 
the properties of low-temperature quantum fluids. 5 

Previous~ investigations3 •5 •6 have characterized f, and 
thus cp, W, C, and B by a range A where c < A < ro. 
The dilute gas limit is reached by letting A be a fixed 
small fraction of ro and taking ciA ~ O. The ground
state energy and the low-level excitations of the hard
core Bose liquid have been calculated5 and found to 
agree in the dilute gas limit with the low-density 
results of Lee, Huang, and Yang.s Similarly, the 
ground-state energy and the Landau parameters of 
the hard-core Fermi liquid have been calculated' and 
found to agree in the dilute gas limit with the series 
expansion in cpt (p being the density of the system) 
of Huang and Yang,9 and Lee and YanglO for the 
ground-state energy, and with the series expansions 
in cpt of Abrikosov and Khalatnikovll for the 
Landau parameters. The A-dependent terms, ignored 
in the dilute gas limit, represent higher-density correc
tions to these dilute-gas results. In addition, Cooper12 
has applied this method to the classical hard-core 
problem and obtained the standard results for the 
virial coefficients. 

Let us now consider the pairwise assumption in 
relation to some physical systems of interest: liquid 
3He, 4He, and nuclear matter. The parameters clro 
and Alro for these systems are (with b r03 = p-l) 

(clro)3Re = (1.9/2.44) = 0.78 < Afro < 1, 

(clro'Re) = (1.9/2.22) = 0.86 < Afro < 1, 

(clro)nuclear = (0.4/1.7) = 0.37 < Alro <:: 1. 
matter 

For the pairwise assumption to be good, the proba
bility of three or more particles interacting with one 
another must be negligible. For the above systems, 
this assumption is poor. 

In this paper we shall extend the point transforma
tion method to the consideration ofthree-, four-, ... , 
and N-body interaction terms. For simplicity, we shall 
restrict ourselves to central potentials, VCR, P) = 
VCR). We shall chiefly be concerned with strong 
short-range potentials, in particular with the hard
core potential, Eq. (1.14). The transformation shall 
be chosen to shrink the system, thereby reducing the 
range of the strong short-range potential. Since the 
effects of a potential VCR) are proportional not only 
to its strength but also to its rang~, the effects of the 

8 T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135 
(1957). 

• K. Huang and C. N. Yang, Phys. Rev. lOS, 767 (1957). 
10 T. D. Lee and C. N. Yang, Phys. Rev. 105,1119 (1957). 
11 A. A. Abrikosov and I. M. Khalatnikov, Zh. Eksp. Tear. Fiz. 

33, 1154 (1957) [Sov. Phys.-JETP 6, 888 (1958)}. 
12 M. J. Cooper, J. Math. Phys. 9, 571 (1968). 
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transformed strong short-range potential VCr) can 
thereby be made small. In particular, the trans
formed hard-core potential can be eliminated. The 
large effects of the strong repulsive potential in the 
original Hamiltonian will be contained in the new 
coordinate-dependent potential Wand in the new 
coordinate- and momentum - dependent potential 
pCp. In Sec. 2, the point transforms are taken to be 
of the form 

N 
X ilt = IT (j(r.a - b)Xilt 

a-I 
a'i'i 

+ j~l( ft (j(ria - b)(j(rja - b) )(j(b - rii)Aiilt 
; 'i'i a'i",; 

+ ;!I( ft O(ria - b)O(rja - b)O(rka - b») 
k,;:#-i a::Fi,;,k 

x [O(b - rik)(j(b - rjk)O(ri; - b) 

+ O(b,- rlk)(j(b - rij)(j(rik - b) 

+ (j(b - rij)fJ(b - rik)O(rjk - b) 

+ O(b - rij)O(b - rik)O(b - r;k)]A~;k« 

+ ... + [0 functions for the N-body 

(N, N - 1, ... , 3,2, 1) cluster 

combinations] Am(N-I)'" (;+1)(i-I)'" 321«' 

(1.17) 

where b is the arbitrary range of the interaction in 
the transformed coordinates, subject to c < b. 
Equation (1.17) is a general expression for the trans
formation of Kilt' differing from the identity trans
formation only when particle i is within distance b of 
(i.e., is interacting in the transformed space with) 
other particles in the system. We can consider only 
two-body interactions (the first two terms), or three
body interactions (the first three terms), ... , or N
body interactions (all N terms), according to our 
preference and the amount of algebraic manipulations 
we are willing to perform. Initially the functional 
forms of the A's are arbitrary, subject to the require
ments that the transformation be continuous and 
one-to-one. An explicit set of A's, which can be 
specified to reduce the effects of strong short-range 
potentials, or to eliminate hard-core potentials, is 
then given. In Sec. 3, we show that in the limit of two
body interactions the resulting set of point transforma
tions reduces to Eq. (1.5) with Eqs. (1.15), (1.16). In 
Sec. 4, the regional form of the transformed Hamil-

tonian resulting from Eq. (1.17) is developed. We 
shall find that, for potentials with range c < b, the 
transformed Hamiltonian H' can be expressed as 

+ill( fi O(ria - b)O(ria - b) )O(b - rij)H:i 
i<i a'i'i,j 

+i,i=/ ft O(ria - b)O(r;a - b)O(rka - b») 
k< l<i a'i'i.1,k 

x [O(b - rik)O(b - rik)O(ri ; - b) 

+ O(b - r1k)()(b - rij)()(rik - b) 

+ O(b.- rij)()(b - rik)()(r;k - b) 

+ ()(b - ri;)()(b - rik)O(b - r;k)]H;lk 

+ ... + [() functions for the N-body 

(N, N - 1, ... , 3,2, 1) cluster 

combinationslHN(N_l) ... 321· (1.18) 

Thus, H' can be approximated by one-body additivity, 
i.e., no interactions (the first term), or two-body 
additivity (the first two terms), or three-body addi
tivity (the first three terms), ... ,or N-body addi
tivity (all N terms). The number 'of terms kept in 
Eq. (1.18) is, of course, equal to or less than the 
number of terms kept in Eq. (1.17). Each H;1 ...• n 

term in Eq. (1.18) is Hermitian and Fourier analyz
able, even when the original potential contains hard
core components. Therefore, the total Hamiltonian 
H' is Hermitian, Fourier analyzable, and amenable 
to ordinary perturbation and variational techniques. 
Thus, we shall have demonstrated the extension 
of the point transform method to the consideration of 
the truly many-body terms of N-body systems. 

2. TRANSFORMATION 

In this section we develop a set of point transforms 
whereby the effects of the transformed strong short
range potential of an N-body system can be made 
small, assuming one-, or two-, ... , or N-body inter
actions as desired. In particular, if the interparticle 
potentials contain hard-core parts, the set of point 
transforms can be chosen to eliminate these singular 
components. 

We start by introducing an arbitrary distance b 
taken to be greater than or equal to the interaction 
radius in the original space c. We shall, in general, 
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find that for continuity we must require b > c. The 
transformation is chosen such that, when the inter
particle separation Rij in the original space is greater 
than b, Rij equals the interparticle separation rli in 
the transformed space, and vice versa: 

Ri; = ril , for (Rij; ri;) > b. (2.1) 

Therefore, b is the cutoff distance of the transforma
tion of the interparticle separations. Thus, it is also 
the range of the interactions created by this transfor
mation. 

We define an n-body cluster to be a linked set of 
n particles, a link existing between particles i and j if 
the interparticle separation (RIi ; rii) ~ b. Diagram
matically, the first lower-order n-body clusters, 
n=I,2,3,are 

I-body (i): (Ria; ria) > b, all a'" i, I ~ a ~ N, 

. i 

2-body (ij): (Rill' Ria; ria, ria) > b, 

all a '" i,j, I ~ a ~ N, 

i---j (Ri;; rii) ~ b, 

3-body (ijk): (Ria, Ria, Rica; ria, ria, rica) > b, 

all a '" i,j, k, I ~ a ~ N, 
k 

/~ (Run R;k; rik , rik) ~ b, (Rij; ro) > b, 

j 

A (R", R,,; r", r,J ,,; b, (Ra: r,,) > b, 

k 

/~ (Rt ;, Rik ; 'ti' rik) ~ b, (Rik ; rit) > b, 

.i k 

i 6 (Rik' R;k' RiJ; rik' ';k' ril) S; b. 

k 

We note, from the three-body cluster, that there will 
be many combinations in each n-body cluster for 
n ~ 3. The transformation is defined such that it is 
the identity transformation for a one-body cluster, 
depends on (r;, r i) [or (Ri , R j )] for a two-body (ij) 
cluster, depends on (ri' r;, rk) [or (Ri' R i , Rk)] for a 
three-body (ijk) cluster, etc. Let us now discuss the 

Va 1---.... 

V(R) V(R(r)) 

E 
r 

FIG. I. Reduction (by the transformation) of the range of 
the strongly repulsive potential vo' 

results we desire from the application of the trans
formation to the Hamiltonian of our system. 

We wish to reduce the effects of the transformed 
short-range, strongly repulsive or hard-core potentials . 
Since the effects of a potential are proportional to 
both its strength and its range, we can reduce its 
effects by. reducing its range. Diagrammatically, the 
desired effect of the transformation is shown in Fig. 1. 
To achieve this goal the transformation for the 
clusters is defined in a manner such that each n
particle cluster (i1 ... in) shrinks about its center of 
mass RCm(il" 'i,,)' the shrinkage factor depending on 
the smallest interparticle distance. This shrinkage 
factor is so chosen that when the smallest interparticle 
separation R i ; is equal to the strong interaction radius 
c, the smallest transformed interparticle separation 
r ij is equal to the transformed strong interaction radius 
€, where € is an arbitrarily chosen small distance. 
Applying the transformation to the cluster is akin 
to having Alice, in Lewis Carroll's Alice's Adventures 
in Wonderland, eat or drink substances that change 
her size-the shrinkage of the cluster depending upon 
the smallest interparticle separation vs the shrinkage 
of Alice, depending upon the amount of the substances 
she eats or drinks. For example, consider the trans
formation of the three-body cluster shown diagram
matically in Fig. 2, Take r ij to be the smallest 
interparticle separation. Then, 

where the shrinkage proportion (Xii' a function of 
'ii' is chosen as follows: when 

'ij < € 

Rij> C, 

V(Rii) = V(Rij(ri;» = Vo; 

VeRi;) = V(R;i(r;;» = O. 
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Z,Z 

x-x x-x em' em 

FIG. 2. Three-body (ijk) cluster 
transformation. em = em(ijk). 

L---------------------y,y 

X, X 

Therefore, when 

Rii < c, (Rik' R ik) > c, the transformation gives 

rii < €, (rik' rjk) > €; 

etc. 
Thus, the cluster transformation described achieves 

the desired result illustrated in Fig. 1. We denote the 
n-body cluster (i1 ••• in) transformation of X i1" by 
Ail'" in'" We require the total transformation (the 
transformation of the 3N coordinates in the 3N
dimensional space) to be one-to-one and the trans
formation for each set of particle coordinates Xi" to 
be continuous as the n-body cluster becomes an 
(n + 1)-, (n + 2)-, .. " or N-body cluster, or 
becomes an (n - 1)-, (n - 2)-, .. " or one-body 
cluster. 

The transformation Ail" ·i .. " , as described above, 
is not continuous at the boundaries between the cluster 
regions. To see this problem in detail, let us consider 
three bodies i, j, k. Take 

Rik = b - 15, R;k = B> b, Rii = A ~ (Rik' R;k) , 

where 15 is an arbitrarily small positive number and A 

and B are given distances. These particles thus form 
a three-body cluster (ijk). Under the transformation 
described, this three-body cluster shrinks about its 
center of mass, the shrinkage proportion depending 
upon rii . Let us now take 

These three particles now form a two-body cluster 
(ij) and a one-body cluster (k). Under the trans
formation described, the two-body cluster shrinks 
about its center of mass, the shrinkage proportion 
depending upon rii . The one-body cluster is un
changed.13 Thus, the transformation described is 
discontinuous at the boundary between these cluster 
regions. A generalization of this problem exists for all 
n-body clusters. To correct this deficiency, we intro
duce functions hi i , whose roles are to make the 

• b 

transformation satisfy the following conditions for 
an n-body cluster (il ... in): (1) when none of the n 
particles are near a boundary of the cluster, the 
transformation of XiI" is essentially Ail'" i

R
"; (2) 

when any of the n particles are near the boundary of 
the cluster, the transformation of X i1" approaches the 

13 The transformation describing the shrinkage of a one-body 
cluster about its center of mass is the identity transformation. 
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transformation of Xil~ on the other side of the bound
ary. We are thereby led to the transformation 

Xi~ = (g [O(ria - b) ) [Ai~] 
ai" 

where 

N ( N ) + i~ n (Oria - b)O(ria - b) 
j#i a::l=i,; 

x [O(b - rik)O(b - rik)O(rii - b) 

+ O(b - rik)O(b - rij)O(rik - b) 

+ O(b - rii)O(b - rik)O(r jk - b) 
+ O(b - rii)O(b - rik)O(b - rik)] 

X [Aijk~(l - hikhik(1 - hij) 

- hijhk,(l - hik) - hikhij) + Aij~hikhjil - hij) 

+ Aik~hijhkj(l - hik) + Ai~hikhii] + .. " (2.2) 

O(ria - b) = 0, ria < b, 

= 1, ria> b. (2.3) 

The hij are the functions required for the continuity 
of the transformation. They are arbitrary functions 
subject to the following conditions: 

hij = h(rij) = 0, rij = 0, 

= 1, r ij = b. (2.4) 

By substituting Eqs. (2.4) into Eq. (2.2) the boundary 
conditions are satisfied. To illustrate this point, con
sider the example described previously where the 
three-body cluster (ijk) --+ [two-body cluster (ij)] x 
[one-body cluster (k)] as (rik' rjk) --+ b. Then, from 
Eq. (2.4), (hik' hjk) --+ 1 and the three-body (ijk) cluster 
transformation, 

Xi~ = Aijk~[l - hi/)zjk(l - hij) 

- hijhkj(l - hik) - hi0ii] 

+ Aij~hikhjil - hij) + Aik~hijhk;(l - hik) 

+ Ai~hi0ij, 
becomes 

Xi~ ) Aij~(1 - hij) + Ai~hij' 
(rik,rJk)~b 

the two-body (ij) cluster transformation for Xi~' 
Similarly, the three-body cluster transformations for 
Xi> and Xk~' in the limit of (rik' rik) --+ b, become 

X Irl ) Aii~(1 - hii ) + Ai~hii' 
(rik,rJk)-+b 

Xk~ ) Ak~' 
(r/k,rjk) -+ b 

the two-body cluster (ij) transformation for Xj~ and 
the one-body cluster (k) transformation for Xk~' 

We shall also find that we must require both 
dhii/drii and d2hij/dr;i be zero at rij = b. In addi
tion, the hii must increase slowly enough with respect 
to the rii such that Rk !;;::: c when rk !;;::: ,,', for all 
I, k, 1 ~ 1 < k ~ N, where ,,' is the transformed 
[by Eq. (2.2)] strong-interaction radius, an arbitrarily 
chosen small distance.14 The hii terms provide a con
tinuous transition b'etween the various nobody cluster 
regions and are thereby used as a cutoff for the trans
formation Ail' "in~' Therefore, the cutoff factor c/>(r) , 
used in the pairwise transformation, does not need 
to be used in the Ail'" in~ . 

The total transformation, Eq. (2.2), must be 
one-to-one. This condition leads to the requirement 
that b > c. For example, in the two-body problem 
the transformation gives Rij = b when rij = b, but 
Rii = c when rij = ,,'. The one-to-one character of the 
transformation in the 3N-dimensional space depends 
upon the exact specification of the functions hand A. 
If we take each transformation Ail" 'in~ such that 
Ria - Rem(il" 'i

n
) is a monotonically increasing func

tion of ria - r em(il ... in) for all I ~ a ~ n, then the 
only cause of Xi~ being the same for two or more points 
in the transformed 3N-dimensional space can be the 
combinations of the nobody clusters caused by the h's. 
Because of the form of the transformation Eq. (2.2), 
we do not expect this phenomenon to occur with the 
same two or more 3N-dimensional points in the trans
fortned space for the other 3N - I Xi~ in the orig
inal space. Thus, we expect the total transformation 
to be one-to-one. This requirement should, of course, 
be checked for each specification of the h's. We note 
that for the two-body cluster we must require that h be 
a sufficiently slowly increasing function of r such that 
dR/dr > 0. Consider the points riaib = b. If we assume 

O(x - y) = t for x = y, 

then we have contributions from n- and (n + I)-body 
clusters at the boundary between these regions. Since 
we have taken the transformation to be continuous, 
the contributions from both cluster terms are the 
same. Therefore, for convenience we shall include 
ria = b in the higher-order cluster, i.e., in the trans
formation (Eq. 2.2) [or Eq. (1.17)] we set 

O(ria-b) =0, O(b-ria) = I, 
at the point ria = b. (2.5) 

We note that, if we so desired, we could eliminate the 
o functions in Eq. (2.2) and keep only the highest
order cluster, i.e., the N cluster for an N-body system, 

U Because of the h's, E', although related to, is different from ". 
However, as E ---+ 0, ,,' ---+ O. 
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by changing the conditions of Eq. (2.3) to 

hij = h(rii) = 0, rii = 0, 

= 1, rii ~ b. (2.6) 

We now come to the determination of the Air ... ina· 

[n the transformation Eq. (2.2), the (J's determine the 
regions and the h's smooth the transformation between 
the various regions. The A's then are, in essence, 
the transformations which shrink the nobody clusters 
about their centers of mass. For a one-body cluster 
there is no interaction and no shrinkage; thus, we 
want the identity transformation 

(2.7) 

For particle i in a two-body cluster with particle j, 
we want 

Xi" - Xem(ii)" = OCii(Xi" - Xem(ii),,)' (2.8) 

where OCii is the shrinkage function. Replacing Xem« 
and X cm" by their values in the two-body (ij) system 
and requiring them to be equal, we have 

Xi" = OCi·jXi" + (1 - OCii)t(Xi" + Xj,,) 

(2.9) 

where the second line of Eq. (2.9) follows from the 
definition of A ii" as the transformation of Xi" for the 
two-body (ij) cluster. In general, 

+ (1 - OCil ... i.)n-1(x il" + ... + x i • a). (2.10) 

We note that the shrinkage functions oc are dependent 
only on the interparticle distances ri i ,and not on the 

a b 

Cartesian variables oc. This lack of dependence is due 
to the fact that only central potentials are being 
considered. To complete the specification of the 
transformation (neglecting the arbitrariness of the 
h's) ,we must specify the OCi1 .. . i .. ' From our previous 
discussion, OCil ... in was to depend only on the smallest 
interparticle separation ri i (or Ri i)' We must, 

a b a b 

therefore, first determine the smallest r i i (or R, . •. ) 
a b a b 

and then use a function dependent on r i i to effect the 
a b 

shrinkage. We are thereby led to the form 
n n 

O(i1··· i n = (rnr1 I IT O(riaib - rieid)e(ricid)' (2.11) 
c,d=l a,b=l 
c<d a<b 

iaib :#ieit/. 

where 'Tn is the normalization function 
n n 

'Tn = I II O(riaib - rieid) 
c,d=l a,b=l 
c<d a<b 

i(Jib:Ficid 

(2.12) 

and iaib =F icid means that riaib and riCid are not the same 
interparticle spacing. The product over the (J's is zero 
unless 'iCid is less than or equal to each one of the 

other interparticle distances riaib in the nobody cluster 
(i1 ... in)· The function e(ri i ) is the actual shrinkage 

t d 

factor taken to be the same form for all icid' If three 
or more interparticle separations are equal, while being 
less than all other interparticle separations, then oc 
defined with 'T n = I would be discontinuous. Inclusion 
ofTn defined by Eq. (2.12) corrects this problem. Let 
us now consider the actual shrinkage factor e(ri i)' 

t d 

From our previous discussion, we can take (1 -
h· .. h) as the cutoff function. Thus, e(ri i ) can be 

cd 

taken to be just the shrinkage factor for c --+ E in each 
cluster transformation. One possible expression for 
e is the pairwise transformation form 

(2.13) 

where E" is a small number related to E. 

We have thus derived our set of transformations; 
each element in the set specified by our choice of the 
arbitrary functions hij' the cutoff distance b, and the 
contracted strong interaction radius E. For hard 
cores3 we let E and thus E', E" --+ O. Let us now take 
this set of transformations, Eq. (2.2), assume two
body additivity, and compare it to the set of pairwise 
transformations. 

3. PAIRWISE LIMIT 

Neglecting three- and more-body clusters, Xi" is 
given by the first two terms of Eq. (2.2). These terms 
can be written as 

N N 
Xi" = L IT O(ria - b) 

i=1 a=1 
i:l:-i a::i:i,; 

x {O(rii - b )Aia + O(r ia - b )O(.b - rii) 

X [Aii,,(l - hi;) + AiahH]}' (3.1) 

Since we are assuming the existence of only two-body 
clusters, we can set O(ria - b), (J(ria - b) = 1. For a 
particular (i,j) cluster, Eqs. (2.7) and (2.9) give 

Xi" = O(rii - b)Xi" + O(b - 'ii) 

X ([OCiiXia + Hi - OCii)(Xi " + Xi")] 

x (1 - h ii) + Xiahii}' (3.2) 

To put Eq. (3.2) into the form of Eq. (1.5), we change 
to the relative coordinates Xii" and Xii": 

Xiill. = 6('ii - b )Xiia 

+ O(b - 'ii)[OCiiXiill.(1 - hi}) + x;;ahiil. (3.3) 

Using Eq. (2.6) for the boundary conditions on htj' 
we rewrite Eq. (3.3) as 

X iia = Xiill.[hij + ocii(1 - hii)]. (3.4) 
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For b < ro, Eq. (3.4) is of the same form as Eq. (1.5). 
Comparing Eqs. (1.16) and (2.6), we can set 

(3.5) 

From Eqs. (2.11) and (2.13), for two bodies, 

(I.;; = e(rij) = I + cl(ri; + t"). (3.6) 

Using Eqs. (3.5) and (3.6), we obtain 

Xii(l = xij(l.{1 + [cl(rii + t")]c!>(rii)}, (3.7) 

which, in the limit of t" -+ 0, becomes the hard-core 
pairwise transformation given by Eqs. (1.5) and (1.15). 

We have, therefore, developed a set of transforma
tions which can be used for n-body clusters, n being 
arbitrary, I S n S N, in considering an N-body 
system and which, in the limit of two-body clusters, 
reduces to the set of pairwise transformations. Tn 
the next section we show that, given a transformation 
of the general form of Eq. (2.2), the transformed 
Hamiltonian, for short range potentials, can be 
written as the sum of two-body H;i' three-body 
H;;k' ... , and N-body H~ ... .'II Hamiltonians as 
indicated in Eq. (1.18). 

4. THE TRANSFORMED HAMILTONIAN 

We start by considering the transformed Hamilton
ian resulting from a transformation of the form of Eq. 
(2.2). Generalizing Eq. (1.16), we take the relationship 
between the transformed momenta PiP and the original 
momenta Pi « to be 

1 N 3 (OXiP OXi/J) 
p.« = 2- .~ ~ ~X. PiP + PiP ~X. ,. (4.1) 

,-1 P-I U .« U 'Il 

which, quantizing the momenta, can also be expressed 
as 

p.« = I I -1..P. PiP - t in --N 3 Ox ( 0 In B) 
i=I P=I oXi « oXiP 

= I I PiP + tIn -- --, N 3 ( . OlnB)OXiP 

i=1/J=1 OXiP oXi« 
(4.2) 

where B is the 3Nth-order Jacobian /oxi«loX1T /. By 
means of the point-transformation method (the 
generator of the point transforms being independent 
of time), the original Hamiltonian 

N 3 

H(R, P) =! !Plil + V(R, P) (4.3) 
;=1(1.=1 

is transformed into itself, expressed in terms of the 
transformed coordinates 

H'(r, p) = H(R(r)P(r, p» (4.4) 
N 3 

= 2 2 (Pillgi«i/JPi/J) + V(r, p) + W(r) , 
i,1=l «./J=1 

(4.5) 

where 

and V(r, p) is VCR, P) written in terms of r, p. In 
addition; the original normalized wavefunction "P(R) 
is related to the transformed normalized wavefunction 
"P'(r) by 

1p(R(r» = [B(r)]i1p'(r). (4.8) 

To find the Hamiltonian transformed by Eq. (2.2), 
we must find the derivatives oXkJ.loX1r , the effective 
metrics gilliP' the Jacobian B,and the new coordinate 
dependent potential W(r). We shall now derive the 
regional form for these functions. IS 

Consider the OXU/OXIT' These terms are found by 
taking the derivative with respect to %zr of Eq. (2.2) 
for all i = I, ... , N, (I. = I, 2, 3. Let us first discuss 
the derivatives of the (J functions explicitly displayed 
in Eq. (2.2). The (J functions are used to specify regions 
of space. The derivatives of the (J functions are non
zero only at the boundary between these regions, i.e., 
at some rij = b. In one region we have (J(rij - b). In 
the adjoining region we have (J(b - rii)' Now, 

Therefore, since the transformation is continuous at 
the boundary between these two regions, the contribu
tion from the derivatives of the (J functions cancel 
each other. By considering the transformation Eq. 
(2.2), we see that this cancellation holds for all the 
explicitly displayed (J functions. We note that, by 
using the same argument, we also obtain cancellation 
of the derivatives of the () functions occurring in the 
derivatives of the shrinkage functions (I.(r) and the 
normalization functions Tn' The identical form of 
the e(r;;) for all ij was required for the continuity of 
the transformation and, therefore, to effect this cancel
lation. Thus, for any of the terms in the derivatives of 
the transformation, as in the transformation itself, 
the (J functions are only used to define regions. There
fore, in our calculation of the derivatives oXi«/OX1T , 

we are just left with the derivatives of the transforma
tion functions themselves, continuously connected 
between the various regions. Applying the chain rule, 

15 A more thorough mathematical derivation of the form of these 
functions is given in Ref. 6. 
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the resulting set of simultaneous linear equations in 
the3Nvariabies oXk)./OXlr (k = 1,'" ,N, A = 1,2,3, 
IT fixed) is then 

bHb"" = fr O(ria - b) (I ± oA." OXkJ.) 
a=1 k=1 ).=1 OXu oX1, 
ao'i 

+i,il( f] O(ria - b)O(ria - b») 
;<i ao'i,; 

x [O(b - rif)] (I i oAil
", OXkJ.) 

k=1 ).=10XU ax" 
+ ... + [0 functions for the N-body 

(N, N - 1, ... , 3,2, 1) 
cluster combinations] 

X (I i oAiN .. ·321 .. OXkJ.) , (4.9) 
k=1 J.=1 oXu ax" 

where for simplicity in notation we have used the 
symbolism of Eq. (1.17) instead of Eq. (2.2). Using 
Cramer's rule,16 the set of equations for the derivatives 
oXkJ./OXIT is of the form 

oXu EkJ.,!T --=-- (4. t 0) 
ax!, D 

where D is the 3Nth-order determinant of the coeffi
cients of the OXkJ./OXIT in Eq. (4.9) and EkJ..IT is D 
with the kJ.th column replaced by the coefficients 
on the left-hand side of Eq. (4.9), the 6i16a •. We write 
D in the form 

D = I Dia,kJ.1 = 1 Cia (~~:) I, ( 4.11) 

where dictionary ordering is used (for example, the 
ordering of the rows irx. is 11, 12, 13, 21, ... , N3) 
and Ci..(OXkJ./OX1T) is the coefficient of oXkJ./OXIT in the 
irx. equation of the set of equations given by Eq. (4.9). 
Now each term Cia(OXk)./OXIT) in this determinant will 
include the sum over the contributions from all the 
n-body clusters containing the particle i. For example, 
in the three-body system 1, 2, 3, C1a(OXk)./OXIT) will 
include contributions from the clusters (1), (12), (13), 
and (123). Thus, in the expansion of the determinant 
D, there will be products of the Cia terms in which one 
term is from one cluster of particles and another 
term is from a different cluster of particles, where one 
or more of the particles in the first cluster is also 
included in the second cluster. For example, in the 
three-body system 1, 2, 3, there will be products of 
terms from the clusters (123) and (1), (123) and (12), 
(12) and (23), etc. Products containing two or more 

11 See, for example, G. B. Thomas, Calculus and Analytic Geometry 
(Addison-Wesley Publishing Co., Reading, Mass., 1953), Chap. 12. 

such combinations shall be called cross-term products. 
By their definition cross-term products will be propor
tional to terms of the form OCr;; - b)O(b - rij)' Thus, 
from Eqs. (2.3) and (2.5) the cross term products in D 
will be zero. Therefore, the only nonzero terms 
resulting from this determinant are the product of 
cluster terms where no particle is in two different 
clusters. From the form of Eq. (2.2) the determinant 
D can thus be put [by rearranging Eq. (4.11) where 
necessary] into the form 

D = L O({n(N)}) II D(nll (4.12) 
(n(N») i 

where {n(N)} represents a specific combination of 
clusters of the N particles, L{n(Nll is the sum over all 
possible combinations of clusters, O({n(N)}) represents 
the product of the 0 functions defining {n(N)}, n. 
is the product over the various i clusters (n)i which 
make up each cluster combination {n(N)}, and D(n)j 
is the denominator we would obtain if we were only 
considering the isolated (n)i cluster. For example, in 
the three-body system, we have 

D = O((l)(2)(3»D(l)D(2)D(3) + O({l2)(3»D(l2)D(3) 

+ O«13)(2»D(l3)D(2) + O«23)(l»D(23)D(l) 

+ O«(123»D(123)' 

We note that, by applying the same techniques used 
in deriving Eq. (4.12), we can show that in the deter
minant D the cross terms from two different explicit 
O-function combinations in the same n-body cluster 
[see Eq. (2.2) and diagrams following Eq. (2.1)] 
cancel. This type of cancellation will also occur in 
the remainder of our calculations. Although this 
elimination makes no difference in transformations of 
the form Eq. (1.17), it can be useful in their general
izations. Let us now calculate the numerators EtJ.,IT' 
From their definition, the EU •IT , like the denominator 
D, can be written in the form 

EkJ.,IT = L O({n(N)}) II Ek).,ldn),. (4.13) 
(n(N)) 

In addition, Ekl,IT(n). is D(n). if the cluster (n); does 
not contain either th~ particl~s k or I. Also, since each 
cluster has its own transformation dependent only 
on the coordinates of the particles contained in that 
cluster, Ek)../dtt), equals zero if the cluster (n)i contains 
only one of the particles k or t. Therefore, substituting 
Eqs. (4.12) and (4.13) into Eq. (4.10), multiplying both 
sides of the equation by the denominator, and equating 
the various regions defined by the O({n(N)}'s, we 
obtain 

(4.14) 
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where we have summed over the 0 functions defining 
clusters not containing the particles k and I and 
notationally Z(.k.!.) is the sum over all clusters in
cluding the particles k and I, O«.k.I.» represents the 
product (and sums) of the () functions defining the 
(.k.I.) cluster, and EkA.lr(.k.I.) is the num6rator we 
would obtain if we were considering only the isolated 
(.k.!.) cluster. As can be expected from the definition 
of A."" Eq. (2.7), Ek)..kr(k)/D(k) = 15;.1' and the general 
form of oXk)./OXlr is 

OXk). = ()«k»t5k1t5).r + Z O«.k.l.»(OXU) , 
oXZr Lk.I.) OX!f Cit.!.) 

(.k.I.I;«k) (4.15) 

where (iJxk)./iJXlrkk.!.) is just OXU/iJXlr for the 
isolated (.k.!.) cluster. From their definitions, both 
EkA.lr(.k.I.) and Dck.l.l are 3rth-order determinants, 
where r is the number of particles in the (.k.!.) cluster. 
In the Appendix we show that D(.k.!.) can be written 
as the sum of products of three rth-order determinants, 
where the sum omits many of the terms in the minor 
expansion of the original 3rth-order determinant. A 
similar result can be obtained for EkJ..,lrCk.l.). We 
mention this point to indicate that this method is 
practicable for calculations assuming the existence 
of only few-body clusters. For example, in the N
body problem, assuming three-body additivity, we 
need only to evaluate third (not ninth)-order deter
minants. 

Following our procedure for finding the trans
formed Hamiltonian H', we now consider the effective 
metrics g''''i/l' Substituting Eq. (4.15) into Eq. (4.6) 
and eliminating cross-term products, we obtain 

gi«i/l = ()«i))t5iit5«P + Z O«.i·j·»gi«i/lU.i.h (4.16) 
!.i.i.) Li.i.l;<(i) 

where giai/l(.i.i.l is just gi«i/l for the isolated (.i.j.) 
cluster. 

We next consider the Jacobian B = l(}xk,t!iJXzrl. As 
in the preceding calculations, we obtain 

B = Z ()({n(N)}) II B(n),' (4.17) 
{n(NI} i 

where B(n); is the Jacobian of the transformation for 
the isolated (n)i cluster. The determination of B(n). thus 
involves the calculation of a 3rth-order determi~ant, 
where r is the number of particles in the (n); cluster. 
We note that, by considering the form of the differ
ences between Ekl.ltl.k.l.), Ek2 . IT(.k.I.I' and Ek3•lt(.k.l.) 

and using the method illustrated in Appendix A, we 
can show that B(nl;' like the D's and E's, can be 
written as the sum of products of three rth-order 
determinants, where the sum omits many of the 
terms in the minor expansion of the original 3rth-

order determinant. We observe that, since the wave
functions "P(R) and "P'(r) and their first derivatives 
must be continuous, the Jacobian B and its first 
derivatives must be continuous throughout the 
entire 3N-dimensional space (including the region 
boundaries). Thus, we must require the first and 
second derivatives of the continuity functions h to be 
zero at the region boundaries and the cluster trans
formations A, their first and second derivatives to be 
continuous throughout the entire 3N-dimensional 
space. 

Continuing our procedure, we now consider the 
new coordinate-dependent potential W(r). Equation 
(4.7) can be rewritten as 

N 3 t iJ [ iJ (1)] W(r) =.z Z B - gi«;/I-! . (4.18) 
i,i=l«,/I-l aXilJ aXj/l B 

From the definition of the () functions, Eqs. (2.3) 
and (2.5), O({n(N)})! is just O({n(N)}). From the 
requirements on the continuity functions h and the 
cluster transformations A, the effective cluster 
metrics gi«i{Jti.i.l and the first derivatives of the 
cluster Jacobians B(n). are continuous at the region 
boundaries. Therefore: the derivatives of the () func
tions occurring in Eq. (4.18) cancel each other. 
Applying the methods used in our previous deriva
tions, we then obtain 

N 

=Z Z (J((il"'in»~il'''i,,), (4.20) 
11=1 (il •.. in) 

where Z(iI" 'i
n

) is the sum over all possible nobody 
clusters. For a one-body cluster, from Eqs. (4.15) 
and (4.16), 

W(i) = O. (4.21) 

Thus, W(r) is the sum of contributions from each 
region in which the transformation is not the identity 
transformation. We now combine these results to 
obtain the transformed Hamiltonian H'. Substituting 
Eqs. (4.16) and (4.20) into Eq. (4.5) and using our 
continuity requirements on the continuity functions It 
and the cluster transformations A, we obtain 

H' = Lt (i1 .~ . • }((il ... in» 

X [( i ± P;4~gi4~iblJ(;I'" in)PibP) 
4.11=1 «,{J=1 

+ W(;l'" inl]} + VCr, pl. (4.22) 
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If the transformed potential has a range less than b, 
then V(r, p) can be written in the same regional form 
as Eq. (4.20), and Eq. (4.22) becomes 

N 

H' = 2. 2. 8«;1'" in» 
,,=1 (i! ... in) 

X [( i ± Pj.«gi.~ib/1(iI··· inlPib/1) 
.,b=1 «./1=1 

+ W(tl" . inl + V(il'" inl} (4.23) 
N 

= 2. 2. O((il'" in»H(it' .. in)' (4.24) 
n=l (it· .. iIi) 

where V(il" 'j n l represents the transformed potentials 
acting between the particles il ... in in the isolated 
(il ... in) cluster and H(il' "in) is the transformed 
nobody Hamiltonian of the isolated (i1 ' •• in) cluster. 
We note that, if the original potential V(R, P) was 
only the strong short-range potential whose effects 
were weakened by the transformation (2.2), then 
V(r, p) would have a range €' « c < b and the above 
condition would easily be satisfied. For a one-body 
cluster, from Eqs. (4.16) and (4.21), 

3 

H(i) = 2. P;a, (4.25) 
«=1 

the unperturbed form. Equation (4.24) with Eq. 
(4.25) is just the condensed notation for the equation 
we sought to derive, Eq. (1.18). The sum over all 
clusters is expected from the regional dependence of 
the transformation. We note that, in deriving Eq. 
(4.23), we have not specified the exact form of the 
cluster transformations A other than by specifying 
the requirements that they, their first, and their 
second derivatives be continuous throughout the 
entire 3N-dimensional space. In addition, we have not 
specified the exact form of the continuity functions h 
other than by specifying the requirements that 

and 

hi} = 0, rij = 0, 

= 1, rij = 1, 

ri} = h. 

5. CONCLUSIONS 

We have derived a set of regional transformations, 
Eq. (2.2), which, by properly choosing the cluster 
transformation A and the continuity functions h, 
includes part of the interparticle interaction in the 
transformation, thereby weakening the interaction 
terms dealt with by means of perturbation theory. 
Using Eqs. (2.10)-(2.13) with a suitable choice of €, 

we can make the effects of a transformed strong 
short-range potential small. For example, in the 
case of hard-core potentials, the transformation in 
Eqs. (2.10)-(2.13) with € (and thus €', €") -- 0 removes 
the singular components. Each element in the set of 
transformed N-body Hamiltonians is equivalent to 
the original N-body Hamiltonian, is Fourier analyz
able, and is amenable to ordinary perturbation and 
variational techniques. Both the transformed Hamil
tonian H' and the Jacobian of the transformation B 
have been shown to be of the same regional character 
as that of the original regional transformation. Thus, 
they can be easily approximated by assuming nobody 
additivity (1 ~ n ~ N), Le., by assuming the proba~ 
bility for (n + 1)- and more-body clusters to be 
negligible where n is arbitrarily chosen as a compro
mise between accuracy and laborious mathematical 
computation. Assuming two-body additivity, the set 
of transformations developed for strong short range 
potentials and, thus, the set of transformed Hamil
tonians associated with it, has been shown to be that 
derived by Eger and Gross.8 •S We note that the choice 
of h (and thus b) is relatively arbitrary. If we solved 
the problem exactfy (i.e., kept all the terms), the 
ground-state energy and the original wavefunction 
should be independent of this choice. However, when 
making approximations by specifying the maximum 
size of the clusters considered, we expect our results 
to be dependent upon the h's. Our results will, there
fore, be accurate to the extent that they do not 
involve these parameters. As the size of the clusters 
considered increases, we expect the dependence of 
our results upon the choice of h to decrease. 

Let us review the application of this' method to a 
specific problem including strong short-range repul
sive potentials. We first determine the shrinkage 
c -.. € required to make the effects of the transformed, 
strong, repulsive potential sufficiently small. The size 
of the clusters kept is determined by the amount of 
calculation we are willing to perform and by the 
properties of the physical system we wish to consider. 
A specific form of h satisfying the required conditions 
is chosen by trial and error. The range b and any 
other parameters in h are then determined by requiring 
the energy to be a minimum and/or by requiring 
the energy spectrum to have a specific form. The value 
of this method is that a perturbation expansion can be 
considered to any order by keeping large enough 
clusters. 
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APPENDIX 

In this Appendix we show that the calculation of 
the 3rth-order determinant D(n); [where r is the 
number of particles in the (n)i cluster] can be reduced 
to the calculation of the sum of products of three rth
order determinants where the sum omits many of the 
terms in the minor expansion of the original 3rth
order determinant. Consider D(l" 'r)' Rearranging 
the determinant in Eq. (4.11), we can write 

D(1 . .. r) = I D"i,kJ.II ... r)l, (Al) 

where dictionary ordering is used and the elements 
D«i,k),(I" 'r) are the terms 

C. (Oxu) = OAil . .. (t-l)(i+l) .•• r" (A2) 
.,,(t·· . r) ~ :::l • 

uX'r uXk ;. 

Comparing Eqs. (1.17) and (2.2), we observe that A 
is the sum of cluster transformations A multiplied by 
combinations of the continuity functions h. Taking 
the h's to be functions only of the radical components 
r and using Eq. (2.10) for Ai ... ro" Ci«(l'''rl can be 
written in the form 

(A3) 

where Fillk and Gik are defined by comparing Eq. (A2) 
with Eq. (A3) and their dependence on (l ... r) is 
implied. As an example. for the two-body (ij) cluster, 

_ (OOCij(1 - hi;») (0(1 - ocii)(1 - hij») 
Fi«k - :::l Xi" + :::l 

urk urk 

(
Ohij ) 

X t(Xill + Xi"') + ark Xi" , 

Gik = [t5ikOCij(l - hii) + (1 - ocij)(1 - hi;) 

x i( !5ik + c5 ik)] + c5ikhH • 

We now apply the theorem17 

laii + biil = laol + IbHI + I&aar-l-«b«+l' (A4) 

where 3r - 2 ~ oc ~ 0; L1a3r-l-/ltbll+1 denotes the 

11 Thomas Muir, A Treatise on the Theory of Determinants 
(Dover Publications, New York, 1960), Theorem 104, p. 89. 

determinant formed as follows: The first 3r - 1 - oc 
columns are taken from laill and the remaining 
oc + 1 columns from Ibijl, with the proviso that no 
two columns so taken have the same column number. 
I denotes the sum over all the possible combinations. 
Identify the two terms on the right-hand side of Eq. 
(A3) with aij and bij' respectively. The first 3rth
order determinant we obtain, I(XkA/rk)(oFiak/ork)l, can 
be written as 

I Xu oFi«k I 
rk ork 

= I (OFi"k) (OF/Ilk) (OFillk)1 (IT IT Xpr
) , (AS) 

ork ork ark p=l r=1 r p 

where (oFillk/ork) is a 3r x r array. Since the deter
minant has identical columns, 

I Xk)' oFiak I = O. (A6) 
rk ork 

The second 3rth-order determinant we obtain, 
IGikt5/lt"I. is diagonal in the rth-order determinant 
IGikl. Therefore, it reduces to 

Consider the remaining terms K. To avoid repetition 
of the identical columns in I (Xk;./rk)(oFiak/ork) I shown 
in Eq. (A5). each nontrivially zero, 3rth-order deter
minant Km in K must be reducible to the form 

K. - (~,) (G:.) (J',,,,.) (AS) 

where (Jiak",m) a 3r x r array composed of r columns is 
chosen from both I (xk)./rk) (oFillk/ork) I and IGikl. 
Because of the diagonal form of Km, 

(A9) 

where IJ:«kJ..ml is the rth-order determinant of the 
lower r x r array of (J/ak).,m) in Eq. (AS). Combining 
these equations, we obtain 

Km = (lGikD2(IGikl + ~ IJ;«kA,ml). (AIO) 

Therefore, the 3rth-order determinant D(l"''') can 
be reduced to the sum of products of three rth-order 
determinants, where the sum omits many of the terms 
in the minor expansion of the original 37th-order 
determinant, namely those not involving (lGikD2. 
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It is shown that all inner products are preserved by the correspondence between the physical and ideal 
state spaces. 

1. INTRODUCTION 

Consider a nonrelativistic system of In bosons or 
fermions, with wavefunctions V'(Xl'" x ln), where 
each xJ stands for both position and spin variables and 
S dx; denotes integration over position and summation 
over spin. Given any complete orthonormal set of 
symmetric (Bose) or anti symmetric (Fermi) I-particle 
wavefunctions CP,iXl ... Xl), one can expand 
lp(Xl ... xln) 

= ! C(1X1 '" IXn)CP"l(Xl ... Xl)' .. cp",,(Xln- Hl ... Xln), 
(11' .• an 

(1) 
where 

C(IXI' .. IX .. ) = I CP,,~(XI ... Xl) ... CP:.(Xln-l+ l ... xln ) 

X V'(X I ... XI,,) dXl ... dxl... (2) 

Such an expansion may be useful in cases where the 
particles have a tendency to group into composite 
particles composed of I particles each. This is the case, 
for example, for I-electron atoms or the electron 
pairs in a superconductor. 

The symmetry or antisymmetry of V' implies that 
the coefficients (2) cannot be arbitrary, but satisfy the 
following conditions: 

PC(IXI' .. IXn) = (±I)IV(P)C(C7.l ... IX .. ), (3) 

where P is any permutation of 1X1 •.• IXn and p(P) its 
parity; 

1 Vqc( 1X1 . . . IX .. ) 

== ! (IXvlXql 1 IIXP)c( 1X1 .•• IXv-llXlXv+l ... IXq_lPlXq+l ... IXn) 
,,{I 

= ±C(C7.1 ... IXn), (4) 

for 1 ~ P < q ~ n, where the exchange matrix is 
defined asl 

(IXPI 1 lyt5) == I CP:(XI ... x,)cp~(xi ... X;)CPy(XiX2' .. Xl) 

X CPb(XlX~' .. xi) dXl ... dx , dx; ... dx; . 

(5) 
1 M. Girardeau, J. Math. Phys. 4. 1096 (1963), herein denoted by 

I. Equation (n) of this paper will be denoted by (I.n). A slightly more 
general notation, motivated by atoms, for which one wishes to 
refer explicitly to the nuclei as well as the electrons, was used in I. 
The reader can easily see how to generalize the present discussion 
correspondingly; we shall not do so explicitly, in order to avoid 
irrelevant details. 

The upper or lower signs are to be taken in (3) and (4), 
depending on whether the particles are bosons or 
fermions. Because of the symmetry or antisymmetry 
(3) of c, the in(n - I) subsidiary conditions (4) are 
not independent; one of them (e.g., with p = 1, q = 2) 
implies all the rest. If C satisfies one (hence all) of these 
asymmetric subsidiary conditions, it will also satisfy 
the symmetric one: 

n 

Ic(1X "'IX)="'I C(IX '''IX) 1 "-~Vq 1 11 
v<q 

= ±!n(n - I)C(lXl ... IX,,). (6) 

Conversely, sincel ± 1 are the maximal and minimal 
eigenvalues of Ivf.l and ±!n(n - 1) are the maximal 
and minimal eigenvalues of I, it follows that, if C 

satisfies the symmetric subsidiary condition, then it 
will also satisfy all the asymmetric ones. Conditions 
(3) and (6) are both necessary and sufficientl to ensure 
that the wavefunction (1) is totally symmetric or 
antisymmetric. 

The state (I) has the standard quantized-field 
representation 

IV') = [(In)!]-!Idxl •.• dxl .. V'(Xl ... x, • .) 
t t 

X V' (Xl) ••. V' (Xl .. ) 10), (7) 

where lp(x) and V' (x) are Bose or Fermi field annihila
tion and creation operators satisfying the usual 
commutation or anticommutation relations. Defining 
composite-particle creation operators 

A~ == (l!)-! I dX1 ••• dxlCPixl ... XI) 

X V't(x1) ••• V't(xl), (8) 

one can write (7), with (1), in the form 

IV') = ((I!)n)! ! C(lXl'" IXn)A!l •.• A! .. 10). (9) 
(In)! "1 .. ·.... . 

It follows from (7) that, if V' and 11" are any two In
particle wavefunctions with inner product (V', V") and 
corresponding state vectors IV') and 111"), then 

(11', V") = (11' 111"), (10) 

where (V' /11") is computed by the usual rules of 
Wick's theorem. On the other hand, no such simple 
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rules hold in terms of the operators A~ and A!, 
occurring if one uses the representation (9) in (tp I tp/). 
The trouble is that the A~ and A! are neither Bose nor 
Fermi operators, but satisfy 

)tpt ... tpt tp ... tp + ... + I( )tpttp, 

'--" '---' 
1-1 fact,ors 1-1 factors 

(11) 

where commutators are to be taken for bosons and 
commutators or anticommutators for fermions, 
depending on whether I is even or odd. The extra 
operator terms on the right-hand side of the expression 
for [A"" A~]± are the mathematical expression of the 
fact that a composite particle made of bosons or 
fermions is not a boson or fermion except in the limit, 
when it is so tightly bound that it may be regarded as 
always in its ground state. This is well known,2 but 
also frequently ignored. 

This difficulty was solved in I by the introduction, 
following Dyson's treatment of spin waves,s of an 
ideal state space generated from an ideal vacuum 
state 10) by the application of creation operators a~ 
satisfying normal Bose or Fermi relations 

[a"" ap]± = [a~, a~]± = 0, 

(12) 

We define 

I tp) = (n !)-t I C(IXI'" IXn)a!l ... a!n 10) (13) 
(Xl' • • (Xn 

with the same coefficients as occur in (9). It was shown 
in I that the correspondence Itp)~ltp) is I-to-l, 
provided that conditions (3) and (6) are satisfied. 
Since the same conditions make the correspondence 
tp ~ c I-to-l, we see that the correspondence between 
the physical state space and the ideal state space 
[space of all states (13) with coefficients satisfying (3) 
and (6)] is I-to-1. The method of transforming phys
ical operators, e.g., a many-particle Hamiltonian, into 
the ideal state space was given in 1. This transforma
tion was carried out in such a way as to ensure that, if ° Ill.) = AlA) and 0ideaJ is the corresponding operator 
in the ideal state space, expressed in terms of the a", 
and a!, then 0ideal Ill.) = AlA) with the same A. 
However, there are physically important quantities 
which cannot be expressed in terms of eigenvalues, 

'but require more general matrix elements for their 

• P. Ehrenfest and J. R. Oppenheimer, Phys. Rev. 37,333 (1931). 
3 F. J. Dyson, Phys. Rev. 102, 1217 (1956). 

description. In order to ensure the complete physical 
equivalence of the physical and ideal state spaces, it is 
necessary to show that all inner products are preserved 
by the correspondence Itp) ~ Itp). The purpose of the 
present paper is to fill that gap in the logic of 1. We 
shall show that, in fact, 

(14) 

for all Itp) and Itp/). When supplemented by the 
formulae for oqservables 0ideal given in I, this ensures 
the complete physical equivalence of the physical and 
ideal state spaces. 

2. PROOF 

We start by evaluating the inner product (tp I tp/) 
between two physical states expressed in the form (9). 
Substituting (8) and making use of Wick's theorem 
for vacuum expectation values 

one finds 

< tp I tp/) 

= [(In)!tl I I C*(IXI'" IX")C/{PI ... Pn) 
1X1'··2nPl'·'P". 

X IJ!Pl(PXI ... PX1) ... IJ!p.(PX1n-1+l ... Px1n), 

(15) 

where (PXI ... Px1n) is anyone of the (In)! permuta
tions P of (Xl' .. x ln) and pep) is its parity. Define 

J P(IXI ... IXn' PI'" f3,,) 

== f IJ!:n(X1n-l-t1 ... x ln ) ... IJ!",~(XI ... Xl) 

X IJ!Pl(PXI ... Px1) ... IJ!Pn(PX1n- 1+1 ••• Px1n) 

(16) 

Then, 

<w I W') = 
[(In)IrI I I C*(IXI'" IXn)C'({J1 ... (J",) 

~l" ''''n Pl' "Pn 

We next show that 
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One has, by (1) and (2), 

C'(fJ1 ... fJn) = f IfUYl ... YI) ... Ift(Yln-H-1 ... Yin) 

X 'If"(Yl' .. Yin) dYl ... dY'n' (19) 
where 

(Xl' •• an 

X If'''l(Yl ... YI) ... 1f",,(Yln-l+1 ... Yin)' 

(20) 
Hence, 

L C'(fJ1'" fJn)J ['(OC1 ... OCn , fJl ... f3n) 
Pl'" p" 

= L fdX1'" dX1n dYl •.. dYln 
fit, .. P .. 

X 1f:,,(Xlrt-l'H ... Xln) ••• Ifrx~(XI ... XI) 

X IfPI(PX1 ... PXI) ... Ifp,,(PXln-l+1 ... PX1n) 

X IfUJ'l' .. YI) ... 1f;,,(Yln-l+1 ... Yin) 

X 'If"(yt . .. Yin)' (21) 

Use of the completeness relation (LI) for the If 0/ gives 

L IfPI(PX1 '" Pxt) ••• IfPn(PXln- l+1 ... Pxln ) 
fh" ,p" 

X If;l(Yl ... YI) ... 1f1'1,(Yln-l+1 ... Yln) 
= (l!)-n L L ... L (± 1 )p(Prl( ± l}p(Qzl ..• (± 1)pm/l 

PI Qr Rr 

X b(Pxl - PIYI) .. , b(Pxz - PlY!) 

X b(PXI+1 - QIYHl) ... t5(Px2! - QIY21) 

X .•. 6(PXln_!+l - RlYln-I+1)' .. 6(Px1n - R1Yln), 

(22) 

where (PlYI ••• PlY!) is any permutation of (YI ... YI), 
(QIYl+l ..• QlY21) is any permutation of (YI+1 ... Y21), 
... , and (RlYln-l+l ••. RlYln) is any permutation of 
(Yln-l+l ... YIn)' Since c' satisfies the conditions (3) 
and (6), 'If" is symmetric or antisymmetric in (YI ... Yin)' 
Thus, on a renaming 

Y1 -+ PI
1
Yl" .• , J'i-+ PI 1Yl' 

YI+1 -+ Qi1 YI+1' ... , Yin -+ Ri1 Yin 

of the dummy integration variables, one finds 

L C'(f31'" f3n)J p( IXI ••• IXn' f3I ••• f3n) 
PI" '/in 

= (l!)-n L.L· .. L (±1)p(P11(±1)p(QI1 ... (±l)PIR/l 
PI QI RI 

X f dX I .•• dXln dYl ... dYln 

X q;:,,(Xln- 1+1 ... X1n) ... 1f,,~(Xl ... Xl) 

X b(Px1 - J'1) ... b(Pxln - Yin) 

X 'If"(PIIYt' .. Pity! ... RI
1Yln_l+l ... RIIYlr,) 

= f dX I • , • dXln dYI ... dYln 

X q;: .. (Xln- l+1 ... Xln) ... 1f,,~(XI ... Xl) 

X ('(PX1 - Yl) .. , t5(PXln - Yln)tp'(Yt ... Yin) 

-fm*(x "·x)···m*(x ·"X) - -rO/1 1 I nZn In-I+l ' In 

X tp'(PXl ... PXln) dX1 ••• dX1n 
= (± l)P(PIC'(1X1 ••• IXn)· (23) 

Substitution of (18) into (17) then gives 

<'If' l!p'> = [(In)!t1
, .L c*(oc1 '" ocn)C'(OCl ..• ocn ) L 1 

1%1'· '/l'n I~ 

= "" C *(IX ••• OC )C '(IX ... IX ) 
"'" 1 n 1 " • 

(24) 
121"' 'an 

On the other hand, it is a trivial consequence of (13), 
Wick's theorem, and (3) that 

(!p l!p') = (n!)-l L L C*(1X1 '" IXn) 
lXI' , '2n /il' , ,p" 

X c'(f31 •.• fJn) (01 a .. " ... a"la;l ... at 10) 

= .L C*(OCI'" OCn)C'(OCI •.• OC n)· (25) 
otl·· '/Zn 

This establishes (14). 
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For a system of 2n fermi6ns it is shown that the occupation number n,. of any fermion-pair state 
'P,.(X,Xa) is n,. = n f 'P:(x,xa)Pa(X,Xa, x~x;)'P,.(x~x~) dXldxZ dx~ dx;, where pz, assumed normalized to 
~nit~, is the two-pa~ticle density matrix: T~e. known upper ~ound. on the largest ei~enva~ue of P2 
Implies that n,. ~ 1 m the thermodynaffiIc lImit n' -+ 00, equalIty bemg approached, With sUitable f/J,., 
only for certain limiting BCS states VlBCS. Bose condensation of fermion pairs, in the sense of macro
scopic occupation of any n,., is impossible. Fermi condensation into f/J,. is defined to be present if n,. > 0 
in the thermodynamic limit. It occurs, for example, for suitable BCS states, but for a normal Fermi 
system all n,. are of order n-1 or smaller. It is argued that the physical criterion for VlBcs exhibiting 
Fermi condensation is that the pair state from which it is constructed must have a bound-state com
ponent of range ";;'k,', where kp is the Fermi momentum (37r2p)l, The maximally-occupied pair state is 
the eigenfunction of PI belonging to the largest eigenvalue, associated with off-diagonal long-range 
order of the type defined by Yang. A formula for no for the original BCS state is derived. Some remarks 
are made concerning the interpretation of the Fermi condensation as a superconducting transition. The 
analysis is generalized to occupation of I-fermion states. It is conjectured that, when Fermi condensation 
first sets in at a given even I, this is associated with the formation of bound states of I fermions, and 
a formula for the maximal occupation of such states is exhibited. The implications, for the theory of 
liquid 'He, of the fact that a helium atom contains electrons are examined. It is shown that Bose con
densation into a single-'He-atom state is impossible, but a Fermi condensation similar in some respects to 
that in a superconductor can and probably does occur. It is argued that the mechanism preventing Bose 
condensation in superconductors and liquid 'He lies in the effect of collisions, acting via the exclusion 
principle, in causing virtual internal excitations. 

1. INTRODUCTION 

Consider a system of 2n fermions described by a 
normalized wavefunction "P(XI .•. X2n), where each 
Xi stands for both position and spin variables, and 
f dx; denotes integration over position and summa
tion over spin variables. The same state has a quan
tized-field representation in terms of a normalized 
state vector 111') given by 

The antisymmetry of 11' implies that e is symmetric in 
IXI ••• IXn' corresponding to exchange of fermion 
pairs, and in addition satisfies the subsidiary con
ditionl 

n 
! ! (1X1}lXq l I 11X(3)e( IXI .•• IXv-IIXIXv+I ••• IXq _I{3lXq+1 ••• IXn) 
,.fJ 1}<q 

= -in(n - 1)e(1X1 ••• IXn), (4) 

corresponding to pair-breaking fermion exchanges. 
Here the exchange matrix is defined by I"P) = [(2n)w1I dXI ... dX2nlp(XI ... X2n) 

X lp\XI)' •. lpt(X2n) 10), (1) 

where the 11' t are fermion creatIon operators. Given 
any set of two-fermion wavefunctions 91,.(XI XJ which 
are antisymmetric, orthonormal, and complete, 
relative to the boundary conditions satisfied by 11', 
one can expand "P in the form l 

lp(XI ••• x2n) = ! e(IXI'" IXn) 

where 

e(1X1 •.. IXn) = f 91,,~(XIX2) ... 91: .. (X2n- I X2n) 

x "P(x i ••. x 2n) dX I ••• dX2n' (3) 
1 M. D. Girardeau, J. Math. Phys. 4, 1096 (1963). Equation (n) 

of this paper will be denoted by (I.n). 

(oc{31 I Iy~) = I 91:(XIX2)91;(X~X2)91y(X~X2) 
x 91d(XI X2) dXI dX2 dx~ dX2' (5) 

The antisymmetry of the 91,.(XX') in X and x', sym
metry of c in IXI ••• otn , and the subsidiary condition 
(4) are also sufficient to ensure that a state of the 
form (2) is totally antisymmetric. l 

Substitution of (2) into (1) yields 

I"P) = [2n/(2n)!]1 ! C(lXl'" IXn)A~, ... A~ .. IO), (6) 
/11' .• «" 

where the A! are fermion-pair creation operators 
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They satisfy the commutation relations 

[A«, All] = [A~, A1] = 0, 

[A«, A1] = ~«II - 2 f dXl dX2 dyIP:(XlX2) 

x IPP(XI Y)1/(Y}'P(X2)' (8) 

Because of the extra operator term in [A«, A ~], the 
fermion pairs are not bosons, and A!A« cannot be 
validly interpreted as a boson occupation-number 
operator. 

This difficulty can be overcome by introduction of 
the ideal state space. It has been shown1.2 that, if 
one defines 

1'1') = (n!)-l I e(OCl'" ocn )a!l ... a!n 10), (9) 
(11' •• "fa 

where e is the same as in (6) and the a« and a! satisfy 
ordinary Bose relations 

a« 10) = 0, 

[a«, all] = [a!, a~] = 0, 
t 

[a«, all] = ~«II' 
then all inner products are preserved, i.e., 

(10) 

('I', '1") = ('1'1'1") = ('1'1'1"), (11) 

provided that e satisfies the subsidiary condition (4). 
Here 'I' and '1" are ordinary Schrodinger wave
functions, 1'1') and 1'1") are expressed in the form (6) 
with coefficients e and e' given by (3), and 1'1') and 
1'1") are the corresponding ideal state vectors (9). 
The method of transforming physical operators into 
the ideal state space has also been given. l Hence, all 
calculations can be performed in the ideal state space. 

2. FERMION-PAIR OCCUPATION NUMBERS 
IN A PURE STATE 

The ideal-state-space operator N« = a!a« is a 
boson occupation number by virtue of (10), so that 
its expectation value can validly be interpreted as 
the mean occupation number n« of the fermion-pair 
state IP«: 

t n« = ('I'I a«a« 1'1'). (12) 

Substitution from (9) and use of Wick's theorem 
together with the symmetry of e( OCl ••• ocn) gives 

n« = n I le(ocl'" ocn _loc)1 2
• (13) 

1%1'" (1' .. _1 

This is in agreement with a physical interpretation of 
e(ocl · .. OCn ) as the probability amplitude for observa
tion of fermion pairs in states fP« ••• fP« . 

1 " 

• M. D. Girardeau, 1. Math. Phys. 11, 682 (1970) (preceding 
article). 

Substitution of the expression (3) for c yields 

n« = n«l' ~n-l f dXl ... dX2n dYl ... dY2n 

X fP«/XlX2)' .. fP«,,_1(X2n-3X2n-2)fP .. (X2n-lX2n) 

x fP«~(.YlY2)· .. fP:,._1(Y2n-sY2n-2)fP:(Y2n-lY2n) 

x tp*(xl ... X2n)tp(Yl ... Y2n)' (14) 

The sums over OCl ... OCn-l and then the integrals over 
Yl ... Y2n-2 can be performed with the aid of the 
closure relation (1.1).1 Making use of the antisym
metry of '1', one finds that 

n« = nf dXl ... dX2n dY2n-l dY2n 

X fPiX2n-lX2n)fP:(Y2n-lY2n) 

X tp*(x l ..• X2n)tp(Xl ... X2n-2Y2n-lY2n)' (15) 

Integration over Xl ••• X2n-2 yields the two-particle 
density matrix oftp, defined as 

P2(XlX2, x{x~) 

= f tp(xl ... X2n)tp*(X{X~X3 ... X2n) dxs •.• dX2n' 

(16) 

Thus, we obtain a formula for n .. in terms of P2 and 
fP« : 

n« = n f fP:(X1X2)P2(XlX2, x{x~) 
x fPix{x~) dXl dX2 dx{ dx~. (17) 

This bears a remarkable resemblance to the formula 

nk = n f fP:(X)Pl(X, X')fPk(X') dx dx' (18) 

for the mean occupation number nk of an orbital fPk 

in an n-particle (boson or fermion) system with one
particle density matrix Pl' Summation of (17) over 
oc, with the aid of the closure relation (1.1) for the 
fP« and the normalization condition 

yields 

f P2(XlX2, XlX2) dXl dX2 = 1, 

In", = n, 
« 

(19) 

(20) 

in accordance with one's intuitive expectation that 
the number of fermion pairs in a system of 2n fermions 
is n. 

It is knowns- 5 that the largest eigenvalue Amax of 
P2 for a system of 2n fermions has the following 

8 F. Sasaki, Quantum Chemistry Group, Upsala, Report No. 
77 (1962) and Phys. Rev. 138, BI338 (1965). 

'C. N. Yang, Rev. Mod. Phys. 34, 694 (1962). 
• A. 1. Coleman, Rev. Mod. Phys. 35, 668 (1963), Sec. 7. 
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upper bound: 
Amax < (2n - 1)-1. (21) 

The integral in (17) is the expectation value of P2 in 
the state cp~ and cannot, therefore, exceed A.nax; hence, 

n~ ~ nAmax < n/(2n - 1). (22) 

3. STATISTICAL MECHANICS 

For a system described by a statistical ensemble of 
orthonormal states 1pi(X1 '" x2n) with statistical 
weights Wi satisfying 

Wi;;:: 0, I Wi = 1, 
i 

(12) is replaced by 

na = I Wi(1pil a!aa l1pi)' 
i 

Then, Eq. (17) is still valid with 

P2(X1X2, x{x;) 

(23) 

(24) 

= f P2n(X I ••• X2n' X{X;X3 ... X2n) dX3 ... dX2n' 

(25) 

where the 2n-fermion density matrix 

P2n(Xl ••• X2n , x{ ... x~n) 

= I Wi1pi(X I ••• x2n)1p1(x{ ... x~n)' (26) 
i 

Defining the density operator 

(27) 

where the l1pi) are quantized-field-representation 
states (1), one can write4 

P2(X1X2, x{x;) = [2n(2n - 1)]-1 

X Tr [1p(X1)1p(X2)P1pt(x;)1pt(xDl. (28) 

4. BOSE VS FERMI CONDENSATION 

Bose-Einstein condensation into the pair state cp~ 
is present if and only if 

lim therm (n~/n) = f~ > 0; (29) 

fa. is called the condensed fraction. Here "lim therm" 
denotes the thermodynamic limit, i.e., a limit where 
n -4- 00 and the system volume 0 -4- 00 in such a 
way that the density n/O remains constant. However, 
in view of the upper bound (22), one has 

(30) 

i.e., Bose-Einstein condensation of fermion pairs 
cannot occur. The fact that complete Bose condensa
tion, i.e., fa. = 1, cannot occur in Fermi systems was 

pointed out before.6 However, the result (30) is much 
stronger. It is implicit in some remarks of Coleman.8 

In view of (22), one has 

lim therm n~ ~ t (31) 

for any pair state cp~. The attainment of this upper 
bound in the thermodynamic limit is an exceptional 
occurrence.5 In fact, in a normal Fermi system n~ 
is only of order n-1 and, hence, vanishes in the 
thermodynamic 'limit, as we shall see in Sec. 7. We 
shall call the unusual situation where it does not 
vanish Fermi condensation: 

lim therm n~ > 0 <=> Fermi condensation into cprz. 

(32) 

It corresponds, according to (22), to a largest eigen
value of order n-1 (with our normalization) for P2, 
which Yang has shown4 to be associated with off
diagonal long-range order (ODLRO) of P2' For a 
normal Fermi system the largest eigenvalue of P2 is 
only of order n-2• 

The distinction between Fermi condensation and 
true Bose condensation can be seen in another way 
by evaluating the expectation value of the operator 
A!A~, which would be a Bose occupation number 
operator if the operators (7) obeyed Bose commuta
tion relations. By (7), 

(A!A~) = ! f cpix{x;)(1pt(xD1pt(x~)1p(X2)1p(Xl» 
x CP:(XIX2) dXl dX2 dx{ dx~, (33) 

where the angular brackets denote an expectation 
value in the case of a pure state and an ensemble 
average in the case of a mixed state. Insertion of (28) 
and comparison with (17) give 

(A!Arz) = n(2n - 1) f CP:(XIX2)P2(XIX2, X{X2} 

x cp~(x{x;) dXl dX2 dx{ dx; 

= (2n - l)n~. (34) 

The upper bound (31) implies that 

lim therm [n-l<A!A~>] = 1. (35) 

One might jump to the conclusion, by comparison of 
(35) with (29), that <A!A~) ought, therefore, to be 
interpreted as a close analog of a Bose occupation 
number and that attainment of the upper bound (35) 
represents extreme Bose condensation. That such an 
interpretation is incorrect can be seen from the 
normalization condition. Making use of the com
pleteness relation for the cP~ and the normalization 

• A. J. Coleman, Phys. Rev. Letters 13, 406 (1964). 
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condition (19) on P2' one finds 

~ (A~A,,) = n(2n - 1) f P2(XlX2, X1X2) dXl dX2 

=n~n-l)=(~). 0~ 
Thus, even when a single (A!A,,) attains its upper 
bound n, all the other (A!A,,) give the overwhelming 
contribution to the sum rule (36). This is quite 
different from Bose condensation, for which the sum 
rule is exhausted by a single orbital occupation 
number nt;t when na attains its upper bound n for a 
system of n bosons. 

S. DENSITY MATRICES AND PAIR 
OCCUPATION IN BCS STATES 

Since3- 5 the states with net = t for some cP" are of 
BCS7 type, we now investigate the na for such states. 
We define 

V'BCS(XI ... x 2n) 

= CA2n[g(XlX2)g(XaX4) ... g(X2n-lX2n)], (37) 

where e is a normalization constant, A 2n is the 
antisymmetrizer with respect to Xl ••• X 2n , and g is 
a normalized and antisymmetric fermion-pair func
tion. Such a state is called an "antisymmetrized 
geminal power" by Coleman5 •8 ; our terminology 
V'BCS is motivated by the fact that, for any such state, 
there exists9- n a basis of orbitals in terms of which 
(37) takes on the pairing form characteristic of the 
variational trial states of the BeS theory.7 The state 
(37) has a quantized-field representation of the form 
(1), which can be written 

IV'Bcs) = [2nj(2n) !)!C(A t)n 10), (38) 
with 

(39) 

In order to transform (38) into the canonical Bes 
form, one considers g(xx') as the kernel of an integral 
operator G on functions I(x): 

Gf(x) == I g(xx')f(x') dx'. (40) 

Defining G* and G as the integral operators with 
kernels g*(xx') and g(x'x) , and Gt = (j* as usual, 

71. Bardeen. L. N. Cooper, and 1. R. Schrieft'er, Phys. Rev. 108, 
1175 (1957). The fact that the 2n-panicle projection of a BCS state 
is of the form (37) was first shown by K. Nakamura [Progr. Theoret. 
Phys. (Kyoto) 21, 713 (1959)]. 

8 A. 1. Coleman, 1. Math. Phys. 6. 1425 (1965). 
I Ref. 4, Appendix A. 
10 C. Bloch and A. Messiah, Nuc\. Phys. 39, 95 (1962). Appendix 1. 
11 B. Zumino, 1. Math. Phys. 3. 1055 (1962). 

one sees that 
G = -G, Gt = -G* (41) 

as a result of the anti symmetry of G. Since 

K == GtG = -G*G (42) 

is Hermitian and positive semidefinite, its eigenvalues 
)'k are real and nonnegative: 

KCPk = ),kCPk, ),k ~ 0, (43) 

where the CPk(X) are the eigenfunctions of K, ortho
normal in the usual sense: 

(CPk' CPk') = I CP:(X)CPk'(X) dx = bkk,· (44) 

The number r of such eigenfunctions is, by definition, 
the rank of K. The set {CPk} is certainly not complete 
if r is finite, and it may not be complete even if r = 00. 

By a derivation paralleling those of y ang9 and 
Bloch and Messiah,lo it can be shown that the non
zero eigenvalues ),k > 0 of K are at least twofold 
degenerate, and that the corresponding eigenfunc
tions CPk± can be chosen so that 

GCPk± = =F),tcp~. (45) 

The desired canonical form of g is then 

g(xx') = L A![cp:+(x)cp:_(x') - cP!.(x)cP!r(x'»). (46) 
k 

Substitution of (46) into (39) yields 

t ! ! t t 
A = 2 L Ak,ak+ak_ 

k 

with fermion creation operators 

(47) 

at. == I dXCPk~(X)V't(x). (48) 

Substitution of (47) into (38) gives the standard 
paired form of a Bes state of 2n fermions. 

The expressions for the one- and two-particle 
density matrices of such a state IV'Bus) are well known6 ; 

in our notation they are given asymptotically for 
n --+ 00 by 

Pl(X1, x{) = (2n)-1 L ( P),k ) 
k 1 + PAk 

x [CP:+(X1)CPk+(X~) + CP:-(X1)CPk_(xD), 

plX1X2 , x{x;) = Pl(X1, X{)Pl(X2, x~) 

- Pl(Xl, X~)Pl(X2' xD 
+ X(XIX2)x*(X{X~), (49) 

with 

X(X1X2
) = (2n)-1 L [ (p),k)i ] 

k 1 + PAk 

x [CP:+(Xl)CP:_(X2) - CP:+(X2)CP:_(X1)]. (50) 
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The positive parameter p is determined by the con
dition 

n-1 I PAk = 1. 
k 1 + PAk 

(51) 

A necessary condition for the asymptotic validity of 
the expressions (49) is that the orbitals qJks are 
spatially extended, as is the case for plane waves and, 
more generally, Bloch waves. Then, the qJks will be 
proportional to n-i, where n is the volume of the 
system, and each Ik will introduce a factor of n. 
With the normalization corresponding to definition 
(16), PI will then be proportional to n-1 and P2 to 
n-2 for large n. , 

Substitution. of (49) into (17) gives the following 
expression for the mean occupation number n~ of any 
normalized and antisymmetric two-particle state qJ~: 

(52) 
where 

(53) 

and 

n~ = 2n f qJ;(X1X2)Pl(Xl, XDp1(X2' X2) 

x qJiX{X2) dX1 dX2 dx{ dX2' (54) 

For the special case that qJ~ is chosen to be the pair 
function g occurring in the definition (37) of the BCS 
state, one has, by (46), (50), (51), (49), and the 
orthonormality of the qJks' 

-1 i ~ Ak -! (5 ) 
(g, X) = n P f 1 + PA

k 
= P 5 

and 

I -1 2I A: n - n 
II - P k (1 + PAS" 

(56) 

Thus, for qJ~ = g, 

normal Fermi system. Thus, Fermi condensation in 
the sense (36) can only arise through the contribution 
of the first term in (52). 

For orientation, consider first the case of a single 
Slater determinant. As has been pointed out by 
Coleman5•6 and is, in fact, implicit in the interpreta
tion of the normal state in the BCS theory, 7 a single 
Slater determinant is a special case of a BCS state (37), 
corresponding to a single 2n-fold degenerate nonzero 
eigenvalue of K, with value (2n)-l: 

Ak = (2n)-1, k E SF' Ak = 0, k ¢ SF, (58) 

where SF' the Fermi sea, is a set of n k-values. 
Substitution of (58) into (46), with any choice of 2n 
orthonormal orbitals qJk±' gives a K with the eigen
values (58), and substitution of this g into (37) gives 
the Slater determinant constructed from these orbitals, 
as is easily seen from (47), (38), and the fact that 
(at)2 = O. In order to satisfy (51), one has to take 
p ---+ 00. Then, X vanishes by (50), so that Fermi 
condensation cannot occur in any pair state qJ~, as 
expeCted for a normal Fermi system. 

More generally, one can construct g so as to have 
a single 2m-fold degenerate nonzero eigenvalue, where 
m is any integer ~ n, by choosing 

Ak = (2m)-1, k E S, Ak = 0, k ¢ S, (59) 

where S is any set of m k-values and {qJk± IkE S} is 
any set of 2m orthonormal orbitals. Such BCS states 
are not single Slat~r determinants if m > n; they are 
said to be of "extreme type" by Coleman,5 since they 
have the property that, for given rank r = 2m of K, 
these states maximize the largest eigenvalue of P2 and, 
hence, maximize the occupation number n~ of a 
suitable pair state qJ~. Equation (51) is satisfied with 

p = 2nm/(m - n). (60) 
-3 

-1 -1 2 ~ A.k 
ng = np + n P f (1 + pA

k
)2 . 

(57) Then, by (57), 

6. FERMI CONDENSATION IN BCS STATES 

For a system of fermions, P1(X, x') cannot exhibit 
ODLRO because this would imply an eigenvalue of 
PI exceeding the known upper bound.4 Equivalently, 
ODLRO in PI would give nk = O(n) by (18) for 
suitable trial states qJk' contradicting the limitation 
nk ~ I of the exclusion principle. Thus, PI(X, x') 
falls to zero when Ir - r'l exceeds a certain volume
independent range; since it is of order n-1 when 
Ir - r/l is within this range, one concludes from (54) 
that n~ is of order n-1 regardless of whether qJ~ is 
bound or spatially extended. This is typical of the 
n~ of an ideal Fermi gas or, more generally, of a 

nil = (m - n)/2m + O(n-I). (61) 

Since (57) is only asymptotically correct for large n, 
the same is true of (61). The upper bound (31) on 
nil can be approached arbitrarily closely by letting 
both nand m get arbitrarily large with m » n: 

lim lim ng = lim n + O(n-I)] = t. (62) 
n .... oo m-+oo n~oo 

This agrees with the known fact4.5 that the upper 
bound (21) on the largest eigenvalue of P2 is ap
proached arbitrarily closely by BCS states of extreme 
type with arbitrarily large rank r = 2m. Yang has 
shown more generally that the largest eigenvalue of 
P2 for BCS states of extreme type with rank r is4 (with 
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our normalization of P2) 

Amax = (r - 2n + 2)/(2n - l)r. (63) 

For large n, when the 2 in the numerator and the 1 
in the denominator are negligible, it follows that the 
expression (61) for ng is equal to its upper bound 
n~ax [Eq. (22)], showing that g is an eigenfunction 
of P2 belonging to the eigenvalue Amax. This is, in 
fact, exactly true for BCS states of extreme type even 
if n is not large, as has been shown by Coleman.s 

Since BCS states of extreme type are a very special 
case, it is desirable to obtain criteria for Fermi 
condensation in general BCS states (37). We first ask 
the question: Given a BCS state, for what two
particle function CPa is nalargest? We denote the func
tion CPa maximizing na by CPo. In view of (52), the answer 
is trivial in case n~ is negligible, since the overlap 
( CPo' X) is maximized by choosing 

CPO(XIX2) = (X, X)-iX(XIXJ. (64) 

Since we have shown that n~ is of order n-1 , it will 
indeed be negligible if Fermi condensation into the 
state CPo occurs, in which case no will be of order unity. 
Dropping the negligible term n~, one has in this case, 
by (52), 

no = n(x, X)· (65) 

The normalization of X can be evaluated with the aid 
of (50): 

(66) 

hence, 

no = (2n)-ll PAk 
2' (67) 

k (1 + pA.k ) 

The criterion (32) for Fermi condensation will be 
satisfied if the summation is proportional to n. In the 
extreme case, one can easily verify with the aid of 
(59)-(61) that no = ng • In fact, for an extreme state, 
it follows from (46) and (50) that X is proportional to 
g and, hence, CPo = g, in agreement with our previous 
statement. 

More explicit results can be found by specializing 
to the case in which g is translationally invariant and 
a spin singlet: 

g(XX') = (20)-ig(r - r/)(!5at!5a,. - !5a j.!5a't) 

= 2-*0-!(<5a t<5",j. - !5"j.<5",t) I glteik.(r-r'), (68) 
It 

where gk is the Fourier transform of g(r), assuming 
periodic boundary conditions with periodicity volume 
0: 

gk = fng(r)e-iIt
•
r d 3r (69) 

and x = (r, 0'), x' = (r/, a'l. We assume that g(r) is 
symmetric, 

g( - r) = g(r), g-k = gk, (70) 

so that g(XX') is antisymmetric. This is the type of 
state assumed in the original BCS theory.7 One has 
for the integral operator G with kernel g(xx') 

G(eik.rb"t) = -(20)-igke·1<·rb"j., 

G(eik·'b"j.) = (20)-lgkeik"b"t . (71) 

It then follows from (42) that dk"b"t and e1k'rb"j. are 
eigenfunctions of K with eigenvalue 

(72) 

The choice of eigenstates of K within the fourfold
degenerate subspace (kt), (k!), (-kt), (-k!) has to 
be made so that Eqs. (55) are satisfied. One finds that 
this is the case with 

CPk+(X) = O-leik'rb"t, 

CPk_(X) = o-l(g:llgltl)e-·l<·'b"j. . (73) 

The normalization condition on the Ak is satisfied by 
virtue of the normalization condition for g: 

II gll2 =flg(r)1 2 d3r = 0-1 llgkl2 = 2l A.k = 1. (74) 
k It 

One then has by (67) 

no = (2nrl l q /glt/
2 

It (1 + q /gkI2)2' 
(75) 

with q = (20)-lp determined, according to (51), by 

n-1 l q /gll = 1. (76) 
k 1 + q Igk/ 2 

It then follows from (64), (65), and (50) that 

CPo(xx') = (20)-lcpo(r - r/)(b"tb",j. - b"j.b."t), (77) 

with 

* cpo(r) = (nop)-*O-1 l q gk eik.r (78) 
It 1 + q Igkl2 

and P = 2n/0, the number density of fermions. 
Suppose that g(r) is a bound state, i.e., that it falls 

to zero for Irl > some volume-independent range. 
Then its Fourier transform (69) will be volume 
independent. Making the usual replacement 

t - (27T)-SO f dSk, 

one finds in the thermodynamic limit [n -+ 00, n - 00, 

(2n/0) - P, 0 < P < 00] 

cpo(r) = (27T)-a(-.!L)lf glt eik.r d 3k, (79) 
nop 1 + q Igkl 2 
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with occupation number 

no = (21T)-a(!!)j Igkl
2 

dSk. (80) 
p (1 + q Igk12)2 • 

The parameter q is determined by 

2(21T)-S(!!)j Igkl
2 

d3k = 1. (81) 
p 1 + q Igkl2 

It is easy to see that the left side of (81) varies from 
o to 00 as q varies from 0 to 00. Hence, there is 
always a positive volume-independent solution q of 
(81). Substitution of this q into (79) and (80) gives a 
bound two-fermion state qio with an occupation 
number no, which is positive and volume-independent 
and, hence, satisfies the criterion (32) for Fermi 
condensation. It follows from (80), (81), and the 
inequality 

(82) 

that 
(83) 

in agreement with (31). 
In order to obtain more explicit results, consider 

the special case 

gk=const, kES; gk=O, k¢S, (84) 

where S is any region of k space. In view of (72), this 
is a special case of a state of extreme type, Eq. (59). 
The number of allowed k values in S is 

(85) 

where w = Is dSk is the volume of S. Thus, by (61), 

no = HI - t(21T)3(pfw)J. (86) 

The same result can be found from (80) by deter
mining the constant in (84) so that g(r) is normalized; 
the corresponding expressions for q, g, and qio are 

q = tp[l - t(21T)3(pJW)]-l (87) 

and 

g(r) = qio(r) = (21T)-~W-t f/k
•
r dSk. (88) 

The limit (pfw) ~ 0 corresponds to complete Fermi 
condensation (no = t). As (p/w) increases, no de
creases, vanishing atthe limiting value (p/w) = 2(21T)3, 
which corresponds to a single Slater determinant with 
8 as the filled Fermi sea; (86) is not correct for larger 
values of (p/w), for which I1f'BCS) vanishes identically 
as a result of the exclusion principle. In the special 
case that 8 is a sphere of radius kg centered on the 

origin, one 4as 

(89) 

and g(r) is a spherical Bessel function of range kG l • 

The limit ko ~ 00 of complete Fermi condensation 
corresponds to zero range of g(r) , i.e., g(r) infinitely 
tightly bound. The very-high-momentum components 
required are an obvious consequence of this tight 
binding. The opposite limit no ---+ 0 corresponds to 
ko ---+ kF = (31T2p)!, the top of the normal Fermi sea. 

The dependence of no on the range of g(r) in the 
more general case is similar to the special case (89). 
Suppose that g(r) has range a, and introduce f(r*) 
and ik. defined by 

g(r) = a-Jf(r*), r* = ra-1, 

ft* = jf(r*)e-ik*.r* d3r* = a-fgk' k* = ka. (90) 

Then, expansion of the integrands of (80) and (81) 
for small q gives 

q = ip[ 1 + H21TrSpasj Ifk*14 d3k* + O«pa3
)2)} 

no = t[l - H21T)-SpasjIA* 14 d3k* + o«pa3)2)} 

(91) 

which shows that the upper limit no = t is approached 
as pas ~ O. At first sight, this appears to contradict 
the previous result that a state of extreme type with 
rank r ---+ 00 is needed to attain no = t. However, as 
the range a of g(r) approaches zero, the range ko = a-I 
of gk approaches infinity. This infinitely slow varia
tion of gk' hence Ak , means that the situation of 
states of extreme type (Ak constant wherever it is 
nonzero) is approached, in a certain sense, in the 
limit pas ~ O. The opposite limit no = 0 is reached 
when the rank r of K, here equal to the number of 
nonzero gk' drops to 2n. One can estimate r as the 
number of allowed k values in a sphere of radius 
equal to the range of gk : 

r"" (21T)-3Q!1Ta-3• 

Thus, no drops to zero at 

pas"" (31T2)-1. 

(92) 

(93) 

Since, in the case in which g is a bound state, no 
drops to zero as the range of g increases to a critical 
value given approximately by (93), one might con
jecture that Fermi condensation into an unbound 
pair state cannot occur. This, however, is not the 
case. The essential property of g necessary for Fermi 
condensation is that it contain a component of 
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sufficiently short range; the presence of a nonvanishing 
tail, which makes g unbound, does not prevent 
Fermi condensation. In order to see this, decompose 
g(r), Eq. (68), in the form 

g(r) = 0-lgo + g'(r), g'(r) = 0-1 L' gkeik'r, (94) 
k 

where the prime implies omission of the k = 0 
component from g'. Suppose that g' (r) is of finite 
range, i.e., of the same general form as g(r) in the 
previous paragraph. Then, 

gk = I g'(r)e-ik.r dSr = 0(1), k ¥= 0, (9S) 

where 0(1) denotes a function independent of 0 
(and n). Suppose, furthermore, that go is of order ot. 
Then, g(r) will differ from a bound state by the pres
ence of a constant tail of order O-i. By a suitable 
choice of phase of g, one can write 

go = (wO)!, 0 < w < 1. (96) 

Then, (81) and (80) are replaced by [cf. (76) and (7S)] 

2p-
1

wq + 2(27T)-Sp-lqI ,/gk/
2 

dSk = 1 (97) 
1 + wQq 1 + q Igkl 2 

and 

no = p-
1
wq + (27T)-Sp-lQI /gkl

2 

dSk. 
(1 + wOq)2 (1 + q Igk12)2 

(98) 

If q = 0(1), the first term in (97) is negligible and the 
equation for the determination of q becomes identical 
with (81). The first term in (98) is also negligible, so 
that (98) reduces to (80). The normalization condition 
on the gk is affected by the presence of the tail: 

IIgl1 2 = w + 0-1 L' /gk/ 2 = 1. (99) 
k 

Generalizing (90) to 

gk = (1 - w}!a~A*, k ¥= 0, (100) 

where A. has range "-' a and is of order unity for 
k* = ka ,,;; 1, one has in the thermodynamic limit 

I/g/l2 = w + (27T)-3(1 - w) I/A*/2 dSk* = 1, (10]) 

so that the normalization condition is satisfied if 

(102) 

as is the case for (90) and (91). The expansions of q 
and no for pas « 1 are then 

q = t(1- w)-lp[1 + t(27T)-Spasf/ik./4dSk* + .. } 

no = t[1 - i(27T)-SpasJ/ik*/4 d3k* + .. J (103) 

Thus, the dependence of no on pas is the same as in 
the case (90) and (91). It is easy to see that this equality 
is not restricted to small pa3 , but is exact. The pres
ence of a nonvanishing tail does not, therefore, 
qualitatively affect the Fermi condensation. The general 
criterion for Fermi condensation in a state of the type 
/V'BCS) appears to be that the pair function g contain 
a bound-state component of range a ,,;; kJl, where k F 

is the Fermi momentum (37T2p)!. This remains true 
no matter how small the weight (1 - w) of the bound
state component, so long as 1 - w > O. This remark
able result can be understood by noting from (79), 
(64), and (6S) that the unbound tail (wO)! present in 
g is not mirrored in Po and X and, hence, not in the 
term XX* in (49) responsible for the ODLRO in P2' 
In fact, for pa3 -+ 0, Po and X reduce to12 

po(r) ~ (27Tr3J~A*eik*.r* d3k* + O(O-!), 
pa -+0 

x(r) ~ (2n)-ipo(r) (104) 
po. -+0 

and, thus, are bound and independent of w so long as 
1 - w > O. These results are valid in the thermo
dynamic limit for fixed w < 1; one may not set 
w = I, since IV'BCS) would then vanish identically 
because K would have rank < 2n. 

We conclude this section by evaluating no for the 
variational state of the original BeS theory.7 It 
follows from the derivation of (49), BeS? Eq. (2.16), 
and (72), with p = (20)-lq, that 

q Igkl 2 = hk/(l - hJ. (lOS) 

The normalization condition (81) then becomes 

2(27T)-3 p;1 I hk d3k = 1, (106) 

and Eq. (80) for no becomes 

no = (27T)-3p;1 I hk(1 - hk) d3k, (107) 

where we have replaced p by p., the density of super
conducting electrons, since the integrations are to be 
carried out only over the shell of energy width 2liw 
about the Fermi surface. Making the BeS approxi
mation 

12 The k = 0 contribution to (79) is 

(2 .. )3_,_ (!L)* (wO)t 
a (2 .. )3 nop '+qwO 

(l08) 

and is, thUS, of order o-t and, hence, negligible (the tail in g is of 

order a-i). 
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for integration over this shell, where N(O) is the 
density of states at the Fermi surface and e the 
single-particle energy relative to the Fermi surface, 
and substituting BCS Eq. (2.35) for h(e), one finds 
for (106) 

2P-;tN(O)i
liW ![1 - € !J d€ 

-liw 2 (€2 + €~) 
= 2p;IN(0)liw = 1. (109) 

The same method of evaluation gives for (107) 

1
11w €2 

no = p;IN(O) 2 0 2 d€ 
-liw 4(€ + EO) 

1 -IN(O) -1 liw = 2P. €o tan -
€o 

=!~ tan-lliw . 
4liw €o 

(110) 

Finally, substitution of BCS Eq. (2.40) for €o gives 

no = tan-
1 

{sinh [1/N(0)Vn . (111) 
4 sinh [l/N(O)V] 

In the strong-coupling limit N(O) V» 1, one has 

n ) .1 
o NCO)V .... oo 4' 

(112) 

whereas no is very small in the weak-coupling limit 
N(O) V « 1: 

no ~ (1T/4) exp [-I/N(O)V]. (113) 

The reason that no does not approach the upper 
limit t in the strong-coupling limit is that g and f/Jo 
do not approach zero range in that limit, since they 
are made out of Fourier components in a narrow 
shell about k F' In fact, g and f/Jo both have range 
'" kil for all values of N(O) V. 

7. PHASE TRANSITIONS 

The foregoing analysis of BCS states can be ex
tended to nonzero temperature, with the conclusion 
that the superconducting transition in the DCS model 
is an example of Fermi condensation: no = 0(1) 
(independent of nand .0) at all temperatures T below 
the superconducting transition temperature To, but 
no = 0(n-1) for T > To. This is a consequence of the 
fact that' P2 [Eq. (28)] has a largest eigenvalue 
Amax = O(n-l) for T < Tc , because of ODLRO, but 
for'T > To there is no ODLRO and ;'max = 0(n-2). 

Since superconductivity is a consequence of Fermi 
condensation, it is natural to inquire whether other 

types of phase transitions in many-fermion systems 
might be interpretable as manifestations of Fermi 
condensation. In fact, it has been suggested by 
Coleman6 that Fermi condensation into a pair 
function which is a spin triplet would manifest itself 
as ferromagnetism. However, it has been shownl3 

that a state of the form I'If'Bcs) with (kO', -kO") 
pairing in a spin-triplet state is not ferromagnetic but 
superconducting; the weak paramagnetism arising 
from the spins is swamped by the orbital diamagnetism 
associated with a Meissner effect and superconduc
tivity, as in the simpler DCS states with pairing in a 
spin singlet. Thus, Fermi condensation into a spin
triplet pair state gives superconductivity rather than 
ferromagnetism. Ferromagnetism is characterized not 
by ODLRO of either PI or P2' but by diagonal long
range order which manifests itself in a nonvanishing 
spin-density correlation function in the limit of 
infinite separation: 

lim [(S(r). S(r'» - (S(r» • (S(r'))] ¢ 0, (114) 
'r-r' , .... 00 

where 
Sz(r) = t[tpt(rj)'If'(rj) - tpt(r!)tp(r!)], 

S+(r) = S..,(r) + iSir) = tpt(rj)tp(r!), 

S_(r) = Sir) - iSIl (r) = 'If't(r!)'If'(rj). 

(115) 

The same is true of the "excitonic insulator" phase, 
which has the property that14 P2(Xl X2' X l X 2) has a 
nonvanishing periodic dependence on Irl - rzl as 
Irl - r21- 00, but no ODLRO and, hence, no 
Fermi condensation. It appears, then, that Fermi 
condensation and ODLRO of P2 are uniquely associ
ated with superconductivity or, more generally, super
fluidity in a many-fermion system, as proposed by 
Yang.4 

8. GENERALIZATION TO I-FERMION STATES 

The wavefunctions 'If'(XI ••• x ln) of a system of In 
fermions can be expanded, by the obvious general
izationl.2 of (2), in terms of a complete orthonormal 
set of antisymmetric I-fermion wavefunctions 
f/Ja(XI ••• XI)' Equations (6) and (7) are replaced by2 

IV') = [(l!)nl(ln)!]! I e(ocl '" OCn)A!1 ... A! .. 10), 
al' "an (116) 

with 

A! = (l!)-! f dXl ••• dX1f/Ja(Xl ••• Xl)V't(X1)" .tpt(xl). 

(117) 

13 R. Balian and N. R. Werthamer, Phys. Rev. 131, 1553 (1963) 
and the earlier references cited therein. 

1& D. Jerome, T. M. Rice, and W. Kohn, Phys. Rev. 158, 462 
(1967) and the earlier references cited therein. 
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The ideal state corresponding to (I 16) is given by (9), 
where the aft and a! are ordinary Bose or Fermi 
operators depending on whether I is even or odd. By 
the obvious generalization of Eqs. (12)-(17), one finds 
for the mean occupation number nit of the state fP« 

where PI is the I-fermion density matrix, defined and 
normalized in accordance with the obvious general
izations of (16) and (19). The normalization condition 
(20) on the nit remains valid. The analog of (34) is 

(119) 

Since the integral (lIS) is the expectation value of 
PI in the state fPlt' one has 

(120) 

where "'max is the largest eigenvalue of PI' It is 
knownI5,I6 that 

"'max ~ O(n-il), I even, 

Amax ~ O(n-i(I+IJ), I odd, (I2l) 

where I is held constant as n ->- 00. It is not difficult 
to show that, for the ground state of the ideal Fermi 
gas or, more generally, for any Slater determinant 
constructed from spatially extended orbitals and for 
either bound or unbound fPlt' 

n" ~ O(nl-Z) (normal Fermi system). (I 22) 

This order of magnitude may be taken as typical of a 
normal Fermi system. Hence, attainment of the 
bounds (I21) is an exceptional occurrence for I> I 
and may be defined as Fermi condensation. 

Yang has shownI6 that the bounds (I21) are attained 
by taking 111') to be a BeS state of extreme type 
[Eq. (59)] for even I and by a minor modification of 
such a state for odd I, and has conjectured that the 
maximum kinematically attainable values of the 
largest eigenvalues of the PI are realized by such 

15 J. S. Bell, Phys. Letters 2, 116 (1962). 
11 C. N. Yang, J. Math. Phys. 4, 418 (1963). 

states. Accepting this conjecture, one hasI1 asymptoti
cally for n ->- 00 

"'max = [/!/(l/)! (2/)i' ]n-i' , I even, 

"'max = ((I-I) !/[HI - I)]! (2/)i(I-IJ}n-i (l+IJ, 

I odd ~ 3, (123) 

and, hence, 

nit ~ [I!/(1/)! (2I)il]n-i (HJ, I even, 

nit ~ {(/ - l)!/[t(l- I)]! (2l)i(I-IJ}n-i (l-IJ, 

I odd ~ 3. (124) 

It should be noted that the n dependence in (123) and, 
hence, (124) is not a matter of conjecture. For I = 4, 
the expression (124) is O(n-I), whereas the normal
Fermi-system value (122) is only o (n-3). There is, 
thus, room for a less extreme type of Fermi condensa
tion which would be manifested by some nit attaining 
a value o (n-2) , with no other n" larger. We con
jecture that such a condensation would be associated 
with bound states of four fermions. On the other 
hand, the bound (124), and more generally the order 
of magnitude (121), is associated with bound states of 
two fermions. 

For 1= 5, the expression (124) is O(n-2) and the 
normal-Fermi-system value is o (n-4) , again leaving 
room for a condensation which would be manifested 
by some nit = o (n-3). We conjecture that such a 
condensation would again be associated with a 
large number of fermions occupying the same bound 
state of four fermions; a large occupation of a bound 
state of five fermions would be prevented by the 
exclusion principle. 

More generally, we define I-fermion condensation 
for arbitrary even I by 

o < lim therm nl-2nlt < 00 

<=> I-fermion condensation into fP«(Xl ••• XI), 

I even. (125) 

The same limit can be between 0 and 00 for odd 
I ~ 3, but then it would be associated with large 
occupation of some fPixl ••• XI-l) and, hence, would 
be an indirect consequence of (137) being satisfied for 
the even value 1- 1. We conjecture that (137) can 
occur for a given even I ~ 4 only if the nrz for all 
smaller values of I exhibit their normal Fermi values 
(122). 

17 Make the substitutions 1-+ fl, N -+ In, M -+ 00 in Eq. (11) of 
Ref. 16, and divide by NI (our I) because of the different normaliza
tion; make the related substitutions in Eq. (12) of Ref. 16. 
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In view of the results of Sec. 7, it seems plausible 
that the maximal condensation of the type (125) 
would be achieved by building IV') out of a tightly 
bound state of I fermions, generalizing (37): 

V'g(xi ' •• Xln) = eAln[g(XI ... XI) 

X g(xl+1 ..• X2/) •.• g(Xln- /+1 ... x ln)]. (126) 

More specifically, we conjecture that the least upper 
bound of the limit (125) subject to the constraint that 
no Fermi condensation occurs for any smaller value of 
I is attained, for even T, by states of the form (126) in 
the limit of infinitely tight binding of g, with q;a = g. 
The problem of the evaluation of PI for such states, 
even asymptotically as n ~ 00, is at present unsolved. 
One can conjecture that (49) generalizes to 

PI(XI' .. XI' x~ ... x;) 

= I ( -l)I>(P)[PI(XI, XDPI(X2, x~) ... PI(XI , x;)] 
P 

+ X(x i ..• XI)x*(X~ ... xf) (127) 

with P an arbitrary permutation of Xl •.• XI and pep) 
its parity. One, furthermore, expects that 

X(XI' .. Xl) = cl n-!(!-1)g(XI ... XI) (128) 

in the limit of infinitely tightly bound g, with Cl a 
.numerical coefficient independent of n. The least upper 
bound of the left side of (125), subject to the con
straint that no Fermi condensation occurs for smaller 
I, would then be 

9. IMPLICATIONS FOR LIQUID 'He 

Microscopic theories of liquid 4He picture the 
system as composed of n bosons and attempt to relate 
the A. transition and superfluidity of the system to a 
Bose condensation in a system of interacting bosons. 
Such an approach is very plausible, since the internal 
excitation energy of an 4He atom is so high (,....,., 104 

or 105 OK compared to thermal energies of a few OK). 
Nevertheless, from a more fundamental point of view, 
a system of n 'He atoms is made up of 2n electrons 
and n nuclei; this suggests that the maximum occu
pancy of single.4He-atom states ought to be limited 
by the exclusion principle, as in the foregoing analysis. 

Let {q;,,(Xl x2R)} be a complete orthonormal set of 
single.4He-atom wavefunctions, where x; stands for 
the position and spin of the jth electron, and R for 
the position of the nucleus. A wavefunction of n 4He 
atoms can be expanded by the obvious generalization 
of (2): 

V'(XI ' .. X2nR I •.. Rn) 

= I C(OCI'" ocn)q;aj(Xl x2RI) ... q;an(X2n-IX2nRn)' 
aj'" an (131) 

The anti symmetry of V' in Xl ••• X 2n implies and is 
implied by symmetry of c in IXI ••• OCn together with 
a subsidiary conditionl analogous to (4): 

(129) with 
(132) 

with q;o = g, infinitely tightly bound. We have a 
nonrigorous argument to the effect that 

(130) 

The combinatorial argument suggesting (130) breaks 
down for odd I; we believe that states of the form 
(126) do not exhibit Fermi condensation for odd I. 

The conditions under which Fermi condensation 
will actually occur in a given system are, of course, 
determined by minimization of the energy (more 
generally, free energy). The definition (125) is only 
useful in cases where it is energetically favorable for 
formation of boundl8 states of I fermions (l even) but 
not for formation of bound states of pairs or, more 
generally, of any even number < I. 

18 We are using the term "bound state" here in a .generalized sense 
to include states which though not bound, contam a bound com
ponent, as in Sec. 7; on; is tempted to call such a state a "resonance." 

(ocPI I e1ec lyc5) 

= f q;:(XIX2R)q;~(x~x~R')q;ix~X2R) 
X q;6(XIX~R') dXI dX2 dx~ dx~ d

3R d3R', (133) 

whereas symmetry of V' in RI ... Rn necessitates the 
additional subsidiary conditionl 

n 

~ ~(ocl>ocql Inuc IIXP) 
"fJ I><q 

with 

(ocPI I nuc lyc5) 

= f q;:(XIX2R)q;1i(x~x~R')q;lxIX2R') 
x q;6(x~x~R) dXI dX2 dx~ dx~ d

3R d3R'. (135) 
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The state (131) has the quantized-field representa
tion 

IV') = [n! (2n)!]-! I dx] ... dX2n d3Rl ... d3Rn 

x V'(X1 ' •• x2nRi ... Rn)V't(x1)' •• V't(x2n) 

X V't(Ri)' .. V't(Rn) 10), (136) 

where the V't(x) are electron creation operators satis
fying Fermi antic om mutation relations and the tpt(R) 
are nucleus creation operators satisfying Bose commu
tation relations.19 Equations (6) and (7) are then 
replaced by 

Itp) = [2"/n! (2n)!]! ~ c(ex1 '" exn)A:, '" A~n 10), 
a," '«n (137) 

with 

A! = 2-! I dX1 dX2 d
3R9?ixiX2R)V't(Xi)V't(X2)V't(R), 

(138) 

The fact t~at the Aa and A! are not boson operators 
can be dealt with by the introduction of the ideal state 
space as before, and Eqs. (9), (10), and (11) remain 
valid. 

Equation (17) is derived essentially as before, 
yielding the following formula for the mean occupa
tion number na of the single-4He-atom wavefunction 

9?«: 

na = n I 9?:(X1x2R)P3(X1X2R, x{x~R') 
x 9?ix;x~R') dXl dX2 d3R dx; dx~ d3R', (139) 

with 

Pa(XIX2R, x{x~R') = I 1p(Xl ... x2nRR2 ••• Rn) 

x 1p*(X{X2Xa' .. x2"R'R2 ... R,,) 

X dXa' .. dX2n d3R2 ... d
3R". 

(140) 

Pa satisfies the normalization condition 

f P3(X1X2R , X1x2R) dX1 dX2 daR = 1, (141) 

and as a result the occupation numbers na satisfy the 
normalization condition (20), as one expects for n 4He 
atoms. 

18 Nothing would be gained here by going down to the next level 
of the hierarchy. where the nonelementary nature of the ex particle 
would have to be faced. 

One expects that the largest eigenvalue of Ps, hence 
the maximum occupation of a state of two electrons 
and one ex particle, would be achieved by a many
particle state in which the ex particle component and 
the electron component each separately achieves 
maximal condensation. Maximal condensation of the 
ex particle component is achieved by a totally-Bose
condensed state of the ex particles; for periodic 
boundary conditions in volume n, the constant n-!n 
is an ex state in which all the ex particles occupy the 
spatially constant orbital n-!. As shown in Sec. 7, 
maximal condensation of 2n fermions is achieved by a 
BCS state (37) in the limit of infinitely tight binding 
of g. Thus, we form the product state 

V'prod(Xl' .. x2nRl ... Rn) = n-!nV'BCS(Xl ... x2n), 

(142) 

representing maximal condensation of the ex particles 
and the electrons separately. Since V'prod is, in fact, 
independent of the ex positions, its density matrix (140) 
is 

Pa(X1X2R, x{x~R') = n-lp~BCS)(XlX2' X{X2), (143) 

where p~BCS) is the two-particle density matrix (16) 
of V'BCS' The expectation value of (143) in the state 

9?O(Xlx2R) = n-!g(X1X2) (144) 

is 

f 9?:(XIX2R)Pa(XIX2R, X{X2R') 

x 9?o(x;x~R') dX1 dX2 daR dx{ dx~ daR' 

= f g*(XIX2)P~BCS)(XIX2' x{x~)g(x{x~) dXl dX2 dx{ dx; 

< (2n - 1)-1, (145) 

using the inequality (21). One then has asymptotically 
for n ~ 00 

(146) 

for the occupation number (139) of 9?o, with equality 
attained in the limit of infinitely tight binding of g. 
We conjecture that the right side of (145) is, in fact, 
the largest kinematically attainable value of the 
largest eigenvalue of Pa for a system of n bosons and 
2n fermions and that the right side of (146) is the 
largest kinematically attainable value of the occupa
tion number of any state of one boson and two 
fermions in such a system. If this conjecture is correct, 
it precludes Bose condensation into such states, which 
would require no = O(n). This is true in spite of the 
fact that the boson component can undergo Bose 
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condensation into a one-boson state (no electrons) 
and does exhibit such condensation in the state (142). 

A wavefunction of the form (142) cannot by any 
stretch of the imagination be regarded as a possible 
wavefunction of liquid 4He; instead, it represents a 
plasma composed of an interpenetrating ideal Bose 
gas and BCS Fermi system. It could formally be 
expanded in terms of a complete set of 4He atom 
wavefunctions, but practically the entire weight would 
come from the unbound states which are not really 
'He in any physically meaningful sense. In investi
gating occupation of single-'He-atom states, the 
relevant question to ask is: What is the maximal 
occupancy of a bound state of one at particle and two 
electrons in a many-particle wavefunction in which 
the electrons are likewise bound pairwise to at 

particles? Our previous analysis suggests that such 
maximal occupancy would be attained by a state of 
the form 

"I'g(x1 •.. X2nRI •.. Rn) 

= CA2n[g(XIX2Rl) ... g(X2n-1X2nRn)] (147) 

in the limit of infinitely tight binding of g; the values 
of the nil. for a realistic20 liquid 'He wavefunction 
would then be less than this upper bound. An argu
ment similar to that used in deriving (127)-(130) 
suggests that, for the state (147), 

P3(X1X2R, x{x~R') "" tn2g(xlx2R)g*(x{x~R'), (148) 

where the symbol ,..." implies asymptotic equality in 
the limits n -- 00, range of g -- 0, and separation 
between the groups (rlr2R) and (r~r~R') -- 00. Then, 
one has for such states 

(149) 

with equality attained for fPa = fPo = g(XIX2R) in the 
limit of zero range of g. In spite of its small value, the 
bound (149) represents Fermi condensation, since in 
the absence of any condensation one would have21 

n,. ~ O(n-2). 

20 Infinitely tight binding of g gives an infinite energy for tp.; 
thus, a realistic wavefunction would have even the largest nil. less 
than the upper bound given by (147). A more realistic wavefunction 
than (145) would be given by replacing g with the ground state of 
the He' atom, but this would still not be realistic with regard to 
translational motion of the He' atoms. 

21 E.g., for a product state tpelec(Xl ... Xs .. )tpnuc(Rl ••• R .. ), one has 
Pa(x1xaR, x~x~R') = p~eleC)(X1XI' x~x~)plnuc)(R, R'). Let9'a(x1xaR) = 
9'~leC)(X1XI)!p~nuc)(R). Then, by (139), (17), and (18), the occupation 
of 9'a is nil. = n-ln~eleC) n~nuc). But, n::1eC) ::;; 0(n-1) for a normal 
Fermi system [Eq. (122)], and n~nuc)::;; 0(1) for a normal Bose 
system (no Bose condensation). Hence, nil. :::;;; 0(n-2) in the absence 
of condensation. This can also be seen in a different way in the 
special case that the states rp,. are taken to be plane waves. Then, 
each 0( contains three momenta, one for each particle. In order that 
:Ell. nil. = n, the individual nil. must then be 0(n-2). since each summa
tion over momentum gives a factor n. 

On the other hand, states of the form (147) do not 
exhibit Bose condensation of the at particles, in 
contradistinction to the plasma states (142) which 
have complete Bose condensation of the at particles 
into the orbital n-i. The occupation number nk of 
the orbital fPk = n-teik•R is, by (18), 

nk = nn-1 f e-ik•Rpl(R, R')eik•R ' d3R d3R; 

= n f PI(R12)e-ik.R12 d3R12 , 

where PI is defined by 

PI(R, R') 

(150) 

= f "I'(XI ... x2nRR2 ... Rn)"I'*(Xl ... x2nR'R2 ... Rn) 

x dX1 ••• dX2n d
3R 2 ••• d3Rn (151) 

and we have made use of the fact that PI(R, R') 
depends' only on R - R' if "I' is an eigenstate of total 
linear momentum, which we assume. The same 
argument which gives (148) and (149) suggests that, 
for the state (147), 

nk f'"oo.I n f g(XIX2R12)g*(xlx20)e-ik.R12 dX1 dX2 d
3Rl2 

(152) 
in the limit n -- 00 and range of g -- 0. Now 

when r1, r2' and R are all within a distance"" a of 
each other, where a is the range of g, and g falls to 
zero outside this range. One, therefore, concludes 
that 

whereas nk falls to zero for k » a-I, where P = njn. 
Since (153) holds for k = ° as well as k ¥: 0, it shows 
that the states (147) do not have Bose condensation 
of the nuclei, such condensation being prevented by 
the binding of the electrons to the nuclei. This is 
hardly surprising; even on the Bohr model, the 
nucleus has a momentum which fluctuates over the 
range a;l. even when the total momentum of the atom 
is zero. 

The results (148). (149). (152), and (153) have all 
been verified for a special choice of g. for which it is 
found that they are valid in the limit of zero density 
for fixed finite range a of g; this is equivalent to zero 
range for fixed density. The first density corrections 
have also been evaluated for the same wavefunction. 
The details will be reported elsewhere. 
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We conclude, then, that the A transition in liquid 
'He cannot be the result of a Bose-Einstein condensa
tion of the atoms, such a condensation being incom
patible with the upper bound on the single3 He-atom 
occupation numbers imposed by the exclusion 
principle acting between the electrons in different 
'He atoms. If the A transition and superfluidity of 
liquid 'He are related to a condensation into a single
'He-atom state, then this must be a Fermi condensa
tion similar in some respects to that occurring in a 
superconductor. The occurrence of such a condensa
tion for the simple wavefunctions (147) makes it 
plausible that it could also occur in the true ground 
state of liquid 'He. It is also worth noting that a 
Fermi condensation into single-SHe-atom states 
cannot occur in liquid SHe, being incompatible with 
the upper bound on the largest eigenvalue of Ps for 
such a system. 

10. DISCUSSION 

The most important result of the foregoing analysis 
is that Bose condensation of composite particles 
containing even numbers of fermions cannot occur, 
being replaced by a Fermi condensation associated 
with ODLRO and large eigenvalues of the appropriate 
reduced density matrices of higher than first order, of 
the type defined by Yang.' The implications of this 
conclusion for the microscopic theory of liquid 'He 
are so drastic that one is strongly tempted to deny 
the physical relevance of the ideal-state-space opera
tors alA and a!, in terms of which we defined occupation 
numbers. However, the conclusion cannot be escaped 
that easily. Even if one defines occupation numbers in 
terms of mean values of the operators A!AIA , where 
A! creates the particle in the usual sense (7) or, 
more generally, (1l7), the relation 

(A~Arl) = C~) J 1f':(Xl ... x,)p,(x1 ••• x,, xi' .. xi) 

x If'«(x~ ..• xD dXl ... dx, dx;' .. dx;, (154) 

together with the known upper bounds on the largest 
eigenvalues of the p" shows that a single (A!A«) can 
never contribute a nonzero fraction (in the limit 
n --+ 00) to the sum rule 

(155) 

instead, a single (A!A",) is at most of order n-1 

relative to the entire sum. On the other hand, Bose 
condensation would require that a single (A!A",) 
contribute a nonzero fraction of the sum in the limit 

n --+ 00. This was pointed out previously by Coleman,6 
from a somewhat different point of view. 

It appears, then, that the very plausible expectation 
that the operator terms on the right side of (8) ought 
to be negligible for very tightly bound wavefunctions 
If'", is incompatible with the exclusion principle in 
cases where the group of particles involved in If'«, 
though bound together, is free to move as a group 
throughout the system. The value of the normaliza
tion constant (155) shows that internally excited 
states of the atoms in, e.g., liquid 'He22 are never 
negligible. It was, of course, known previously that 
virtual internal excitations of the atoms are not 
completely negligible in liquid helium, inasmuch as 
they are responsible for the van der Waals attractive 
tail in the effective interatomic interaction, which is 
responsible for the fact that the system is a liquid 
rather than a gas. However, it has always been 
supposed that the effects of such virtual excitations 
could be adequately approximated by an effective 
interatomic potential and the system then treated as 
composed of structureless particles. Although this 
may be true regarding the effects of long-range 
electromagnetic interactions, we believe that the 
results of this paper show that it is not true regarding 
the effects of collisions. We believe, in fact, that the 
mechanism preventing Bose condensation in super
conductors and liquid 'He lies in the effects· of 
collisions, acting via the exclusion principle, in 
causing virtual internal excitations of the atoms. 
This mechanism is apparent from the observation that 
a two-atom product function If'O(XIX2Rl)If'O(xsx4,R2) 
can be expanded, after exchange of a pair of electrons 
between the atoms, in the form 

If'O(XsX2Rl)If'O(x1x,R2) 

= L (ocPI 1eleo 1(0) 1f'«(XIX2Rl)If'II(X3X,R2) (156) 
"'II 

with expansion coefficients which are elements of 
the exchange matrix (133); it is clear that virtual 
excited states are important for this expansion. This 
phenomenon has no analog in boson models, for 
which If'o(R1)IPo(R2) has no expansion in terms of 

•• For n 'He atoms one has 

(A!A«) = [2n(2n - 1)n/2!J S 1i':(x,x.R)Pa(x,x.R, x:x~R') 

X 9""(x~x~R') dx, dx. daR dx~ dx~ daR' = n(2n - I)n"" 

so that (l55) is replaced by 

~ (A!A",) = n"(2n - I), 

which follows directly from completeness of the Ii'« and normaliza
tion of Pa. 
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<piRJ<pp(RJ, except the trivial one with (X = fJ = O. 
This distinction lies, we believe, at the heart of the 
difference between Bose and Fermi condensation. 
We expect it to be important when exchange i~ impor
tant, as in liquid 4He. 

In conclusion, we believe that the present results 
show that virtual internally excited atomic states are 
much more important than previously supposed, 

being at the heart of the striking difference between 
Fermi condensation, which occurs in superconductors 
and probably in liquid 4He, and Bose condensation, 
which cannot occur in either. 
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A potential theory canonically equivalent to the Lee model in all sectors is deduced with algebraic 
techniques. For the V/} sector this potential is free of disconnected graph difficulties and so is soluble in 
closed form. For higher sectors the problem can be reduced to Fredholm equations. 

1. INTRODUCTION 

It is well known that the solubility of certain 
potential problems (such as the harmonic oscillator 
and Coulomb problems) derives from the existence 
of dynamical symmetries. Thus the problem of finding 
the canonical transformation which diagonalizes the 
Hamiltonian may be solved with finite Lie algebras. 

In this paper we shall show that an analogous 
result holds for simple field-theoretic models
namely. the scalar field and the Lee model. Moreover, 
we shall show that the solubility of the Lee model in 
all sectors derives from the existence of a finite 
dynamical Lie algebra. The method, in fact, permits 
us to reduce the VO sector, the VOO sector, and all 
higher sectors to a potential scattering problem and 
in this sense provides a complete solution of the Lee 
model. 

2. THE SCALAR FIELD 

To illustrate the method we shall first examine the 
model in which there is one static fermion N and a 
moving boson 0 with the Hamiltonian: 

H = Ho(w) + ),H1(f), 

and if 
If I == (f,f)! < 00 and Igl < 00, 

then 
l(f, g)1 < 00. 

We shall assume that all functionsf(k), g(k). h(k), ... 
etc .• used in the sequel satisfy 

If I = Igl = Ihl = ... = 1 

and absorb any necessary factors to accomplish this 
into coefficients. Thus ), in (2.1) can be adjusted so 
that If I = 1 as long as the given f(k) satisfies If I < 00. 

Since Nt N commutes with all operators and since 
N is a static fermion, we are interested only in states 
with one N particle and so set Nt N = 1 throughout. 
We thus write (2.1) with 

Ho(w) = m + f w(k)OkOk dk, (2.1') 

H1(f) =f + /. 

We seek a canonical transformation U such that 

H' = UHUt = Ho(w) + W, (2.4) 

Ho(w) = mNtN + f w(k)O!Ok dk, 

t t H1(f) = N N(f + f ), 

(2.1) where W has potential form, i.e., the one-particle 
states are eigenstates of H'. Thus W must not contain 
operators for the process 

with 
w(k) = (k 2 + m~)!, 

f == f f(k)Ok dk, 

f(k) a given real function. We note that if g(k) is any 
real function and 

g == I g(k)Ok dk, (2.2) 

then 

[g,/] = I g(k)f(k) dk == (f, g) = c-number; (2.3) 

• Supported in part by the National Science Foundation under 
Grant GP 6036. 

N -- N + 0 or N + 0 -- N. (2.5) 

Suppose that such a transformation exists and has the 
form 

(2.6) 

where I' is a real constant and 

(2.7) 

and g is given by (2.2). Here g(k) is to be determined 
and the constant I' then fixed so that Igl = 1. Thus 

W = (e"S(g)Ho(w)e-I'S(g) - Ho(w» 

+ AeI'S(g)H1U)e-I'S(g). (2.8) 

699 
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Consider the first term in (2.8): 

eltS(g)Ho(w)e-ItS(u) - Ho(w) 

= ilt :p [eIlS(g)Ho(w)e-PS(u)] dfJ 

= J: eIlS(g) [S(g), Ho(w)]e-IlS(g) dfJ· (2.9) 

But 

[S(g), Ho(w)] = (wg) + (wg)t = Hl(wg) (2.10) 

with 

so that 

(wg) == f w(k)g(k)Ok dk, 

w = f:eIlS(g)Hl(Wg)e-IlS(g) dfJ + AeltS(u)HlU)e-ItS(u). 

(2.11) 
Now since, for any operators A and B, 

eABe-A = i: 1- [A(n), B], 
n=O n! 

where [A (n), B] is the iterated commutator, we see 
that: 

The first term on the right of (2.11) 
belongs to the Lie algebra generated by (2. 12a) 
S(g) and Hl(wg), denoted by D(g, wg); 

The second term on the right of (2.11) 
belongs to D(g,f). (2.12b) 

By inspection, in virtue of (2.3), we have that D(g, wg) 
consists of the elements 

1, g, wg, gt, (wg)t (2.13a) 

and linear combinations thereof; and that D(g,f) 
consists of the elements 

(2.13b) 

and linear combinations thereof. Hence if W contains 
any operator mediating (2.5), it must be of the form 

(IX~ + IXJ + IXswg) + H.c., (2.14) 

where otl' ot2' and ots are constants and we note that 
the relations such as (2.2) between operators and 
associated functions are linear. Thus, if W is to have 
potential form, we must have 

otlg(k) + otJ(k) + otaw(k)g(k) = O. (2.15) 

Thus wg is a linear combination of! and g so that 

D(g, wg) = D(g,j). (2. 16a) 

The function g(k) can be written 

g(k) = otof(k)/[w(k) + ~], (2. 16b) 

where oto and ~ are constants and so, since (g, g) = 1, 

IX = [f ( f(k) )2dkJ-l 
o w(k) + b ' 

(2. 16c) 

i.e., g(k) is now fixed by the parameter b. 
Because of (2.16a) the entire calculation of (2.11) 

may be carried out in the algebra D(/, g). 
Thus, from (2.16b), 

Hl(wg) = -bHl(g) + (;,oH1(f) 

= oto! - bg + H.c., 

so we obtain 

eflS(u) Hl(wg)e-IlS(u) 

= lXof - bg + lXofJ(g,f) - pb + H.c., 

eltS(g)HlU)e-ItS(g) = f + ft(g,!) + H.c., (2.17) 

and hence (2.11) becomes 

W = (ftlXo + A)f - bftg 

+ (llXoft2 + ftA)(g,f) - lp2 b + H.c. (2.18) 

Thus, to exclude (2.5) processes, we must havel 

(ftlXo + A)/ - bftg = O. (2.19) 

Hence from (2.16b) one concludes that one must have 

Thus, from (2.16c), 

b = 0, 

ocoft + A = O. 

OCo = [f (~~~~rdk J-l
, 

ft = -A[f (~~~~rdkr, 
ftg(k) = -Af(k)/w(k), 

ftS(g) = Af f(k) (O~ - Ok) dk, 
w(k) 

(2.20a) 

(2.20b) 

(2.21a) 

(2.21b) 

(2.21c) 

(2.21d) 

so that (2.6) gives the well-known "clothing operator" 
for the scalar field. 2 The operator W then reduces to 
the c-number: 

w = 2(ilXo,u2 + ftA)(g,f) = -A2f [f(k)]2 dk 
w(k) 

= -A2I [f(k)]2 dk. NtN (2.22) 
w(k) , 

---
1 Note here that f and g are really multiplied by Nt N, which we 

have set to unity. 
10. W. Greenberg and S. S. Schweber, Nuovo Cimento 8, 378 

(1958). 



                                                                                                                                    

SOLUTION OF THE LEE MODEL IN ALL SECTORS 701 

so the mass renormalization is the familiar result 

6m = -).2f [f(k)]2 dk. (2.23) 
lO(k) 

3. THE LEE MODEL 

The simplicity of the scalar-field problem derived 
from the fact that the fermion fields occurred only in 
the combination Nt N, which could thus be treated 
as a c number. This, together with the separability of 
the interaction H1(f) in (2.1), led to a dynamical 
algebra (2.13) with a small number of elements. We 
turn now to the Lee model. Here we have 

H = Ho(lO) + ).H1(f), 

Ho(lO) = m(VtV + NtN) + f lO(k)fJkOk dk, (3.1) 

H1(f) = Ntvl + VtNf, 

the other quantities defined as in (2.1). (In the second 
of these equations we assume equal bare masses of N 
and V to avoid inessential complications.) Now we 
have the combinations Nt V and Vt N, which do not 
commute with one another and hence the Fermi 
fields play an essential role in the algebraic structure. 
We have a compensation, however, in that NtV is 
only multiplied by jt and Vt N by f This leads to the 
sectoring of the model, i.e., one has V --+ N + fJ --+ V, 
but no N --+ V + () --+ N processes. Also the number 
of heavy particles is conserved. Again, since N and V 
are static fermions, we may confine ourselves to 
states with one and only one fermion, i.e., we set 

(3.2) 

in all calculations and also 

(vtN)2 = (NtV)2 = O. (3.3) 

Thus the operators V tN, NtV, and vtv - NtN 
behave like the +, -, 0 Pauli matrices. 

We now seek a canonical transformation 

U = el'S(g) 

such that 
H' = UHUt = Ho(lO) + W, 

(3.4) 

(3.5) 

where W is a potential, i.e., it has no direct processes 

V --+ N + () or N + () --+ v. (3.6) 

mined along with the real constant I-' such that (g, g) = 
1. As in Sec. 2 we write W in the form (2.11), and the 
statements (2.12) hold as before. Now, however, 
when we compute the algebras D(g, 109) and D(g,f), 
we do not get the simple result (2.12). Rather, using 
(3.3), we find that D(g, 109) consists of all operators 
of the form 

R~RQ' Q = 1,2,"', (3.8) 

and their linear combinations, where RQ and RQ 
stand for any of the operators among 

V(g)Q-n-l(lOgt, n = 0, 1, ... , Q - 1, 

N(g)Q-n(lOg)n, n = 0, 1, ... , Q. 

For D(g,j) we have the same basis, but with j 
replacing 109. 

Now these algebras are infinite because Q is allowed 
to be arbitrarily large. However, because the same 
subscript Q appears in R~ and RQ, which is a mani
festation of the sectoring of the model, we can make 
the following simplification: Let P Qo be the projection 
operator on the vector space of all states which 
contain an N particle and Qo ()-particles or else a V 
partiele and Qo - I ()-partic1es. This is called the Qo 
sector. It consists of all states which are linear combi
nations of 

Vtf/f~'''fbo_lI0) and NtfItf~"'f~oIO) (3.9) 

with h(k) arbitrary functions. Now clearly for any 
Q the operators R~RQ map this space into itself and 
no other state into it. Thus 

P OoR~RQP 00 = P OoR~RQ = R~RQP Qo' (3.10) 

Hence, if A and B are any pair of operators in D(g, 109) 
or any pair of operators in D(g,f), we see that 

P Oo[A, BJP Qo = [P QoAP Qo' PQoBP Qo). (3.11) 

Hence, if we denote by DQo(g, 109) and Doo(g,j) the 
algebras obtained by the mapping 

(3.12) 

we see that (3.12) is a homomorphism, i.e., if (J. and {J 
are numbers, 

(ocA + {JB)Qo = ocAoo + (JBQo' 

[A, B]Qo = [A Qo ' BQo]. 

Now we see that 

(3.13) 

As in Sec. 2 we make an ansatz 
DQo(g,lOg) and DQo(g,j) 

(3.7) are finite algebras because 

(3.14) 

where g is defined by (2.2) and g(k) is to be deter- (3.15) 
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Now since the total Hamiltonian H in (3.1) satisfies 

[H, PQn] = 0 for all Qo, 

we may write 

Thus 

and so, because of the property (3.13), we have the 
equivalent of (2.11) for each W Qo: 

WQo = J: ePsQO(u)(Hl(rug»Qoe-PsQo(lI) d(J 

+ AeI'sQo(II)[H
1
(f)]Qoe-l'sQo(g). (3.17) 

We next choose the function g(k) such that there 
is no V -+ N + 0 or N + 0 -+ V. This means that 

WOo for Qo = 1 must be free of operators 

of the form V t Nli and N t/r v. (3.18) 

Once g(k) has been found, we will have to evaluate 
(3.17) for all Qo. For each Qo this may be carried out 
in the algebras DQ/g, rug) and DQo(g,f), which, as 
we have seen, are finite. As expected, we will find that 
W Qo for Qo = 2 contains operators mediating the 
processes 

V + 0 Ho V + 0, V + 0 Ho N + 6 + 0, 

N + 0 + 0 Ho N + 0 + 0, (3.19) 

and that W Qo for Qo = 3 contains operators mediating 

V + 0 + 0 Ho N + 0 + 6 + 0, etc. 

The important point here is that the processes indi
cated proceed directly and so the W Qo for Qo > 1 is 
simply a multichannel potential. For Qo = 2 (the 
so-called V6 sector) we will see that this potential is a 
separable potential free of disconnected graph prob
lems and so the solution will be obtainable in closed 
form. For higher sectors the potentials are still 
separable but because of disconnected graphs lead to 
Fredholm equations. That the higher sectors cannot 
be soluble in closed form is clear from the problem 
of three bodies interacting via two-body separable 
potentials as described by Mitra.3 Nonetheless, the 
reduction to Fredholm equations may be carried out 
systematically, as is done in Ref. 3, or with the more 
sophisticated Fadeev techniques.' We shall consider 
the problem solved when g(k) has been determined 

8 A. N. Mitra. Nucl. Phys. 32, 529 (1962). 
4 L. D. Fadeev, Zh. Eksp. Teor. Fiz. 39, 1459 (1960) [SOY. Physr 

JETP 12. 1014 (1961)}. 

and a closed form for the operators W Qo for all Qo 
has beerr obtained. This we shall now do. 

We first observe that the only operators in Doo(g,f) 
and DQo(g, rug) for Qo = 1 which mediate 

V -+ N + 0 or N + 0 -+ V 

are linear combinations of vtNf, VtNg, VtNwg, and 
their Hermitian conjugates. Thus the most general 
such operator,is 

VtN(oct! + oc2g + OC3wg) + H.c. 

Thus, for such an operator to be absent, we must have 

oct! + oc2g + ocawg = O. (3.20) 

Hence, as in the scalar theory, wg is a linear combina
tion off and g. Hence the statements (2.16) apply here 
as well. We shall thus be able to compute WQo in the 
algebra DQo(f, g). In the scalar-field case we did this 
directly because the algebra was so trivial. Here it is 
a bit more complicated and so it will be useful to find 
a mat ric representation. To do so we must first obtain 
an orthonormal basis of our space of functions. Let 
h(k) be defined by 

f(k) = cos 6g(k) + sin Oh(k), (3.21) 
where 

cos 0 = (f, g) = OCo dk. f 
[f(k)]2 

ru(k) + b 
(3.22) 

Thus cos 0 is determined by b. Now we have 

(h, h) = 1 and (g, h) = 0; (3.23) 

and since h is a linear combination off and g, we see 
that 

D(g,f) = D(g, h). (3.24) 
Also 

rug = -bg + OCof = (oco cos 0 - a)g + OCo sin Oh, 

(3.25) 
so that 

H1C!) = cos OH1(g) + sin OHI(h), 

HI(wg) = (lXoCOS 0 - b)HI(g) + OCo sin 6HI(h). 
(3.26) 

The evaluation of the terms in (3.17) is thus reducible 
to the computation of 

and 
epsQo(U)[Hl(g)]Qoe-psQo(g) 

ePsQ.(g)[H l( h) ]Qoe-IlSQo(O). 

We take as a basis of D(g, h) the operators 

(3.27a) 

(3.27b) 

T(Q; I, n) == T~(l)TQ(n), Q = 0, 1,2, .. " (3.28a) 
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where 

TQ(l) == [(Q - O! lWiNg1hQ- 1
, 1 = 0, 1,' .. ,Q, 

== [(Q - 111)! (Ill - l)!rtVgJlI-lhQ-III, 

1 = -1, -2,' ". -Q, 
(3.28b) 

so that, by (3.23), we have 

(01 TQt(l1)Th2(12) 10) = "Q1Qab/ll:' (3.28c) 

If A E D(g, h), there must exist numbers IX(Q, I, n) 
such that 

00 Q 
A = L L IX(Q; 11, 12)T(Q; 11, 12), (3.29) 

Q=Olt./2=-Q 

Suppose that all IX(Q, 11 ,/2) were known for Q = 
0, 1, ... , Qo - 1. We may then compute the coeffi
cients IX(Qo, 11, 12)/1 , 12 = - Qo, ..• ,Qo as follows: 
Applying (3.12) and (3.15), we see that 

Qo Q 
AQo = L L IX(Q; 11, I2)TQo(Q; II, 12) 

Q=011012=-Q 
Q 

= .lQo + L IX(Qo; I}> 12)TQo(Qo; 11, 12), 
11. /2=-QO 

(3.30) 
where 

QO-l Q 

.lQo == L L IX(Q; h, '2)TQoCQ; 11, 12), (3.31) 
Q=O 11./2=-Q 

Then 
:t -

(01 TQo<tl)(AQo - .lQo)TQi I2) 10) 

where 

Q 

= L IX(Qo; 1;1' I~) 
11' ./2'=-QO 

X (01 TQo(lI)Tbo(IDTQO<l~)TbO<I2) 10) 
= oe(Qo; 11, 12), (3.32) 

11 12}, 
II I~ 

(3.33) 

{~o :~ :~} == (01 TQo(lI)Tb(lDTQ(I~)TboC12) 10). 

(3.34) 

These numbers can be readily computed from (3.28). 
Now we are interested in the expansion (3.29) for 

A = ePS(f/lHl(g)e-PS(f/l, (3.35a) 

A = ePS(I1)H1(h)e-PS(f/l. (3.35b) 

In both cases one sees from the expansion in 
iterated commutators that the operator h occurs 
precisely once in every term of (3.35b) and not at all 
in (3.35a), so that the only nonvanishing coefficients 

in (3.29) are 

IX(Q; Q Q) and IX(Q; ±Q, -Q) (3.36a) 

for (3.35a), 

oe(Q; ±Q, Q - 1), oe(Q; ±Q, -Q + 1), 

oe(Q; Q - 1, ±Q), IX(Q; -Q + 1, ±Q) (3.36b) 

for (3.35b). In these cases the choice of 11' /2 on the 
left-hand side of (3.33) uniquely determines which pair 
l~ , 1~ can occur for each Q on the right-hand side. To 
see this, notice that, since at most one h operator can 
occur in the T's in (3.34), then either 

TQoC1l)Tb(lD contains only g's 
or 

TQ(l~)Tbo(l2) contains only g's. 

Suppose the former case. Then we must have either 

11 = Qo, I{ = Q or II = -Qo, I~ = -Q 

or the matrix element vanishes. Moreover, one must 
have 

o = 12 - I~ + Ii - 11 and sign 12 = sign 12 

or the matrix element vanishes. Hence the choice of 
/1 and 12 determines for each Q which pair I~ , l~ gives 
a nonvanishing matrix element. The result is 

Q - 11'1 = Qo - III, 
sign l' = sign I. (3.37) 

We then find by direct calculation that for these 
values 

= - (3.38) {
Qo 11 12} V(ll) V(12) 1 
Q 1{ 12 v(ln v(l~)( Q - Qo)! ' 

where 
v(l) = (l!)t, for 1;;;:: 0, 

= [(Ill - 1)!]t, for 1 < O. 

Hence if we put 

IX/Q) = oe(Q; 11, 12)/v(11)v(12) (3.39) 
and 

'lQ) = (01 TQ(lI)AQTbU2) 10)/v(11)1-'(12), (3.40) 

where the subscript j in (3.39) and (3.40) means that 
for each Q the arguments 11 and 12 are chosen so that 

Q -1111, Q -1/21, sign 11' and sign 12 

have prescribed values, we see that (3.33) becomes 

Qo oej(Q) _ 
~o (Qo _ Q)! - 'i(QO)' (3.41) 

This recursion relation may be solved to give 

Qo (-1)Qo-Q 

aj(Qo) = l~o (Qo _ Q)! (,(Q). (3.42) 
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Hence all (X(Q; 11, 12) are determined from the {;(Q) 
in (3.40). To evaluate these for the A's in (3.35), we 
note that from (3.7) and (3.28b) we have 

and 

(01 TQ(l1)H1(h)T~(l2) 10) for 1112 = ±Q, ±(Q - 1), 

which is trivial. 
S(g)T6(l) 10) = (111)-' T~( -I) 10), (3.43) 

and hence 

With (3.40) computed, we insert the result into 
(3.42); then, with (3.39), we obtain the (X(Q; 11, 12) 

for the cases (3.36). This then gives the expansion 
(3.29) of the quantities (3.35). With (3.26) one then 
has all the ingredients of (2.11), and the quadrature 
in P is trivial since only sines and cosines in P enter 
via (3.44). The resulting expansion (3.29) can be 
rewritten with N, V, and 0 operators with (3.28); the 
final result is 

e-PS(QITJ(l) 10) = cos (P Ill')' T~(l) 10) 

- sin (PIlIll'>' TQ( -I) 10). (3.44) 

The calculation of (3.40) is thus reduced to a calcula
tion of 

with5 

where 

w = i {NtN[{~1(Q)gtQgQ + {~1(Q)(gtQ-1htgQ + H.c.)] 
Q=1 
+ Vt vrWl{Q)gt Q-lgQ-l + {~"<Q)(gtQ-2h tg Q-1 + H.c.)]} 

+ i {NtV[{~kQ)gtQgQ-l + {~kQ)gtQ-lhtgQ-l + {~kQ)gtQgQ-2h} + H.c.}, 
Q=l 

(3.45) 

,~1(Q) = cos 8( _1)Q+1 I (-l)Q' (Q )(Q')' . [sin (2,u(Q')') + !y(QI)' . (1 - cos (2,u(Q')t))], (3.46a) 
Q! Q'=l Q' 

,(2) (Q) = sin8(-1)Q+l I (-l)Q'[(Q)(Q - I)J' 
NN [Q! (Q _ I)!]' Q'=1 Q' Q' - 1 

X {sin (,u(QI)!) cos (,u(Q,)l) + <Xjj[(Q')!(1 - cos (,u(QI)f) 

X cos (,u(Q' - 1)f) - (Q')! . sin (,u(Q')~ sin (,u(Q' - I)')]), (3.46b) 

,(1) (Q) = cos 8( -l)Q I (-1)Q' (Q - 1 ) (Q,)l[sin (2,u(Q'h + !y(Q,)l(1 - cos (2,u(Q')'))] (3.46c) 
vv (Q _ I)! Q'=1 Q' - 1 ' 

'~~(Q) = [(Q ~i:)~~~ 1~ 2)!]1 Qt2( -1)Q1 (g -=- 11) (g, -=- ~) ] f 
x {sin (,u(Q' - 1)1)cos(,u(Q')~ + <Xjj[(QI)' sin (,u(Q'h . sin (,u(Q' - I»! 

- (Q' - li(1 - cos (,u(Q')~ cos (,u(Q' - 1)'»]), (3.46d) 

,(1)(Q) = cos8(-1)Q I (-l)Q'[(Q -l)(Q)J!(Q/)f 
NV [Q! (Q _ 1)!]f Q'=1 Q' - 1 Q' 

X [cos (2,u(QI)1) + !y(QI)l sin (2,u(Q')!)J, (3.46e) 

'~kQ) = sin 8( -1)Q I (-l)Q' (Q - 1 ) {cos (,u(QI)f) cos (,u(Q' _ I)') 
(Q - I)! Q'=1 Q' - 1 

+ lXo[(Q')! sin (,u(QI}t, cos (,u(Q' - 1)1) - (Q' - 1)f cos (,u(QI)!) sin (,u(Q' - l)i)]), (3.46f) 

y(S) _ sinO(-1)Q+l ~(-l)Q.[(Q)( Q )Ji 
"'N~Q) - [Q! (Q _ 2)l]i Q~2 Q' Q' - 2 

x {sin (,u(Q/)~ sin (,u(Q' - 1)~ + (XO[(Q' - 1)1 sin (,u(Q/)l) 

x cos (,u(Q' - l)t) - (Q'i cos (,u(Q')t, sin (,u(Q' - l)t,n, (3.46g) 

= an (n) n! d 
m - (n - m)!m! 

(Xo cos (J - ~ 
y= 

cos (J 

a In the following we have assumed .a = 1 in the original Hamiltonian (3.1). This produces no loss in generality as the necessary 
scale factor can be absorbed in m and w(k). 
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Notice that 'vt and ,~~ are identically zero for 
Q=1. 

We must now choose the parameters so that there 
are no V -+ N + () or N -+ V + () processes. Hence 
we require 

'~~(1) = '~~(1) = O. (3.47) 

From this follows 

tan It = -1/IXo and cos () = IXot5. (3.48) 

Since IXo is determined by (2.16c) and cos () by (3.22), 
we must have 

b =f [J(k)J2 dk. 
roCk) + b 

(3.49) 

With b determined by this equation, then IXo, It, cos 0, 
and 'Y = (0C0 cos 0 - t5)/cos 0 are determined, and so 
then are all of the coefficients {(Q) in (3.46). Moreover, 
the functions g(k) and h(k) in the operators g and h 
in (3.45) are determined from f(k) by (2.l6b) and 
(3.21). W is thus completely specified and is the 
potential canonically equivalent to the Lee model. It is, 
of course, a multichannel potential. The remaining 
coefficients for Q = I are 

{V~(1) = -15, {~!v(1) = b, 

{~!v(1) = (sin 0)[(1 + IX:)! - IXoJ. (3.50) 

The first of these produces the V-particle mass 
renormalization, and the second two give rise to an 
effective N-O potential. Since the N-particle is static, 
we have a one-body potential for the 0 in the NO 
sector, which is in fact separable. Moreover, since 
there is no 0-0 interaction, we can write the wave
functions for the eigenstates of 

(3.51) 

where WI are the Q = 1 terms (3.45) in all higher 
sectors as products of the eigenfunctions of H~ in the 
NO sector. Thus one may write the Lippman
Schwinger equation in any sector using these states 
as a basis; thus only the remaining terms in (3.45) are 
in the interaction term. Now the terms W2 [the 
Q = 2 terms in (3.45)] have no disconnected graphs 
in the V(} sector, and all the remaining terms 
annihilate the states of the VO sector. Thus the V(} 
sector reduces to a separable potential problem 
without disconnected graphs and the Lippman
Schwinger equation reduces to the inversion of a 
finite matrix. For the V(}O sector the Wz terms produce 
disconnected graphs and contain genuine two-body 
potentials. Thus one can only reduce the problem to 
a Fredholm equation by means of Mitra's technique3 

or with Fadeev methods. Nonetheless, we have a 
problem which in all sectors may be solved by (albeit 
complicated) quadratures. 

4. CONCLUSION 

We have seen that the canonical equivalence of the 
Lee model and the scalar field to effective potential 
theories can be anticipated by investigation of the 
algebra of canonical transformations that must be 
considered in seeking to diagonalize them. This 
suggests that a similar approach ought to give some 
insight into the Chew model and other static models. 
We shall pursue this question further in a later paper. 
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The t =:' 0, 0(3, ~), expansion of a square-i~tegrable equal-mass-scattering amplitude is considered. 
By assumm& the eXistence of an unsubtracted dispersion relation, it is explicitly shown to continue to an 
~(4) expansIOn for (ml - ma)2 :s;; s :S;;. (ml + ma)2. The continuation requires the introduction of 0(3,1) 
signature; nonsense-channel terms anse; however, their complete sum.is zero. 

INTRODUCTION 

Recent interest in families of Regge poles with spins 
differing by one or two units! has led to further study 
of the higher space-time symmetry 0(3, 1) of the 
two-particle scattering amplitude which holds when 
t or u is zero and the masses of the initial and final 
particles in the corresponding crossed channels are 
pairwise equa1.2 The two phenomena can be connected 
by the fact that a single 0(3, 1) representation contains 
within it sets of 0(2, 1) representations,a viz., a pole 
in an amplitude of the higher symmetry is equivalent 
to a set of poles in amplitudes of the lower symmetry 
with residues which are directly related to that of the 
parent.' 

Two approaches have been made. The first, due to 
Toller,s invokes the 0(3, 1) symmetry to make a 
direct partial-wave expansion of the t = 0 amplitude 
in terms of 0(3, 1) reduced amplitudes. This suffers 
from the deficiency that direct group-theoretical 
results apply only to functions which are square 
integrable over the group manifold. This requirement 
imposes bounded ness conditions on the amplitude as 
s ~ 00 which are not satisfied by general physical 
amplitudes. The second approach, as in Freedman 
and Wang,6 proceeds by continuing the amplitude in 
s to the (unphysical) region where 0(4) symmetry 
applies, making an 0(4) expansion followed by a 
Sommerfeld-Watson transformation, and then con
tinuing this back to the physical region. It replaces the 
difficulty of square integrability with that of the con
tinuation in s. 
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A priori, both approaches should be equivalent. We 
wish to test this for amplitudes which are square integ
rable over the 0(3, 1) group manifold, and which 
satisfy an un subtracted t = 0 dispersion relation. We 
find that, in general, the two expansions may be con
tinued into each other, in analogy with the 0(3) to 
0(2, 1) continuation.7 The introduction of an 0(3, 1) 
signature is forced on us since the direct and exchange 
components of the amplitude must be continued 
separately, just as for the 0(2, 1) to 0(3) continuation. 
The analogy is not complete, however, for although a 
set of "nonsense-channel" 0(3, 1) representations 
arises, destructive interference occurs between them, 
yielding zero total contribution. 

In Sec. 1 the expansions are stated; this leads, in 
Secs. 2-4, to a discussion of the 0(3, 1) representa
tions involving their symmetries and analyticity 
structure in ch , and (J, respectively. The proof of an 
integral relation between representations of the first 
and second kinds in Sec. 5 enables the analytic con
tinuation between the 0(3, 1) and 0(4) expansions 
to be made in Sec. 6. The cancellation of the nonsense
channel contributions is demonstrated in Appendix B. 

1. THE PARTIAL-WAVE EXPANSION 

We consider the scattering of particles having spins 
Si and masses mi , i = 1, ... ,4, the masses being 
pairwise equal, ml = ma, m2 = m4' At t = 0 the 
helicity amplitude in the center-of-mass frame of the 
direct channel may be expressed as 

(P3A3' P ,A,I T 1 PI AI' P2A2) 

= 1 (S2A2'S, - A41 Jm)TJmJ,(s)(J'ml SIAl' Sa - Aa), 
J,J' 

(1.1) 

where, subject to the condition of square integrability 

iooaz(Z2 - I)! ITJmJ,(s)1 2 < 00 (1.2) 

with 
z = ch, = (2mlm2)-\S - m~ - m~), (1.3) 

---
7 J. F. Boyce, J. Math. Phys. 8, 675 (1967). 
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the 0(3, 1) expansion 

may be performed.s Notice that the 613 = 0 law 
which applies at t = 0 is automatically taken into 
account by the Clebsch-Gordan coefficients. 

It is our object to show that upon defining reduced 
amplitudes having 0(3, 1) signature X' the above 
expansion becomes 

I
M+!+ioo (j2 _ 0'2) 

TJmJ,(s) =! dO' . ° T~J,(jo, O') 
00 M+!-ioo sm 7T(0' - v) 

1 [diua () -ill'(v+io+m)d ioa (_ )] x ~x JmJ' Z - Xe JmJ' Z, 

(1.5) 

where M = max (J, J'), and v = 0 or t as jo is integral 
or half integral. It may then be continued in z to Izi < 
1, when it becomes expressible as 

00 

TJmJ,(s) = -2i! ! (j~ - 0'2)T~J,(jo, O') 
X,io a=M+I 

X h[1 + X( _l)(a-v)] d~~J'(z), (1.6) 

which may be identified as an 0(4) expansion. 
In order to define analytically continuable reduced 

amplitudes, we must utilize the dispersion relation 
satisfied by T JmJ'{s), which follows from the assump
tion of an un subtracted dispersion relation for the 
crossed amplitudeS 

+f-ZL dz' , pL(z') .), (1.7) 
-00 z - Z + Ie 

where p, = A2 - A4 , A = Al - Aa, and p(z) = p{z; 
A2A4; AIAa). By making use of the t = 0 crossing 
relation, we infer that 

(1.8) 

where9 

<Il:f'mJ'{z) = d~,.( -!7T)(1 + z)!II'HI 

x (I - z)!1 I'-A I df;"(!7T). (1.9) 

8 F. Calogero, J. M. Charap. and E. J. Squires. Ann. Phys. (N.Y.) 
25, 325 (1963). 

• M. Andrews and J. Gunson, J. Math. Phys. 5, 1391 (1964). 

We shall choose the cuts of <I>j!..J'{z) to be from z = 
-00 to z = ±1. Hence 

rhl'A ( . ) ( 1)(I'-A)rhl'A ( +.) 
'V JmJ' Z - Ie = - 'V JmJ' Z Ie , 

and 
-1 < z < 1, (1.10) 

<I>~~J'{z - ie) = (-1)21'<I>~/mJ{z + ie), z < -1. 

(1.11) 

Use will also be made of the reflection properties 

rhl'A ( ) ( 1)(J'+m)rhl'-A ( ) 
'V JmJ' -z = - 'V JmJ' Z 

= (_l)(J+m)<IlJ~J'(z), 

together with the index symmetries 

(1.12) 

(1.13) 

<I>jlmJ'(z) = (-l)(J-J')+(I'-l)<I>j~mJ'(z) (1.14) 

and 

(1.15) 

2. SYMMETRIES OF 0(3, 1) REPRESENTATIONS 

Following Toller,5 we adopt as the basic definition 
the integral 

d~:'J'(O = H[(2J + 1)(2J' + 1)J}! i" dO sin 0 

x (exp{ -g) cos !O)(2a-l)do!· (0) do!' (0') 
cos to' 10

m 
10m , 

(2.1) 

where tan iO' = exp a) tan to and dt m{O) is an 0(3) 
function as defined by Andrews and Gunson.9 From 
its index symmetries, we at once obtain 

d~~J,m = d:;;oJ,m = dJ~~J,m, (2.2) 

while the symmetry of the 0(3) functions under 
o -+ 7T - 0 yields 

d~~J,(-') = dr:Jm = (_l)(J-J') dJ~~,m. (2.3) 

The weak equivalence of the 0(3, 1) representations 
(jo, O') and (-jo, -O') leads to 

-io-a r(J + O' + 1)r(J' - O' + 1) ioa 
dJmJ,m = r(J _ O' + 1)r(J' + O' + 1) dJmJ,m· 

(2.4) 

By expressing the integral of Eq. (2.1) in terms of 
x = exp ( - 0 cos2 to( cos2 to')-1 and using the bino
mial theorem, the integrand may be expanded as a 
finite sum, each term of which is integrable,S yielding 
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with 

e~~J,m = /).f.m/).f;m(2 sh ,)-J-J'-l 

X I (_l)J'-m+nr(J + J' + m - jo - oc -oc' + 1)r(jo - m + oc + oc' + 1) 
«.«' 
r.n 

x [r(J - jo - oc + l)r(J + m - oc + l)r(oc + jo - m + l)r(oc + l)r(J' - jo - oc' + 1) 

x r(J' + m - oc' + l)r(oc' + jo - m + l)r(oc' + l)r(r - oc + l)r(oc + J' - jo - n - r + 1) 

x r(J + J' + m - jo - oc' - r + 1)r(2jo - m - J' + oc' + r + n + l)(jo + n - 0')r1 

x exp ['( -0' + J + J' - jo + m - 2r)], (2.6) 
in which 

/).fom = [(2J + l)r(J + jo - 1)r(J - jo + 1)r(J + m + l)r(J - m + 1)]1, (2.7) 

and the summation is over those values of oc, oc', r, and 
n for which the denominator is nonsingular. 

We may identify 

i
o 

a I J (0 J' 0' X dxx - dlom ) d;om( ), 
exp(-" 

for Re (0' - J') > 0, (2.8) 

= [(21 + 1)(2J' + 1)]1(2 sh ,rl 

x (<>:J dxxa- l dfom(O) dfo'm(O'), 
Jexp (-') 

for Re (0' + J) < 0, (2.9) 
with 

cos 0 sh { = ch { - x, cos 0' sh { = X-I - ch {, 

sin 0 sh { = {[exp m - x][x - exp (-{)])!, 

sin 0' sh , = {[exp { - x-I)(X-1 - exp (-m}l. 

The index symmetries 

loa (Y) ma (Y) -loa (Y) eJmJ'''' = eJloJ'''' = eJ-mJ' ." (2.10) 

follow at once, while the symmetry of the 0(3) 
functions under 0 -- TT - 0 leads to 

loa (1'\ Iry-a (1'\ 
eJmJ' -.", = eJ'mJ ."" (2.11) 

and the weak equivalence of the representations to 

eio:' m = (_1)(J-J') r(J + 0' + 1)r(J' - 0' + 1) 
JmJ r(J - 0' + 1)r(J' + a + 1) 

X e~:'J'(')' (2.12) 

As the summation variable r which occurs in Eq. 
(2.6) is always an integer, it follows that 

e7:'J,g + iTT) = exp [-iTT(O' + jo - m + 1)]e7:'J,m, 
(2.13) 

and upon combining this with Eq. (2.5) we obtain 

d~:'J'({ + iTT) - exp [iTT(a + jo + m - 1)] d;;:'J,m 

= 2i sin TT(O' + jo) exp (i1rm)e;;:'J,m. (2.14) 

3. ANALYTICITY STRUCTURE IN ch , 

For physical applications we are interested in the 
0(3, 1) representations as functions of y = ch " and 
in particular with the analyticity structure. As a 
function of y = exp "e~o:..,,(,) has poles of order 
(J + J' + I) at y = ± I: 

y = z + (Z2 - I)!, (3.1) 

where we choose the square root cut to be between ± 1 
and the phase to be positive on the principal sheet. As 
a function of z, then , is defined by 

, = log [z + (Z2 - 1)1], (3.2) 

with branch points at z = ± 1 and cuts from these to 
- 00. The resulting phases are shown in Fig. 1, with 

ch IX. = Izl, sh oc = l(z2 - 1)11, 

ch (j = Izl, sin 0 = 1(1 - z2)11. 

As a result, e~o:nAz) has the same analyticity structure. 
Between - 00 and -I the cut is due to the logarithmic 

FlO. 1. Phase of ,(z). 
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discontinuity, yielding implies , - , =t= i1T as 1m Z ~ O. Hence 

e'~J.(z - iE) = exp [21Ti(0' + io - m + 1)] e'~J.( -z) = exp [±i1T(O' + io - m + l)]e'~J.(z), 
x e7:nJ.(z + iE), z < -1, (3.3) ± as 1m z ~ 0, (3.6) 

while for -1 :s;; Z :s;; 1, the discontinuity is due to the and, upon using this in conjunction with (2.14), 
square root of Eq. (3.2). Upon crossing this cut 
, _ _" and hence 2 sin 1T( 0' + i o)e~:'J.( z) 

ioO' ( . ) :10-0' ( +.) eJmJ, Z - lE = eJ'mJ Z lE, -1 :s;; Z ~ 1, (3.4) 

from which it follows that 

d :lOO' ( . ) ( 1)(J-J') d-:loO' ( +.) JmJ' Z - lE = - JmJ' Z lE, 
-1 :s;; Z ~ 1; (3.5) 

it is a consequence of the choice of phases that Z - - Z 

_ ±. ±i(m-ll .. [ 'fi(O'+io+m-ll .. d :100' () d :100' ( )] - le e JmJ' Z - JmJ' -z , 

± as 1m Z ~ 0. (3.7) 

Asymptotically, as 10'1- 00, we have 

e7:nJ'(z) - KO'-l exp {-O' log [z + (Z2 - 1)*]), 

(3.8) 
while,as Izi - 00, we have 

eioO' ,(z) _ [(2J + l)(2J' + 1) r(J - m + 1)r(J + io + 1)r(J' - m + l)r(J' + io + l)J* 
JmJ r(J + m + 1)r(J - io + l)r(J' + m + 1)reJ' - io + 1) 

x (_o(J'+m) reO' + J' + 1)r( - 0' - io) (2zrO'-I:lo-ml-l[1 + 0(Z)2] (3.9) 
r(jo - m + 1)r(0' - m + l)r(J' - 0' + 1) , 

and the behavior of d~o:nJ,a) follows at once from Eq. 
(2.5). 

4. ANALYTICITY STRUCTURE IN (J 

It may be seen from Eq. (2.6) that eY:'J'(z) is an 
analytic function of 0' having a logarithmic branch 
point at 0' = 0, and with possible poles at those inte
ger values of (0' - jo) for which -J:S;; 0' ~ J'. If we 
choose the cut to lie along the positive imaginary 
axis, then, from (2.5), d~o:,J'(z) is cut along the 
imaginary axis. From Eq. (2.1), d~o:'J'(z) is finite for 
all 0' and, consequently, from (2.4), if (0' - jo) is an 
integer, 

d':nJ'(z) = 0, if J + 1 :s;; 0' :s;; J' 

or J' ~ 0' :s;; -J + 1. (4.1) 

If 0' is restricted to positive values and we consider 
dj:'J'(z) as a matrix in (J, J'), then its form suggests 
its redefinition by 

d :loO' () ddoO' ( ) JmJ' Z - JmJ' Z 

_ (r(J + 0' + l)r(J' - 0' + 1»)* dioO' Z 

- r(J - 0' + l)r(J' + 0' + 1) JmJ'()' 
(4.2) 

which is block diagonal. The separate pieces form the 
finite-dimensional unitary representation of 0(4) and 
the infinite-dimensional nonunitary representation of 
0(3, 1) which correspond to the value of 0' considered. 
This behavior is in complete analogy with that of 

d;"n(z) when j - m is an integer; although its 
diagonalization is threefold into two infinite-dimen
sional unitary representations D(±)(j) of 0(2, 1), m, 
n > j and m, n < -j, respectively, and a finite
dimensional unitary representation D(j) of 0(3), 
Iml,lnl:S;;p 

However, the redefinition represented by Eq. (4:2) 
would introduce extra cuts into the 0' plane, and there
fore we shall not make it. The results are, of course, 
independent of whether we make it or not. For values 
of 0' at which e1~J'(z) is finite, viz., 0' > J', 0' < -J, 
then,from Eq. (3.7), we have 

d ioO' ( z) _ 'fi(O'+:lo+m)"dioO' () JmJ' - - -e JmJ' Z , 

=F as 1m Z ~ O. (4.3) 

The asymptotic behavior as 10'1- 00 has already 
been given in Eq. (3.8). 

5. AN INTEGRAL RELATION 

In order to continue from 0(3, 1) to 0(4), it is 
necessary to establish the integral relation which is 
analogous to that between Pi(z) and QJ(z), as it is this 
relation which provides the link between the two 
expansions. Consider the function 

FJ:.J';,(z) = I <l>j~J,(z)eJ:'J,(z)(z2 - l)l, (5.1) 
m 

where <l>jAmJ,(Z) is defined by (1.9). F~o:.n(z) is ana
lytic in the plane cut from Z = 1 to Z = - 00, with 
branch points at z = ± 1. The discontinuities actoss 
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the cuts are 

Disc [F ;;.J';.(z)] = 1 <I>~~J.(z) d7:'J.(z)(Z2 - 1)!, 
m 

-1 =:;; z =:;; 1. .(5.2) 
and 

Disc [F7:.J';.(z)] 

= -2i exp [i1T(O' - jo)] sin 1T(0' - jo)F7:.n(z), 

z < -1, (5.3) 

where the functions on the right-hand side are ob
tained by approaching the cut from above. 

It follows from Cauchy's integral theorem that if 
z is any point not on the real axis less than 1 and L is 
any contour which surrounds z and does not enclose 
any of the branch points, then 

Fioa () (2 .)-lid 'Fioa (')(' )-1 J/l.J'). Z = 1T1 Z J/l.J'). Z Z - Z • 
L 

(5.4) 

It we now distort the contour L into an infinite circle 
plus the integral of the discontinuity along the cut, then 
from Eq. (3.9) it follows that the infinite circle contri
bution is zero for Re O' + ljo - ml > flo and thus, 
upon incorporating the results of Eqs. (4.2) and (4.3), 
Eq. (4.4) becomes 

Re O' > flo. (5.5) 

This is essentially the relation for which we were 
looking; however, it bears somewhat closerexamina
tion, for it must be shown that the poles of eJ~J'(z) 
at z = ± 1 do not cause the above integrals to diverge. 
This we perform in Appendix A. 

Notice that Eq. (5.5) admits the two equivalent 

forms 

~ (Z2 - 1)!<I>!'/mJ.(z)ej:'J'(z) 

- (21Ti)-1 L~ dZ'(Z,2 - 1)!<I>j-).mJ.(z') d:;:'J'(z')(z' - zr l 

- 1T-I ei1TJ' sin 1T(0' - jo) 

x f'" dZ'(Z,2 -l)l<l>j--;J.(z')ej:'J'(z')(z' + Z)-I) = 0, 

Re O' > flo, (5.6) 

and 

~ (Z2 - l)! exp i1T[(J' + m) 

± (O' + jo - m + 1)]<I>j--;;'~,(z)e:;::'J'(z) 
- (21Ti)-1 f1dZ'(Z,2 - 1)!<I>j-).mJ.(z') d:;:'J.(z')(z' + Z)-I 

- 1T-1ei1TJ' sin 1T(0' - jo) 

X i oo 

dZ'(Z,2 - 1)!<I>j-;;.~.(z')e:;:'J'(z')(z' - Z)-l) = 0, 

Re O' > flo, ± as 1m z ~ 0, (5.7) 

while use of Eq. (1.15) means that we are able to 
interchange J and J' on <1>. 

6. THE 0(3, 1) TO 0(4) CONTINUATION 

Our object is to express the 0(3, 1) expansion, Eq. 
(1.4), in such a form that it may be continued in z to 
Izl < 1 and expressed as an infinite sum over positive
integral values of O' - J, which will then be identified 
with an 0(4) expansion. In order to perform the 
continuation, we are forced to consider direct and 
exchange forces independently and thereby to intro
duce 0(3, 1) signature. 

The completeness relation for unitary 0(3, 1) rep
resentations 

= 1T(2J + 1)(2J' + 1) t:5 .. ,b(O' _ O") (6.1) 
(j~ _ 0'2) '0'0 

enables the partial-wave amplitude to be easily ob
tained from (1.4): 

TJJ,(jo, O') = [1T(2J + 1)(2J' + 1)r1 

x 1lood~ sh2 ~ d:;;;;;,WTJmJ·(s). 
m 0 

(6.2) 

However, we wish the reduced amplitude to coincide 
with the 0(4) reduced amplitude for positive-integer 
values of (a - J). We shall use the invariance of Eq. 
(1.4) under (jo, a)- (-jo, -a), together with Eq. 
(4.5), to ensure that this is indeed the case. 

We begin by dividing the amplitude into direct 
and exchange components: 

with 

AJmJ.(z) = ! <l>j.).mJ.(Z)i
oo 

dz' pR(z')(z' - Z - iErl 
/l.A ZR 

(6.4) 
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and Upon defining 

BJmJ,(z) = ! fl>j~J.(Z)ioo dz' pL( -z')(z' + z - ierI, BJJ,(jo, 0') = sin 7T(0' - jo)$JJ,(jo, 0'), (6.10) 
/l,A. ZL 

(6.5) Eq. (6.6) becomes 

where the (Jfl, J'A.) subscripts on the p's have been 
omitted. The expansions of the direct and exchange 
components will be considered separately; we shall 
show presently why this is essential. 

where, by using the reflection invariance of the above 
under (jo,O')-+(-jo, -0'), together with (2.5), 

$JJ'Cio, 0') = 2( -1)(J-J')[7T(2J + 1)(21' + 1)]-1 

X ! foo dZ(Z2 - l)leJ~~iz)BJmJ'(z) 
m J1 

(6,7) 

or ,10 equivalently, as far as the principal-series integral 
is concerned, 

$JJ,(jo, 0') 

= 2( _1)(J-J')[7T(2J + 1)(2J' + 1) sin 7T(0' - joWl 

X * (Sin 7T(0' - jo) 

x ioodZ(Z2 - l)le:;!:iz)BJmJ,(z) 

_ (2i)-le+i .. (J+J'+m) 

x f1dZ(Z2 - 1)1 d:;~~Az)B JmJ{ - Z»). (6.8) 

Due to the condition of square integrability Eq. 
(1.2), the above definition converges for all Re 0' Z O. 
For Re 0' > J, we may substitute the dispersion rela
tion for BJmJ,(z), interchange the orders of integration , 
and then use Eq. (5.6) to identify 

$JJ'Cio, 0') 

= 2e-i .. J'[(2J + 1)(21' + 1) sin (0' + jo)r1 

x ! 5. 00 

dZ(Z2 - l)i<l1';j,(z)e:;!~iz)pL( -z), 
m ZL 
/l,A. 

Re 0' > J. (6.9) 

The form of the above is in close analogy with the 
Froissart-Gribov continuation of the normal 0(3) 
amplitude. 

10 For jo a nonzero integer. Eq. (6.7) has a pole at (J = 0 which 
yields an additional term to Eq. (6.6); it does not affect the argu
ments which follow and is dealt with in Appendix B. 

fiOO Ci~ - 0'2) 
BJmJ,(z) = ! dO'. . 

10 -ioo SIO 7T( 0' - Jo) 

X BJJ,Cio, 0') dj~J.(z), (6.11) 

where BJJ,(jo,O') is finite for all Re 0' Z O. The 
asymptotic behavior of e;':"J'(z), Eq. (3.8), enables 
us to continue in z to Izl < 1 and then perform an 
inverse Sommerfeld-Watson transformation, yielding 

00 

BJmJ,(z) = 2i! ! (j~ - 0'2)BJJ,(jo, 0') 
10 11=1-" 

X ei .. (11-10) dj.O:;J'(z), (6.12) 

where v = 0 or 1 as jo is integral or half-integral. 
But since dj:,.J'(z) is zero for J + 1 S 0' < 1', it 
follows that the sum over 0' splits into two parts, since 
either BJJ'(jo, 0') or d!l':nJ'(z) is zero for min (J,J') + 
1 sO's max (J, J'). This is a consequence of the 
block diagonalization already referred to in Sec. 4. 
The sum max (J, J') + 1 S 0' < 00 is over unitary 
representations of 0(4), while the nonsense-channel 
terms 1 - v SO'S min (J, J') are components of the 
infinite-dimensional nonunitary representations. 

For 0' - 1 Z (J, J'), Eq. (6.9) yields 

EJJ'Cio, 0') 

i( _1)(11-:10) 
= -~---':...---

7T(2J + 1)(21' + 1) 

r(J + 0' + l)r(J' - 0' + 1) x 
r(J - 0' + l)r(J' + 0' + 1) 

x * f1dZ(Z2 - 1)1 dJ~~,(z)BJmJ'(z) 
;(_1)(11-10) 

=----'~~---
7T(2J + 1)(2J' + 1) 

x (_1)(J-J') r(J + 0' + 1)r(J' - 0' + 1) 
r(J - 0' + 1)r(J' + 0' + 1) 

x ~ f1dZ(Z2 - 1)1 d~':n~.(z)BJmJ'(z), (6.13) 

which may be identified as an 0(4) partial-wave 
amplitude apart from the factor 

( -1)(J-JJ'r(J + 0' + 1)r(J' - 0' + 1) 

x [r(J - a + l)r(1' + 0' + 1)]-1. 
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At the nonsense-channel values a < (J, J'), we have 

BJJ.(jo, a) 

= i( -1)(J-J')[7T(2J + 1)(2J' + 1)]-1 

X ~ (iC<J dZ(Z2 _1)t[(_lya-io) dJ!'::Az) 

+ eim1t d:;!'::A -z)] 

+ e-i'J1(J-J'-m)L:dZ(Z2 _1)1 dJ!~Az)BJmJ'( -Z»). 

(6.14) 

Consider now the expansion of the direct force 
amplitude 

AJmJ·(z) = t f:da(j~ - ( 2)AJJ·(jo, a) d:;:"J'(z), 

(6.15) 
with 

AJJ.(jo, a) = 2(-I)(J-J')[7T(2J + 1)(2J' + l)r1 

X I (OOdZ(Z2 - l)teJ!::Az)AJmJ.(z), (6.16) 
m Jl 

where we have again made use of the invariance of the 
principal series under (jo, a)-+ (-jo, -a), as in Eq. 
(6.7). We utilize it further to redefine 

AJJ.{jo. a) 

= 2(-1)(J-J')[7T(2J + 1)(2J' + 1) sin 7T(a - io)r1 

X ~ (sin 7T(a - jo) ioodz(Z2 - l)teJ~::Az)AJmJ'(z) 

+ iiei'J1(J+J'+m) J~/Z(Z2 - 1)!- dJ1::Az)AJmJ.( - z) ). 

(6.17) 

As was the case with $JJ.(jo, a). this definition 
converges for all Re a ~ O. For Re a > J, we may 
substitute the dispersion relation for AJmJ.(z), inter
change the orders of integration, and then use Eq. (5.6) 
to identify 

AJJ.{jo. c) 
= _2ieilT(a+io+J-J'+1) 

X [(2J + 1)(2J' + 1) sin 7T(a - jo)r1 

x I LX> dZ(Z2 - l)t<I>j}.mJ.(z)eJ!::Az)pR(z), 
::':}. ZR 

Re a > J, (6.18) 

= ei 'J1(aHo-l)[sin 7T(a - jo)r1AJJ.(jo, a). (6.19) 

The factor eilla , which occurs in Eq. (6.18) and 
which did not occur in Eq. (6.9), prevents the con
tinuation of Eq. (6.15) in z to Izl < 1. It is possible to 

absorb its effect by changing d~o:'J'(z) to dY:'r( -z) 
before continuing in z; we are thereby forced to con
sider direct forces independently from exchange forces 
and consequently to introduce signature. 

Before introducing signature, however, we shall 
, shift the contour of integration of Eq. (6.15) from 

Re a = 0 to Re a = M + t. where M = max (J, J'). 
As the contributions from 1m a = ± 00 are zero, this 
yields 

AJmJ·(z) 

i M+1+iC<J U: - (2) 
= I da . . 

10 M+!--ioo sm 7T(a - Jo) 

X eilT(a+io-ll,4 ( . ) dioa () nJJ' ]0' a JmJ' Z 

min (J,J') 
+ 2i I (j~ - ( 2)(_1)2JoAJJ·(jo, a) d1:'J'(z), 

a=l-v 

(6.20) 

where the nonsense-channel amplitudes are given by 

AJJ.uo, a) 

= (_1)(aHo+J-J')[i7T(2J + 1)(2J' + l)t1 

X ~ (iC<J dZ(Z2 - 1)1[( _1)(a-io) dJ1::J(z) 

+ eimfr dJ!~A -z)]AJ·mJ(z) 

+ e-i'J1mjl dZ(Z2 - 1)!- dJ!::J(z)AJmJ.( -z») 
~ aSM 

(6.21) 

The signature factor ei'lla is now eliminated from Eq. 
(6.20) by using 

i1T(a+io)'Il d ioa () _ -i(m-l)'J1 dioa ( ) 
e JmJ' Z - e JmJ' -Z 

+ 2i sin 7T(a + jo)e~:'J'(z), (3.7) 
together with 

i
M+t+iC<J 

I da(j~ - (
2
)AJJ,(jo. a)e1:'Az) = 0, 

io M+I-ioo 
(6.22) 

where the latter relation follows by closing the contour 
in the right-hand a plane. Hence the "sense compo
nent" of Eq. (6.20) becomes 

IM+t+iC<J U: - (2) • 
AJmJ'(z) = I da . . AJJ·(]o, a) 

10 M+t-iOO sm 7T(a - Jo) 

X e-im'lr dJ:'J .( -z). (6.23) 

This expression may be continued in z to Izl < 1 
and an inverse Somm~rfeld-Watson transformation 
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then performed, yielding 

(6.24) 

with, from (6.18), 

AJJ,(jo, 0') = [i1r(2J + 1)(2J' + 1)]-1( _1)(J-J') 

x _r(!.-.J---=+_O'--=-+_l~)r~(J_' _-_0'_+-,---,-1) 

r(J - 0' + l)r(J' + 0' + 1) 

x ~ (1 dZ(Z2 _ l)f d;;~J,(z)AJmJ'(z), 
m )-1 

(6.25) 

which, analogously to Eq. (6.13), may be identified 
with an 0(4) partial-wave amplitude, apart from a 
normalization factor. 

If we neglect the nonsense-channel terms, then Eqs. 
(6.11) and (6.23) enable us to express the amplitude 
in toto as 

iM+l+ioo (j~ - 0'2) 
TJmJ.(z) = ~ dO' . . 

;0 M+l-ioo sm 77(0' - Jo) 

[A ( . ) -il1m d iol1 ( ) 
X JJ' Jo. 0' e JmJ' -z 

- BJJ,(jo, 0') d;;~J'(z)], 
M = max (J, J'), (6.26) 

where the partial-wave amplitudes are defined by (6.9) 
and (6.18), respectively. Upon defining 0(3, 1) signa
ture eigenamplitudes by 

(_1)(tJ-io)TJJ,(jo,O') = (_l)("Ho+l)AJJ,(jo, 0') 

- XBJJ,(jo, 0'), (6.27) 

where v = 0 or t as jo is integral or half-integral, the 
expansion becomes 

TJmJ,(z) 

fM+l+ioo (j~ - ~) 1. • 

= ~ ~ dO' . T JJ,(jo, 0') 
io 1. M+l-ioo sm 77(0' - v) 

X ~ [d iOI1 () -il1(v+;o+m)d ;0" ( )] 
~X JmJ' Z - xe JmJ' -z , (6.28) 

which, upon continuing to Izl < 1 and making an 
inverse Sommerfeld-Watson transformation, becomes 

x U1 + x( _1)(11-11)] d;;~J.(z) (6.29) 

and is then identifiable as an 0(4) expansion. 
Incorporating the result of Appendix B, that the 

complete set of nonsense-channel terms sums to zero, 

we infer that the 0(3, 1) expansion of the amplitude 
for ch ~ > 1, i.e., s> (m} + m2)2, has been con
tinued into an 0(4) expansion for Ich" < I, i.e., 
(ml - m2)2 :::;; s :::;; (ml + m2)2. For amplitudes of the 
above class, viz., square integrable over the 0(3, 1) 
group-manifold and satisfying an unsubtracted dis
persion relation, the two expansions are therefore 
equivalent. 

7. CONCLUSION 

For pairwise equal mass-scattering amplitudes 
which satisfy the condition of square-integrability 
expressed by Eq. (2.1) and which obey the un subtracted 
dispersion relation of Eq. (4.7), the 0(3, 1) expansion 
which holds at t or u = 0 and s > (m} + m2)2 may be 
continued into the 0(4) expansion which holds for 
(ml - m2)2 :::;; s :::;; (m} + m2)2. In order to make this 
continuation between the two expansions, it is neces
sary to consider direct and exchange forces inde
pendently, thereby introducing 0(3, I) signature. In 
performing the continuation, "nonsense channel," 
terms analogous to those of 0(2, I) arise; however, 
they destructively interfere, as the sum of the complete 
set is zero. This might be anticipated, as the repre
sentations to which they correspond are neither 
unitary nor square integrable over 0(3, 1) or 0(4). 

The 0(3, I) expansion in terms of signature eigen
amplitudes T} J,(jo, 0') is 

fM+l+ioo (j~ - 0'2) 1. • 

TJmJ,(z) = ~ dO' . T JJ,{jo ,0') 
1.,io M+l-ioo sm 77(0' - v) 

X l [d iol1 () -'I1(v+io+m) d iol1 ( )] 
~x JmJ' Z - Xe JmJ' -Z ,. 

where z = ch {, M = max (J, J'), Uol:::;; J, J', and 
v = 0 or ! as jo is integral or half integral. 

ACKNOWLEDGMENTS 

The authors wish to thank Professor Abdus Salam 
for suggesting this problem and for his interest 
throughout its development. They also wish to 
acknowledge much assistance from Dr. J. A. Strathdee 
and many discussions with Dr. R. Delbourgo. One 
of the authors (J. F. B.) wishes to thank Dr. A. Sciar
rino and Dr. K. Koller for illuminating conversations. 
They wish to thank Professor Abdus Salam, Professor 
P. Budini, and the IAEA for hospitality at the Inter
national Centre for Theoretical Physics, Trieste. 

APPENDIX A 

Owing to the poles of eJ::'J,(z) of order J + J' + 1 
at Z = ±1 and of dJ::'J,(z) at z = +1, it might at 
first sight appear that the integrals within Eq. (5.5) 
diverge; however, as a result of the zeros of cDj'!..J'(z) 
at z = ± 1, the complete expressions are finite. To 



                                                                                                                                    

714 AKYEAMPONG, BOYCE, AND RASHID 

show this, we utilize the 0(3, 1) ~ 0(2, 1) decom
position made by Sciarrino and Toller~: 

+ discrete series. (AI) 

The above expansion decomposes a principal series 
representation of 0(3, 1) onto the principal and dis
crete series of unitary representations of 0(2, 1). In 
order to obtain the decomposition of a nonunitary 
representation, we must continue in C and simulta
neously distort the contour of integration to avoid the 
poles of K~o(J(j, +,J)atj = -a + N,j = a - N - 1, 
(N= 0,1," .). 
. Now, from its definition,9 we may show that, as 

IImjl ~ 00, we have 

le~n(z)1 < const Ii\-i- exp (7T IImjl), (A2) 
while 

IK~(J(j, +, J)I < const Ijla exp (-7T IImjl), (A3) 

where a is a finite real number whose value depends on 
the maximum value attained by the variable on the 
defining integral of K. Hence the integral appearing in 
Eq. (AI) is uniformly convergent, and consequently 
we have 

~ <l>j).mJ'(z) d7:'J.(z) 
m 

J-i+ioo (2' + 1) 
= -i dj J. K;o-a(j, +, J) 

-i-ioo tan 7T{j - v) 

X Kioa(j, +, J') d!).(z)(1 + z)i/I'H/(1 - z)i/I'-.l./ 

+ discrete series. (A4) 

It now follows directly from the definition of d:nn(z) , 
together with H.T.F.ll (2.10.14), that the right-hand 
side is finite at z = ± 1. 

APPENDIX B 

Ifwe take explicit account ofthe pole of $JJ,(jo, a), 
then, for jo integral, Eq. (6.6) becomes 

J
ioo 

BJmJ.(z) = ~ da(j~ - (
2
)$JJ'(jo, a) d~:'J.(z) 

:10 -ioo 

- i !j~(-I):l°BJJ,(jo, 0) d7!J'(z), (Bl) 
:10 

11 Higher Transcendental Functions, A. Erdelyi, Ed. (McGraw-Hili 
Book Co., New York, 1953), Vol. I. 

Since 

where BJJ,(jo, a) is defined by Eq. (6.14); it follows 
that the complete set of nonsense-channel terms are 

1'1 

-2i ~ ~ (j~ - ( 2)BJJ,(jo, a)(_I)(a-io) d~:'J'(z) 
io a=l-v 

where N = min (J, J') and the second term occurs 
only for integral jo . 

From the definition of BJJ,(jo, a) given in Eq. 
(6.14), if we can show by using the discrete symmetries 
that 

N 

7 = 2 ~ ~ (j~ - ( 2
)( _1)(a-io) d7::'J.(z) d"J!:: Az') 

io a~l-v 

+ ~j~( _1)iO d7!J'(z) dJ!::,Az') (B4) 
io 

is zero, then the sum of the nonsense-channel contri
butions will be zero. Now since 

dioa () d-ioa ( , -io-a io -a , JmJ' Z J'm'J z) = dJmJ, (z) dJ'm,Az), (BS) 

7 = ~ (j~ - ( 2
)( _1)(a-io) d~o::'J'(z) d"J!::Az'), 

iOta 

Ijol, lal ~ J, J'; (B6) 

while, for a - jo an integer, a ~ J, J',12 

d:J:'J,(z) 

(
r(J -a+1)r(J +jo+l)r(J' +a+l)r(J' -jo+l»)i 

= r(J +a+l)r(J -jo+l)r(J' -a+l)r(J' +jo+l) 

X d:1~J'(z). (B7) 
Hence 

d7:'J'(z) dJ!~'Az') 

= r(J + jo + 1)r(J' - jo + 1) daio ,(z) da--;io, (z') 
r(J - jo + 1)r(J' + jo + 1) JmJ J m J 

= d:1::.J'(z) dJ~::'Az'), (B8) 

and consequently 

7 =! (j~ - ( 2
)( _1)(a-io) d:1::'J'(z) dJ~;Az') 

io.a 
= -7 

=0. (B9) 

Thus we infer that the complete sum of nonsense
channel terms of the exchange amplitude is zero. 
The same result will apply to the direct part of the 
amplitude and hence to its entirety. 

11 See Ref. 5, Eq. (All). 
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We have studied four possible Green's functions of the Bethe-Salpeter equation for equal mass scalar 
bosons by considering contours in an off-the-mass-shell complex energy (.0) plane and an on-the-mass
shell magnitude of 3-momenta (k) or energy (Wk) complex plane. We find that three of the Green's 
functions~ausal, retarded, and advanced Green's function~annot lead to scattering solutions. Only 
a new Green's function, which we have called the scattering Green's function, with appropriate restric
tions on the interaction V(x), can lead to scattering states. 

1. INTRODUCTION 

The Bethe-Salpeter (BS) equation was first intro
duced by Bethe and Salpeter1 as a relativistic bound
state equation. Wick2 studied the equation in detail 
and obtained a simpler (and different) equation by 
utilizing a· Euclidean metric in the interaction propa
gator for the exchanged particle. This equation is 
customarily the "Wick-rotated Bethe-Salpeter equa
tion." Cutkosky3 solved the Wick-rotated BS equation 
for the ladder approximation with zero-mass quanta 
exchanged. 

Kemmer and Salam' extended the BS equation 
to scattering energies, and recently Tiktopoulos,5 

Schwartz and Zemach,6 Nakanishi,7 Saenger,S and 
others have studied or used the BS equation with 
scattering energies. Since the above papers were 
concerned with interactions and since the present work 
is confined to Green's functions of the BS equation, 
the interested reader is referred to the references con
tained in those papers. The work by Keam,9 Ciafaloni 
and Menotti,l° and Schwartz and Zemach6 contain 
most of the existing results on the causal Green's 
function of the BS equation. All three of these 
papers,6.D.lO as well as those papers they referred to, 
used causal boundary conditionsll in order to obtain 
their scattering boundary conditions. 

In the present work on the BS equation, we will 
reexamine the equal mass causal Green's function, 
will study the advanced and retarded Green's function, 

... This work was supported in part by a grant from the University 
of Missouri Research Council. 

1 H. A. Bethe and E. E. Salpeter, Phys. Rev. 84, 1232 (1954). 
• G.-C. Wick, Phys. Rev. 96, 1124 (1954). 
a R. E. Cutkosky. Phys. Rev. 96, 1136 (1954). 
'N. Kemmer and A. Salam, Proc. Roy. Soc. (London) A230, 

266 (1955). 
6 G. Tiktopoulos, Phys. Rev. 136, B275 (1964). 
8 C. Schwartz and C. Zemach, Phys. Rev. 141, 1454 (1966). 
7 N. Nakanishi, Progr. Theoret. Phys. (Kyoto) 38, 226 (1967). 
8 R. M. Saenger, J. Math. Phys. 8, 2366 (1967). 
8 R. F. Kearn, J. Math. Phys. 7, 2196 (1966). 

10 M. Ciafaloni and P. Menotti, Phys. Rev. 140, B929 (1965). 
11 For an explanation of why the causal Green's function was 

initially used, the reader is referred to S. S. Schweber, An Intro
duction to Quantum Field Theory (Harper and Row, New York, 
1962), 2nd ed., Chap. 17, p. 714. 
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and will introduce a new Green's function which we 
will call the scattering Green's function. Two inde
pendent determinations6

•
D of the causal Green's 

function have used the same inapplicable formula 
from a mathematical reference book. We consider 
two scalar bosons with mass m and 4-momentum 
operators fit and P2' In configuration space, the BS 
equation can be written as 

(p~ + m2)(p: + m2)'f"(xl' x2) = V(Xl' X2)'f"(Xl , X2), 

(1.1) 

where 'f"(xl , X2) is the BS amplitude, Xl and X2 are 
the space-time 4-vectors which locate particles 1 and 
2, and V(xl , X2) is the interaction potential operator 
between the two particles. We choose conventions and 
units such that Ii = c = 1, and the inner product 
between the two 4-vectors p and X is px = p . x -
Poxo· 

In Sec. 2, we present the kinematics and the pole 
structure of the Green's functions in the off-the-mass
shell energy plane. In Sec. 3, the causal Green's 
function is explicitly calculated by the specification of 
contours in an on-the-energy-shell magnitude of 
momentum plane. In Sec. 4, the same method is used 
to study the retarded and advanced Green's function 
in detail. In Sec. 5, a new Green's function which we 
call the scattering Green's function is considered. In 
Sec. 6, the summary and conclusions are presented, 
and some calculational details are relegated to 
appendices . 

2. POSSmLE POLES FOR THE GREEN'S 
FUNCTION 

Let us introduce the following transformations on 
the 4-momenta operators and the space-time coordi
nates mentioned in Sec. 1: 

P = fl2fi1 - fllPa = (p, ipo), 

P = Pl + P2' 
X = Xl/fla - Xa/PI = (x, it), 

X= Xl + Xa, 

(2.1) 
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where 1-'1 + 1-'2 = 1 is the only condition we wish to 
impose on the I-"s. If we let the eigenvalue of P be K, 
the wavefunction 'r(XI' xa) can be rewritten as 

'r(XI , x2) = eiKX'V'(X). (2.2) 

In the center-of-momentum system, the BS equation 
reduces to the following equation in terms of the 
relative coordinate x: 

[~2 - (Po - 'JI + (0)2 + m2][p2 - (Po - 'JI - (0)2 

+ m2]'V'(x) = V(X)'V'(X) , (2.3) 

where £0 represents the energy of each of the two 
particles fn the center-of-momentum system and 

'JI = (1-'2 - 1-'1)£0. (2.4) 

The assumption has been made that V(X} , X2) can be 
written as V(x). 

The Green's function G(x, x') must satisfy the 
following differential equation: 

[~2 _ (Po - 'JI + (0)2 + m2)[p2 - (Po - 'JI - (0)2 

+ m2 ] G(x, X') = !5'(x - X'). (2.5) 

The solutions to the inhomogeneous BS equation can 
then be written in the form 

¥'<x) = "Po(x) + f d'x'G(x, x')V(XI)'V'(X' ), (2.6) 

where "Po(x) is the solution to the homogeneous equa
tion (plane wave). Let us introduce G", the Fourier 
transform of G(x, x'). They are related by 

G(x x') = _1_ fd'Kei,,(-Q:'IG (2.7) 
'(217)' '" 

where K = (k, iO), d'K = d3k dO, and the 4-vector K is 
to be off-the-mass-shell. Using the usual form for the 
operators p and Po in the coordinate representation 

t = - i :x and Po = i :1 ' (2.8) 

we find that G" has the form 

G
K 

= {[k2 - (0. - v + (0)2 + m2] 

X [t2 
- (0 - 11 - (0)2 + m2n-l

• (2.9) 

On performing the integration over 0. and the angular 
variables of the 3-momenta k, Eq. (2.7) becomes 

2 e-iYTl oo 
G(x, x') = -3 - dkk sin (kR)I(Wk), 

(217) R 0 

where 

I(Wk) = 5:00
00 

dOe-mT/[w: - (0. + (0)2] 

X [£0: - (0 - (0)2] 

(2.10) 

(2.11) 

and 

R = Ix - x'l, T = 1 - t', 

k = Itl, £Ok = (k2 + m2)~. (2.12) 

The integral l(wk ) as defined in Eq. (2.11) is un
bounded if £0 is real. The integrand contains four poles 
at 

0.1 = -(£Ok + (0), O2 = £Ok - £0, 

Oa = -(£Ok - (0), 0, = £Ok + w. (2.13) 

We must specify contours in the complex 0 plane 
which would bypass the poles. The residue to each of 
the four poles can be easily calculated and the Green's 
functions which result from the contribution of each 
pole are listed below: 

(2.14) 

The superscript" +" or "-" on the Green's functions 
refers to the sign of T. If T> 0, we use +G .. and if 
T < 0, we use -Gt • It is assumed that, in each case 
listed above, the correct domain of Twould be chosen 
so that the semicircular integrals over the upper or 
lower half of the complex 0 plane will vanish. The 
integrands of the k-integrals still contain singular 
points, which we will handle later. These singular 
points in the complex k plane are to be expected since 
we are working with a fourth-order differential equa
tion in four variables and, in general, a choice of 
contour in the off-the-mass-shell 0 plane is not 
sufficient to define uniquely our Green's function; we 
must also specify contours in the on-the-mass-shell 
k plane in order to obtain unique solutions. The 
evaluation of the k integrals will depend on the 
relative magnitudes of Rand ITI as well as the sign 
of T. We shall call the space-time interval (x - x') 
spacelike, if R > ITI, and timelike, if ITI > R. The 
corresponding Green's function will be labeled G" if 
spacelike, and G

T 
if timelike. 

The specification of contours corresponds to the 
choice of different boundary conditions for the BS 
equation. We will consider four possible choices of 
contours in the complex 0. plane. 
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3. CAUSAL GREEN'S FUNCTION Gc 

A.GcforT>O 

The causal Green's function is defined by the con
tour shown in Fig. 1. For T> 0, 

which can be expressed using Eq. (2.14) as 

2' -ivT 
+Gc = -'-2 _e - [i sin (roT) +F1(q, R, T) 

(417) roR 

(3.1) 

+ ro cos (roT) +F2(q, R, T)], (3.2) 

where 

i 0::> k' (kR) ;Fi(i)kT 
F ( R T) = dk sm e 

1 q, ,± k2 2 
o - q 

(3.3) 

and 

F ( R ± T) = dk sm e . (3.4) i 
0::> k' (kR) ;Fi(i)kT 

II q, , . (kll II) o rok\ - q 

The superscript" +" or" -" on Fl and Fa refers to the 
sign of T that we must use in evaluating the integrals. 
If q is real, the integrands of Fl and Fa will have 
singular points at k = ±q. We shall, as in the non
relativistic scattering case, attach to q an infinitesimal 
positive imaginary part (q -- q + iE). Other choices 
of contours in the complex k plane are also possible; 
for example, we can let q --q - iE. Since we are 
interested in outgoing scattered waves, we shall use 
the +iE contour. Fl and Fa can now be written as 

F1(q + ie, R, ±T) 

= dk---~~~----10::> k sin (kR)e'fiwkT 

o (k + q + ieXk - q - ie) , 
(3.5) 

Fa(q + iE, R. ± T) 

= dk . 10::> k sin (kR)e'fiWkT . 

o roik + q + iE)(k - q - iE) 
(3.6) 

It is helpful to note that Fl and Fa are related by 

T>O 

.0., .n2 ....... 
t" -- -, ,- \ r .. .. , 
\ .... ..... 

.n3 .n4 I 
\ / , , / , / 

..... / 

" ,/ ..... ", ... .... ...,. --

FIG. 1. Contour for the causal Green's function in the 
complex n plane. 

where 

1m ke-leR sin [(m2 - k2)tT] 
M(R, T) = - dk 2 2 • (3.9) 

o k + q 

From Appendix B, we have 

+FrCq + iE, R, T) = iW(R, -T) + iN(R, -T), 

(3.10) 
where 

10::> ro#±WkT sinh [(ro2 + mll)tR] 
W(R, ±T) = drole II Ie II 

o role + ro 

and 
(3.11) 

N(R, ±T) =im dk k exp [±!(m
2 ~ kllT)t] sinh (kR). 

o k + q 
(3.12) 

(3.7) F2 can be determined from Fl by the integration of 
Eq. (3.7) with respect to T: 

The evaluation of Fl can be performed by routine 
contour methods, and the details are shown in 
Appendices A and B. The results depend on the 
relative magnitude of R and I TI as well as the sign of T. 
We shall use the same notation as was indicated for 
the Green's function: F<I, if the interval is spacelike, 
and Fr, if the interval is timelike. From Appendix A, 
we have 

F2(q + iE, R, ± T) 

= F2(q + iE, R, 0) - i iT Ft(q + iE, R, ±T') dT'. 

(3.13) 

Since Ge is not defined as yet for T = 0, we may 
arbitrarily set F.iq + iE, R, 0) equal to zero without 
loss of generality. This will be shown later to be 
equivalent to setting Gc(q + iE, R, 0) equal to zero at 
T = 0 and will also satisfy the continuity requirement 
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of Go at T = O. Equation (3.13) becomes 

F2(q + iE, R, T) = -iiTdT'Flq + iE, R, T') 

(3.14) 

and, upon integration of +Ff and +Fr, we have 

Substituting from Eq. (2.14), we have 

-Go(q + iE, R, T) 

= [-2i/(417)2](e-ivT/wR) 

x [i sin (wT) -F1(q + iE, R, -T) 

- w cos (wT) -F2(q + iE, R, -T)], (3.25) 

+F;(q + iE, R, T) where +iE has been added to q for the same reason as 
= (17/2w)eiflR(e-iWT - 1) - iM'(R, T) (3.15) given in Sec. 3A ami: Fl and F2 are given by Eqs. (3.3) 

and and (3.4). From Appendices A and B, we find 

+F~(q + iE,R, T) = W'(R, -T) + N'(R, -T), (3.16) -F~(q + iE, R, -T) = t17eiflReiWT - M(R, T) (3.26) 

where and 

M'(R, T) = iT dT' M(R, T'), 

W'(R, ±T) = iT dT'W(R, ±T'), 

(3.17) -Fi(q + iE, R, -T) = iW(R, T) + iN(R, T). (3.27) 

Applying Eq. (3.14), we have 
(3.18) 

and 

N'(R, ±T) = iT dT'N(R, ±T'). (3.19) 

We can now express +G c in terms of the above 
expressions. For spacelike intervals 

+G~(q + iE, R, T) 

= (i/8172)(e-ivT/wR){!17[1 - cos (wT)]eiQR 

- iw cos (wT)M'(R, T) + i sin (wT)M(R, T)} 

(3.20) 

and for timelike intervals 

+G~(q + iE, R, T) 
i e-ivT 

= -2 - {w cos (wT)[W'(R, -T) + N'(R, -T)] 
817 wR 

- sin (wT)[W(R, -T) + N(R, -T)]}. (3.21) 

For large values of R, M(R, T) and M'(R, T) damp 
exponentially while N(R, ± T) and N'(R, ± T) in
crease exponentially. In Eq. (3.20) we can thus 
neglect the last two terms on the right-hand side of the 
equation for large values of R and write, for +G~, 

+G"( . R T) _i __ ivT(1 - cos (WT»)e
iQR 

c q + IE" -+ e . 
1617 w R 

(3.22) 

However, in Eq. (3.21), the right-hand side becomes 
unbounded and 

+G~(q + iE, R, T) -+ 00. 

B. Go for T < 0 

For T < 0 from Fig. 1, we have 

-Go = -G1 + -Ga' 

(3.23) 

(3.24) 

-F;(q + iE, R, -T) 

= (17/2w)eiflR(eiWT - 1) - iM'(R, T) (3.28) 

and 

-F~(q + iE, R, - T) = - W'(R, T) - N'(R, T). (3.29) 

The causal Green's function for negative T becomes, 
on substituting into Eq. (3.25), 

-G~(q + iE, R, T) 

= (i/8172)(e-ivT/wR)[!7T(1 - cos (wT»eiQR 

- iw cos (wT)M'(R, T) + i sin (wT)M(R, T)] 

(3.30) 
for spacelike intervals and 

-G~(q + iE, R, T) 

= (i/8172)(e-ivT/wR){sin (wT)[W(R, T) + N(R, T)] 

- w cos (wT)[W'(R, T) + N'(R, T)]} (3.31) 

for timelike intervals. For large values of R, using the 
properties of M(R, T) and N(R, ±T) mentioned in 
Sec. 3A, we have 

-G~(q + iE, R, T) -+ _i_ e-iVT(1 - cos (wT»)e
iflR 

1617 w R 

and 
(3.32) 

-G~(q + iE, R, T) -+ 00. (3.33) 

4. RETARDED AND ADVANCED GREEN'S 
FUNCTION 

A. The Retarded Green's Function GR 

The retarded Green's function GR is defined by the 
contour shown in Fig. 2. For T < 0, -GR = 0 for both 
spacelike and timelike intervals, while,for T > 0, 

(4.1) 
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FIG. 2. Contour for the retarded Green's function in the 
complex n plane. 

Substituting from Eq. (2.14), we have 

+GR(q + iE, R, T) = [2ij(41T)2](e-iVTjwR) 

X {i sin (wT)[+Ft(q + iE, R, T) 

+ +F1(q + iE, R, -T)] 

+ w cos (wT)[+F2(q + iE, R, T) 

- +Flq + iE, R, -T)]}. (4.2) 

We may use Eq. (3.14) to determine F2 from F1 , 

where defining F2(q + iE, R, 0) = 0 again has the 
effect of setting GR = 0 at T = 0 and making it 
continuous at T = O. Inserting the possible expres
sions for +Fl(q + iE, R, ±T) into Eq. (4.2), we have 

+GR(q + iE, R, T) = 0 (4.3) 

for spacelike intervals, and 

+Gk(q + iE, R, T) 

= (_ij81T2)(e-iVTjwR) 

X {t1T[1 - cos (wT)]eiaR + i sin (wT)M(R, T) 

- iw cos (wT)M'(R, T) + sin (wT) 

X [W(R, - T) + N(R, - T)] 

- w cos (wT)[W'(R, -T) + N'(R, -T)]} 

(4.4) 

for timelike intervals. For large values of R, since 

N(R, -T) and N'(R, -T) are not bounded, 

+Gk(q + iE, R, T) - 00. (4.5) 

B. Advanced Green's Function G A 

The advanced Green's function G A is defined by 
the contour shown in Fig. 3. For T> 0, +G A = 0 
for both spacelike and timelike intervals, while, for 
T<O, 

-GA = -G1 + -G2 + -G3 + -G4 • (4.6) 

We may use Eq. (4.2) to evaluate -GA if we replace 
the "+" superscripts by the "-" superscripts. With 
similar methods to those used in part A of this section, 
we have 

-G'A(q + iE, R, T) = 0 (4.7) 

for spacelike intervals, and 

-G'A(q + iE, R, T) 

= (..,- ij81T2)(e-iVTjwR) 

X {t1T(l - cos (wT»eiaR + i sin (wT)M(R, T) 

- iw cos (wT)M'(R, T) - sin (wT) 

X [W(R, T) + N(R, T)] 

+ w cos (wT)[W'(R, T) + N'(R, T)]} (4.8) 

for timelike intervals. For large values of R, we once 
more have 

-G'A(q + iE, R, T) - 00. (4.9) 

7>0 

,-'"" .... r- ~_r- - - '_' ,~,- 7 
\ I , / , / 

" / " / ........... ,." ---- ........ 

FIG. 3. Contour for the advanced Green's function in the 
complex n plane. 
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S. SCATfERING GREEN'S FUNCTION G. 

The scattering Green's function G. is defined by 
the contour shown in Fig. 4. For T> 0, we have 

+G, = +G1 + +G2 , (5.1) 

which, by using Eq. (2.14), can be expressed as 

+G.(q + iE, R, T) 

= [2i/(417)2](ei (co-v)T/coR) 

X [+H1(q + iE, R, T) - ico +H2(q + iE, R, T)], 

(5.2) 
where 

±H1(q + iE, R, T) 

and 

= ![±F1(q + iE, R, -T) + ±F1(q + iE, R, T)] 

(5.3) 

±Hs(q + iE, R, T) 

= (2ir1rF2(q + iE, R, -T) - ±Fs(q + iE, R, T)]. 

(5.4) 

The Fl'S are listed in Appendices A and B, and the 
F2'S can be calculated by the use of Eq. (3.13). For 
this case, we need not assign a value to Fa(q + iE, R, 0) 
since it will cancel out in Eq. (5.4). The scattering 
Green's function becomes 

T>O 

..--
T<O "., 

/' 
/ 

I 
L-\-. _ t-

'_I 
-~""" ...... -_ r-~ '_J 

FIG. 4. Contour for the scattering Green's function in the 
complex (1 plane. 

i e-ivT ei(lR 
+G"(q + iE R T) = -----

, " 1617 CO R 

Making use of Eqs. (5.3), (5.4), (3.13), and Appendices 
(5.5) A and B, we have 

for spacelike intervals (without the necessity for 
making any approximations for large values of R), 
and 

+G~(q + iE, R, T) 
= (i/16172Xi(CO-V)T/coR) 

X {t17ei (lR - M(R, T) + icoM'(R, T) 

+ i[W(R, -T) + N(R, -T)] 

+ co[W'(R, - T) + N'(R, - T)]} (5.6) 

for timelike intervals. For large values of R, we again 
have 

+G~(q + iE, R, T) -+- 00. (5.7) 

For T < 0, the scattering Green's function becomes 

-G
8 

= -G3 + -G4 , 

which can be expressed as 

-G.(q + iE, R, T) 
= [2i/(417)2](e-i (o>+v)T/wR) 

(5.8) 

X [-H1(q + iE, R, T) + ico -H2(q + iE, R, T)]. 

(5.9) 

-G~(q + iE, R, T) = (i/1617)(e-ivT/co)(ei(lR/R) (5.10) 

for spacelike intervals (without any approximations 
at large values of R), and 

-G~(q + iE, R, T) 
= (i/16172)(e-i (o>+v)T/wR) 

X {t17ei (lR + M(R, T) + icoM'(R, T) 

+ i[W(R, T) + N(R, T)] 

- co[W'(R, T) + N'(R, T)]} (5.11) 

for timelike intervals. For large values of R, we have 
once more 

-G~(q + iE, R, T) -+- 00. (5.12) 

6. SUMMARY AND CONCLUSIONS 

The results from Sees. 3-5 indicate that, for time
like intervals of (x - x'), no scattering solutions are 
possible for any of the Green's functions considered. 
The terms responsible for this behavior are the ones 
involving the integral N(R, ±T), defined in Eq. 
(3.12), which diverges at large values of R. For space
like intervals, the Green's functions were all well 
behaved, however; only the scattering Green's 
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function G. has the correct asymptotic behavior 
necessary to represent scattering solutions. The causal 
Green's function introduced in Sec. 3 represents, for 
spacelike intervals, waves traveling in both incoming 
and outgoing directions and cannot represent a 
scattering solution. The retarded and advanced 
Green's functions introduced in Sec. 4 are all equal 
to zero, for spacelike intervals; they, thus, have the 
required property for constructing a causal field 
theory, if we regard the BS equation as a field equa
tion. But, again, they do not represent scattering 
solutions. 

The scattering Green's function introduced in Sec. 5 
has, for spacelike intervals, the exact form required 
for outgoing wave solutions. The solutions were, 
furthermore, obtained without the necessity of making 
any approximations for large values of R. The scat
tering amplitude can be determined by considering 
the full solution to the BS equation: 

1p(x) = 1po(x) + f d'x'G,(x, x')V(x')1p(x'). (2.6) 

If we can assume that Vex') is such that the integral 
in Eq. (2.6) is zero when (x - x') is timelike, we can 
write 

1p(x) """ 1po(x) 

+ _i_ fd4x'e-iVT e
iaR 

V(x')1p{x'). (6.1) 
1617"(0 R 

With the usual approximation of Ixl > Ix'l, we have 

1p{x) = 1po(x) + e+ivt(eiQ lxi/x) 

X (i/16m:o) f d4x' e-ivt'e-iQ"x,v(X')1p(X'»)' 

(6.2) 

The scattering amplitude !(q -- q') can now be 
identified as 

f(q -- q') = (i/167Tw) f d4x'eivt'e-iq·,,'V(x')1p(x'). (6.3) 

The above scattering amplitude agrees with the 
results of Schwartz and Zemach,6 but their results 
were obtained by using the causal Green's function, 
which we have shown cannot lead to a scattering state. 
The discrepancy can be found in an assertion used 
by Schwartz and Zemach in assuming that Q [Q = 
«(32 - q2)1, where (3 is real and varies from -w to 
+w] can be taken to lie in the fourth quadrant of the 
complex plane.12 This can be shown to be incorrect on 

U Note Added in Proof: Long after this manuscript was submitted. 
B. C. McInnis and C. Schwartz [phys. Rev. 117, 2621 (1969)] 
claimed to have "corrected" an error in Schwartz and Zemach (Ref. 
6). They erroneously added only a pole for the k-singularities instead 
of two branch points connected by a cut. If the reader is not perfectly 
clear on this point. he should reread Appendices A and B. 

closer examination-if we let q be q + ie, Q lies in the 
third quadrant of the complex plane, and if we let q 
be q - ie, Q lies in the first quadrant of the complex 
plane. 

The scattering Green's function is also the most 
natural one to be chosen from the point of view of non
relativistic scattering theory (Lippmann-Schwinger 
equation), where the extension q -- q + ie or w-
w +;e led us to contours which gave outgoing 
scattering states. If we insert w + ie for w into Eqs. 
(2.11) and (2.13), the substitution would correspond 
to a contour in the complex n plane which would be 
equivalent to the contour for G. shown in Fig. 4. 

A further remark on the choice of contour in the k 
plane which corresponds to the extension q -- q - iE: 
This would not prevent the Green's functions, for 
timelike intervals, from becoming unbounded at large 
values of R, but, for spacelike intervals, it has the 
effect of replacing q by -q in our expressions. For 
example, the scattering Green's function, for space
like intervals, becomes 

±G~(q - iE, R, T) = (i/167T)(e-ivT/w)(e-iaR/R), (6.4) 

which represents incoming waves, as is expected from 
our knowledge of the nonrelativistic Lippmann
Schwinger equation. 

APPENDIX A 

We shall consider in this appendix the evaluation 
of the function F1(q + iE, R, ± T) first introduced in 
Sec. 3. It has the form 

F
1
(q + iE, R, ± T) = [00 dk k sin (kR)e'fi())kT • 

Jo (k + q + ie)(k - q - iE) 

The method utilizes integrals of the form 
(3.5) 

f 

kri(kR±())kT) 
L(±, ±) = dk (AI) 

(k + q + iE)(k - q - iE) 

to evaluate Fl' Consider the analytic properties of the 
integrand of L(±, ±). In the finite complex k plane, 
it has simple poles at k = -q - iE and k = q + ie 
plus a cut with branch points at k = ±im. 

The contour to be considered in the evaluation of 
L(±, ±) depends on the behavior of the exponential 
e±iU:R±rokT) for large values of Ikl. Let 

and 
k = kR + ik[ 

wk = wkR + iWkl; 

then the exponential can be written as 

(A2) 

e±t(kR±())kT) = e±i(kRR±())kRTle'fCkIR±())kIT). (A3) 

Since the first factor on the right hand side of Eq. 
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TABLE I. Contours in the complex k plane. 

IX( +) T Space-Time interval 

>0 >0 a8 

>0 >0 'Tb 

<0 >0 a 
>0 >0 'T 

>0 <0 a 
<0 <0 'T 

<0 <0 a 
<0 <0 'T 

IX( -) T Space-Time interval 

>0 >0 
<0 >0 
<0 >0 
<0 >0 
>0 <0 
>0 <0 
<0 <0 
>0 <0 

8 a refers to spacelike intervals. 
b T refers to timelike intervals. 
C UHP refers to the upper half plane. 
d LHP refers to the lower half plane. 

a 
'T 

a 
'T 

a 
'T 

a 
'T 

Contour 

UHpc 
UHF 
LHpd 
LHP 
UHP 
UHP 
LHP 
LHP 

Contour 

UHP 
UHP 
LHP 
LHP 
UHP 
UHP 
LHP 
LHP 

(A3) is just an oscillating function with unit magnitude, 
it cannot provide us with any information on the 
possible contours. Let us examine the second factor 
e'f~(±), where 

In order that an integral over a semicircular contour 
vanish at large values oflkl, we must have =Foc(±) < O. 
For the possible choices of the exponential in Eq. 
(A3), the conditions on rx,(±) are 

and 

e+;(kR+rokT) -- ac( + ) > 0, 

e-i(kR+rokT) -- rx,( +) < 0, 

e+i(kR-rokT) -- ac( -) > 0, (AS) 

e-i(kR-rokT) -- rx,( -) < 0. 

The sign of ac(±) can be determined if we express 
WkI as a function of k I and k R' The relationship is 

Wkl = 2-t{[(k~ - k~ + m2)2 + 4k~k~]t 
- [k~ - k~ + m2]}t. (A6) 

Using Eq. (A6), we constructed Table I, which will 
inform us as to the possible contours in the complex 
k plane that must be taken if we are given the sign of T 
and the relative magnitudes of Rand ITI (spacelike 
or timelike intervals). Using Eqs. (AI), (AS), and 
Table I, we can now evaluate F1(q + iE, R, ±T). 

Let us consider 

L(+, +) = dk . (A7) f 
kei(kR+rokT) 

(k + q + iE)(k - q - if) 

x 

r---7 
/ 

/ 
/ 

FIG. 5. Contour for L( +, +) in the complex k plane. 

From Eq. (AS), we must require that ac( +) > o. 
From Table I, for T> 0 and spacelike or timelike 
intervals, and for T < 0 and spacelike intervals, we 
must use the upper half of the complex k plane. We 
next apply Cauchy's residue theorem to L( +, +): 

I 
kei(kR+rokT) 

dk----~~--------
a (k + q + if)(k - q - if) 

= 21Ti(Res at k = q + if), (AS) 

where C is shown in Fig. 5. On setting the integrals 
over the large and small semicircles equal to zero and 
combining the integrals along the left and right hand 
side of the real axis, we have 

100 keirokT sin (kR) 
dk----------~~-

o (k + q + if)(k - q - if) 

= t1TeiQReiroT - M(R, T), (A9) 

where the first term on the right-hand side gives the 
contribution of the residue at k = q + if and M(R, T), 
defined in Eq. (3.9), represents the contribution by the 
cut. We can now write 

(A10) 

Let us next consider 

f 
ke-i(kR+rokT) 

L(-, +) = dk . (All) 
(k + q + if)(k - q - iE) 

From Eq. (AS), we must require that oc( +) < O. 
From Table I, for T> 0 and spacelike intervals, and 
for T < 0 and spacelike or timelike intervals, we must 
use the lower half of the complex k plane in the 
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/ 

FIG. 6. Contour for L(-, +) in the complex k plane. 

construction of our contour. Applying the residue 
theorem to L( -', +), we have 

1 
ke-;(kR+rokT) 

dk----~--------
c (k + q + iE)(k - q - iE) 

= 27Ti(Res at k = -q - iE), (Al2) 

where C is shown in Fig. 6. Again the semicircular 
integrals vanish, and,on combining the integrals along 
the left and right hand side of the real axis, we have 

rro dk ke-irokT sin (kR) 

Jo (k + q + iE)(k - q - iE) 

= t7TeiIlRe-iroT + M(R, T), (A 13) 

where the first term on the right hand side of the 
equation represents the contribution of the residue 
at k = -q - iE and M(R, T), which is defined in 
Eq. (3.9), represents the contribution of the branch 
cut. We now have 

+ F~( q + iE, R, T) "" 

-F~(q + iE, R, T) --""- = t7TeiQRe-iroT + M(R, T). 

-FJ.(q + iE, R, T) / 
(Al4) 

APPENDIX B 

Using the techniques introduced in Appendix A, 
we were not able to determine an expression for 
+F~(q + iE, R, T) and -FI(q + iE, R, -T). Let us 
next consider the complex Wk plane and express FI as 
an integral over Wk : 

(Bl) 

where k = (w: - m2)1. Consider integrals of the form 

J 
Wke±i(kR±rokT) 

J(±, ±) = dWk (B2) 
(Wk + W + iE)(wk - W - iE) 

with the integrand having simple poles at W k = 
-w - if'., wk = W + if'., and having a branch cut 
with branch points at wk = ±m. The contour to be 
considered in the evaluation of the integral will 
depend on the behavior of the exponential. Equation 
(A5) will again express the necessary asymptotic 
behavior for the exponentials. The sign of !X(±) can 
be determined if we express k I in terms of WkR and 
Wkl' The relationship is 

k - 2-t {[( 2 2 2)2 + 4 2 IlI]t I - WkR - Wu - m WkRWkI 

[ 2 2 IlJ}! - WkR - Wk! - m . (B3) 

Using Eq. (B3), we can construct Table II, which, 
for the complex Wk plane, fulfills the same purpose 
as Table I did for the complex k plane. We are now 
ready to evaluate F1(q + if'., R, ±T). 

Let us consider 

f 
wke+i(kR+rokT) 

J(+, +) = dWk • 
(Wk + W + iE)(Wk - W - iE) 

(B4) 

From Eq. (A5), we must have !X( +) > O. From 
Table II, for T < 0 and timelike intervals, we must 
use the lower half of the complex W k plane. Applying 

TABLE II. Contours in the complex (J)k plane. 

IX(+) T Space-Time interval 

>0 >0 aa 

>0 >0 'Tb 

>0 >0 a 
<0 >0 'T 

>0 <0 a 
<0 <0 'T 

>0 <0 a 
>0 <0 'T 

IX( -) T Space-Time interval 

>0 >0 
<0 >0 
>0 >0 
>0 >0 
>0 <0 
>0 <0 
>0 <0 
<0 <0 

8 "refers to spacelike intervals. 
b 'T refers to timelike intervals. 
C UHP refers to the upper half plane. 
d LHP refers to the lower half plane. 

a 
'T 

a 
'T 

a 
'T 

a 
'T 

Contour 

UHp· 
UHP 
LHpd 
LHP 
UHP 
UHP 
LHP 
LHP 

Contour 

UHP 
UHP 
LHP 
LHP 
UHP 
UHP 
LHP 
LHP 
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x 

r +-- 7 x I I 
I / 
I ;tf 

/"" 
L ----FIG. 7. Contour for J(+, +) and J(-, -) in the complex 

Wt plane. 

the residue theorem, we have 

(BS) 

where C is given in Fig. 7. The integral over the 
circular part of the contour again vanishes, and we 
have 

J
OO dw Wk exp [i(kR + wS)] 

m k (Wk + W + ie)(wk - W - ie) 

= f m
dk 

k[exp (-kR)] exp i(m2 - k2)tT] 

Jo k2 + q2 

l ood wk[exp (wkT)] exp [-(w: + m2)tR] 
+ W k 2 2 • 

o Wk + (JJ 

(B6) 

Let us next consider 

From Eq. (AS), we must have (X( -) < 0. From 
Table II, for T < 0 and timelike intervals, we must 
use the lower half of the complex W k plane. Again 
applying Cauchy's theorem, we have 

i W e-i(kR-rokT) 
dWk k = 0, (BS) 

C (Wk + W + ie)(wk - W - ie) 

where C is given in Fig. 7. The integral over the 
circular path vanishes, and we have 

J 
00 dw Wk exp ( - ikR) exp (iWk T) 

m k (Wk + W + ie)(wk - W - ie) 

= fm dk k exp (kR) exp [i(m2 - k2)lT] 
Jo k2 + q2 

+ f oo
dwk Wk exp (wkTexp)[(w; + m2)tR]. (B9) 

Jo w~ + w2 

Combining the results of Eqs. (B6) and (B9), we have 

J
OO wkeirokT sin (kR) 
dWk----~------~~---

m (Wk + W + ie)( Wk - W - ie) 

= -F~(q + ie, R, -T) 

= iW(R, T) + iN(R, T), (BI0) 

where N(R, T) and W(R, T) are defined in Eqs. 
(3.12) and (3.11), respectively. 

To derive an expression for +F;(q + ie, R, T), we 
can apply similar techniques to J( +, -) and J( -, +). 
The result is . 

+F1(q + ie, R, T) = iW(R, -T) + iN(R, -T), 

(Bll) 

f 
wke-i(kR-rokT) 

~- -)= d~ . 
, (Wk + W + ie)(wk - W - ie) where W(R, -T) and N(R, -T) are again defined 

(B7) by Eqs. (3.11) and (3.12), respectively. 
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Green's Functions for Multidimensional Neutron Transport in a Slab 
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The integral form of the one-speed, steady-state Boltzmann transport equation is solved for a point 
source in a homogeneous, isotropically scattering slab. In addition, solutions are obtained for line sources 
and plane sources in the slab, both normal and parallel to the slab faces. Using Fourier and Laplace trans
forms, the problem is reduced to that of solving a I-dimensional integral equation with a difference kernel. 
This equation is transformed into a singular integral equation which is solved using standard methods. 
The Green's functions are subsequently obtained as generalized eigenfunction expansions over the 
spectrum of the I-dimensional integral operator. This form yields a simple solution far from the source, 
and alternate expressions are obtained to facilitate evaluation near the source. In a thick slab the exact 
solutions are shown to reduce to simple closed expressions plus correction terms that decrease expo
nentially as the slab thickness increases. Most of the work previously done in multidimensional transport 
in slabs is shown to be easily reproduced using this theory in the thick-slab approximation. Also, virtually 
all other problems of this type can be solved using the theory presented here. In particular, the density 
from a pencil beam of particles normally incident to the slab is obtained. 

1. INTRODUCTION 

Until now, only a few problems in multidimensional 
transport theory have been treated analytically. 
ElliottI and Erdmann2 give solutions for a point source 
in a half-space and two adjacent half-spaces, respec
tively, using the Wiener-Hopf technique, and Erd
mann3 iterates the half-space result to obtain an 
approximate solution to the point source in a slab. 
Starting with the integral transport equation, Smith4 

and Hunt6 consider several problems of 2-dimensional 
transport in a I-dimensional medium. Smith uses the 
Wiener-Hopf technique to solve for the isotropic 
scattering of radiation normally incident to a half
space and sinusoidally modulated in one transverse 
direction. Hunt considers radiation normally incident 
to a slab atmosphere and having" radial symmetry with 
modulation Jo(Br). He uses the replication property of 
the kernel to reduce the problem to that of solving the 
I-dimensional integral equation which we treat in 
Sec. 4 by a different method. 

Several attempts have been made to approximate 
the effect of finite transverse dimensions. Williams6 

and Kaper7 use asymptotic theory (eiB·
r distribution) 

in the transverse direction and consider the resultant 
modified I-dimensional transport equations. Williams 
treats the integral transport equation while Kaper 
considers the integro-differential equation. And in a 
semi-infinite slab (ZE[O,OO), yE[-yo,yo], and 

• Present address: Physics Department, Naval Postgraduate 
School, Monterey, Calif. 93940. 

1 J. P. Elliott, Proc. Roy. Soc. (London) A228, 424 (1955). 
I R. C. Erdmann, 1. Math. Phys. 8, 1040 (1967). 
a L. B. Gratt and R. C. Erdmann, "The Wide Slab Flux from a 

Point Source of Neutrons," ANS Trans., 21S (June, 1969). 
, M. G. Smith, Proc. Cambridge Phil. Soc. 60, 909 (1964). 
• G. E. Hunt, SIAM 1. Appl. Math. 16, 228 (1968). 
• M. M. R. Williams, Nukleonik 9,305 (1967). 
• Hans G. Kaper, 1. Math. Phys. 10, 286 (1969). 

X E (- 00, 00), Smith and HuntS solve the integral 
transport equation approximately as a series in powers 
of e-IIO by Laplace transforming in Z and taking a 
Fourier cosine series in y. 

To solve the transport equation in a finite prism with 
a point - isotropic source at its center, Boffi and 
Molinari9 utilize the 3-dimensional Fourier transform. 
They obtain their solution as a spatial convolution of 
the point-source kernel with a function expressed as a 
triple summation of Legendre polynomials, whose 
coefficients are solutions to an infinite set of simulta
neous algebraic equations. 

A somewhat different approach to the problem of 
transport in 2- and 3-dimensional geometries has been 
developed by Gibbs.10 Here the neutron density is 
shown generally to be expandable in a countable set of 
functions which satisfy a Helmholtz equation with 
continuous parameter. The expansion coefficients 
satisfy a set of coupled singular integral equations in 
the parameter. In his study of a particular quarter
space Milne problem, McCormickll uses Gibbs' 
approach to develop a coupled set of integral equations 
for the expansion coefficients. 

Recently, Williams12 has solved a simple 2-dimen
sional source problem in a I-dimensional wide slab by 
Fourier transformation of the integral equation in the 
transverse direction. In the present paper, we deter
mine the Green's function for all 2- or 3-dimensional 
source distributions in the I-dimensional slab, i.e., we 

• M. G. Smith and G. E. Hunt, Proc. Cambridge Phil. Soc. 63, 
209 (1967). 

• V. C. Boffi and V. Molinari, CNEN Report RTjFI(68) 43, 
Rome (1968). 

10 Alan G. Gibbs, 1. Math. Phys. 10, 875 (1969). 
11 S. I. Shreiner, N. J. McCormick, A. G. Gibbs, "Transport 

Solution ofa Quarter-Space Problem," ANS Trans., 160 (June 1969). 
12 M. M. R. Williams, 1. Math. Phys. 9, 1873 (1968). 
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find the solution to a point uncollided source located 
at an arbitrary point in the slab. Using Fourier trans~ 
forms in the transverse directions and a Laplace 
transform in the normal direction, we reduce the 
integral transport equation to a l-dimensidnal inte
gral equation with a difference kernel depending 
parametrically on the transform variables. A com
plete solution to this reduced equation is then obtained 
by the methods of Leonard and Mullikin.13•14 Two 
alternate calculations of the Fourier inversion integral 
are given, one using contour integration and exploiting 
the singularities of the transform and the other eval
uating analytically those parts of the transform that 
are not absolutely integrable. The former yields a 
simple solution for large transverse arguments, while 
the latter yields an expression which is easily evaluated 
numerically for small and intermediate arguments. 

2. THE PROBLEM 

Consider a homogeneous slab of thickness 7, which 
has a total cross section a, and emits c secondaries per 
collision. The slab, infinite in both transverse direc
tions, is surrounded by a vacuum or a pure absorber 
(see Fig. 1). Under the assumptions of steady-state, 
one-speed, and isotropic scattering, the integral equa
tion for the neutron density per) in the slab is 

per) = Co' JTdXJ+Joo e-alr-~12 per) dy d2 + S(r), (2.1) 
417 0 Ir - rl 

-00 

with 0::;; x::;; 7 and -00 <y, z < 00, where r = 
(x, y, z) and 

Ir - fl = [(x - X)2 + (y - y)2 + (z - 2)2]*, 

and where S(r) is the uncollided neutron density. 
Equation (2.1) is valid for any neutron-transport 

problem in the slab, including surface sources and/or 
volume sources. The uncollided neutron density S(r) 
must first be obtained by considering the various 
neutron sources that are present and by using the 
methods in, e.g., Case, de Hoffman, and Placzek.I5 

As an example, for a monodirectional pencil beam 
incident at r = 0 in the direction 2 0(190 , CPo) (see 
Fig. 2), we have 

S(r) = e-a"'/C089o!5(y - x tan (Jo cos CPo) 

X ()(z - x tan eo sin CPo). (2.2) 

To obtain the neutron density in a slab for any 
uncoIlided density S(r) , it is convenient to have the 

13 A. Leonard and T. W. Mullikin, Trans. A.M.S. 116,465 (1965). 
14 A. Leonard and T. W. Mullikin, J. Math. Phys. 44, 327 (1965). 
16 K. M. Case, F. de Hoffmann, and G. Placzek, Introduction to 

the Theory of Neutron Diffusion (U.S. Government Printing Office, 
Washington, D.C., 1953). 

y 

VACUUM OR VACUUM OR 
PURE ABSORBER PURE ABSORBER 

O'H'---+----/--I---~ x 

FIG. I. A bare homogeneous slab. 

Green's function G(r; rf), which satisfies 
+00 A 

Co' iT JJ e-alr-rl G(r; r/) = - dx 2 G(r; r/) dy d2 
417 0 Ir - fl 

-00 

+ !53(r - r/), (2.3) 

with rf = (Xf, yf, Zl), 0 ::;; x, Xf ::;; 7, and 

-00 <yf,y,zf,z < +00. 

In Cartesian and cylindrical coordinates, the Dirac ~ 
functions are 

~3(r - rf) = ~(x - Xf)~(y - yf)~(Z - z') 

= ()2(r - r')()(z - Zl), (2.4) 
with 

~2(i - if) = [~(Ii - i'1)/li - iflJ~(cp - q/), 

where i = (r, cp) in cylindrical coordinates, i = (y, z) 
in Cartesian coordinates, and where Ii - 1'1 = 
[(y - /)2 + (z - ZI)2]!. Then the solution to (2.1) is 
given formally by 

+00 

per) = fdx'ff G(r; r/)S(r/) dy' dz /, (2.5) 

-00 

and the angular neutron density can easily be obtained 
from per) by quadrature. IS 

Although the point-uncollided density in (2.3) is 
mathematically convenient, it is not physically real
izable. Therefore, some people prefer to work with a 
point-isotropic source. Under the assumptions of 
isotropic scattering, there is a simple relationship 
between the point-isotropic-source Green's function 
GiSo(r; rf) and the point-uncolIided-source Green's 
function G(r; r/): 

G(r; r/) = caGiso(r; rf) + ~3(r - rf), (2.6) 
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y for 0 ~ x, x' ~ T and - 00 < y, z < + 00, then 

G(r; r') = g(x,y - y', z - z'; x'), (3.6) 

for 0 ~ x, x' ~ T and -00 < y,y', z, Z' < +00. To 
obtain g(x, y, z; x'), we first transform (3.5) into a 1-
dimensional integral equation with a difference 
kernel, solve that equation, and then invert the trans
form. 

Now we define the 2-dimensional Fourier transform 
)£... ____ ---'-___ ~ x in y and z (or, equivalently, the Hankel transform 

z 
FlO. 2. The unit vector n(80, </>0)' 

where Giso(r; r') satisfies (2.l) with S(r) = e-<1lr-r'lj 
47T Ir - r'1 2, which is the uncollided density at r from 
a unit point-isotropic source at r'. The once-collided 
density at r from a point-uncollided source at r' is 
simply ea(e-<1lr-r'I/47T Ir - r/n 

3. TRANSFORMATION OF THE GREEN'S 
FUNCTION 

One approach to solving (2.3) is to write a Neumann 
series solution 

G(r; r/) = (1 + Il + 112 + .. ·)(l\r - r/), (3.1) 

where 

in r): 
+00 

~(x, B; x') = II g(x, y, z; x') 

-00 

X exp (-iwyy - iw.z) dy dz, (3.7) 

where B = (w! + w~)!. Then its inverse is 

g(x, y, z; x') 
+00 

= ~ Jf~(X' B; x') exp (iwyy + iw.z) dw v dw. 
(27T) 

-00 

= -.1 (OO~(x, B; x')Jo(Br)B dB, 
27T Jo 

(3.8) 

where r = Ii'I = (y2 + Z2)!, and where Jo is the ordi
nary Bessel function.16 The B dependence of~(x, B; x') 
will become evident from the equation it satisfies. 

Taking the 2-dimensional Fourier transform of Eq. 
(3.5), we have 

(3.2) ~(x, B; x') = tea fK(IX - xl; B2)~(X, B; x') dx 

+00 • 

ea iT JJ e-ulr-rl Il[']=- dx ~ [·]dYdi. 
47T 0 Ir-rl 2 

-00 

However, if we take the norm of Il to be 

111111 = max ea (TdXJ+JOO e-ulr-~I dy di, (3.3) 
0::; "'::; T 47T Jo [r - r] 

-00 <y •• <+00 -00 

then 111111 = e[I - E2(taT)], where 

fOO du 
E (q) - e-qU 

- n - 1 2 ... 
n - 1 un' -" . (3.4) 

[See Ref. 15 for numerical tabulations of En(q).] So, 
unless c or aT is very small, the Neumann series con
verges slowly. Therefore, it is desirable to solve (2.3) 
by other means. 

To do so, first note that, if g(x, y, z; x') satisfies 

g(x, y, z; x') = Il[g](x, y, z; x') 

+ (l(x - x')(i(y)(i(z), (3.5) 

+ (l(x - x'), (3.9) 
where4 •5 

K(lx - xl; B2) 

= {OOexp [-Ix _ xl (B2 + 1]2)!] d1] !' (3.10) 
Ju (82 + 1]2) 

or 

K(I 'I B2) ia(Bl exp (-Ix - xl/s) d x - x; = s, 
o s(1 - s2B2)! 

(3.11) 

in which rx(B) = (B2 + a2)-t. Note that K(lxl; 0) = 
E1(a lxI), the familiar plane-source kernel. Defining 
the integral operator 

~B['] = i-ea fK(IX - .xl; B2)[.] dx (3.12) 

will simplify the notation. 

16 Handbook of Mathematical Functions, M. Abramowitz and 
Irene Stegers, Eds. (U.S. Government Printing Office, Washington, 
D.C., 1964). 
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1m. 

s-PLANE 

(3 • (cr,CO) and • > 0 

/ 
/ Co(;{3-·) 

/ 
COl 

\ 
\ Co(;{3+<) 

\ 
\ 

- ila(j{3)1 

FIG. 3_ The ,cu~ Co(B) and the deformed cut CD(B) for B ¢ 
C+ U, C_; the limit cuts of Co(B). COl U CO2 and COl U Coa , for 
B ->- IfJ e C+ U C_. 

Both rx(B) and K(lxl; B2) are analytic in the complex 
B plane cut by C+ U C_, where C± = {±ifJ: fJ E 
(0', co)}. For complex B, Eq. (3.11), and all succeeding 
integrals with limits ° to rx(B), are to be interpreted as 
contour integrals along Co (B) = {(B2 + 1]2)-t: 1] E 

(00, a)}. For B ¢ C+ U C_, Co (B) may be deformed 
to the straight-line contour between ° and rx(B) , 
CD(B) = {t· rx(B): t E (0, l)}, a,s shown in Fig. 3. 
However, in the limit B -+ i{3 E C+ U C_, 

lim Co(i{3 - E) = lim Co( - i{3 + E) = COl U CO2 
E~O E~O 
<>0 <>0 

and 

lim Co(i{3 + E) = lim Co( -i{3 - E) = COl U Coa , 
£~o E~O 

<>0 <>0 

where {3 E (0', (0) and where COl = (0, co], C O2 = 
{it: t E [co, Irx(i{3)I)}, and Coa = {it: -t E [co, Irx(iP)I)}. 

To finally obtain an integral equation that one can 
solve. we define the Laplace transform 

f+ex:> 
F(x, B; y) =)-00 ~(x, B; x')e-Z'Y dx' (3.13) 

and its inverse 

~(x, B; x') = ~ i+iex:>F(X, B; y)eZ'Y dy, (3.14) 
27l'l -iex:> 

and then we transform (3.9) to obtain 

F(x, B; y) = ~B[F](x, B; y) + e-zy• (3.15) 

Using (3.14), (3.8), and (3.6), we can write the in
version formula for the Green's function in terms of 
the solution to (3.15): 

1 iex:>i+iex:> G(r; r') = ~ F(x, B; y) 
47l' l 0 -iex:> 

x eyz'Jo(B Ii - i'I)B dy dB. (3.16) 

Equation (3.15) will be solved treating Band y as 
complex parameters. Then the Fourier and Laplace 
inversi~ns (3.16) may be carried out in either order to 
yield the Green's function. In Sec. 7, we demonstrate 
that the result at each step of the inversion can be 
physically interpreted as the solution to a relevant 
multidimensional neutron-transport problem in a slab. 

4. SOLUTION OF (3.15) 

The Neumann series solution to (3.15), 

F(x, B; y) = (1 + ~B + ~~ + .. ')e-zy
, (4.1) 

converges slowly except for small c or aT or large B. 
However, one can use the methods of Leonard and 
Mullikinl 3.14 to solve (3.15). By transforming (3.15) 
into a singular integral equation in y, one obtains the 
solution to F(x, B; y) in terms of solutions to other 
Fredholm integral equations whose Neumann series 
solutions converge rapidly, at least for B not near 
C+ U C_. 

For these purposes it is convenient to consider the 
auxiliary functions Ji±)(x, B; 0 which satisfy 

From (4.2) we have the formal solution 

where J[.] is the identity operator and where (J
~B)-l[.] is the inverse of the operator J[.] - ~B[']' 
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Operating on S(±)(x, 0 with ~B[']' we obtain 

~B[S(±)](x, B; s) 
== !ca fK(IX - xl; B2)[e-£/t + (±)e-(H)/t] dx 

== !ca'[s(±'(x,s) (,,(B) (_1_ - _1_) dS
2 

2 t 
Jo s + s s - s (1 - B s ) 

+1"(B) S(±)(x, s) ds 

° s - s (1 - B 2s2)t 

_ (±)e-T1t ("(B) S(±)(X, s) ds J. (4.5) 
Jo s + s (1 - B2s2i 

Thus, we can write the singular integral equation 
satisfied by f(±) : 

!(±)(x, B; s) 
= (I - ~B)-l{SW - ~B[S(±)] + ~B[S(±)J}(x, B; s) 
== S(±)(x, ') + (I - ~Brl{~B[S(±)]}(x, B; 0 

== S(±)(x, s) + f(±)(x, B; sHc~(s, B) log ;~t;~ ~ ~ 
+ !cas (,,(B) !w(x, B; s) ds 

Jo s - s (1 - B 2s2)t 

(±) 
-Tlt1 ri"(B) !(±)(x, B; s) ds 

- e 2ca~ 1 • ° S + ~ (1 - B2s2)"2" 

(4.6) 

Hence, F(x, B; y) satisfies the following singular 

where 

The zeros of A in the s plane are ± '0: 

integral equation: 

where 

A(~) == 1 - tc~ 109! ~ ~ , (4.8) 

and 
~(s, B) == as(1 - B2s2)-1. (4.9) 

~a, B) E (0, 1) for S E Co(B), for all B in the complex 
plane cut by C+ U C_, and Aaa, B» is analytic in 
the s plane cut by Co(B) U Co(B), where Co(B) == 
{-s: S E Co(B)}, and has two zeros ±so' 

In the S plane,j(±)(x, B; ') is analytic for all S ¥= ° 
and approaches a definite limit for S ~ ° in the right 
half-plane. In the B plane, j(±)(x, B; 0 has cuts 
C+ U C_, and poles where ~B['] has an eigenvalue 
equal to one, so that the inverse of (I - ~B)['] does 
not exist. 

Treating Band y as complex parameters, Eqs. 
(4.6) or (4.7) can be solved using the methods of 
Muskhelishvili17 to yield the solution 

(4.10) 

(4.11) 

and 

So == 'o(B) = [B2 + (a/'JI0)2]-1 
and 

(4.12) h2(±)(B; ') == -(±)t[h2(±)](B; s) + e-T1tsX(-s,B), 

(4.14b) 
Aa(±so, B» == A(±'JIo) == 1 - C'JIo tanh-1 (1/'JI0) 

== 0, (4.13) 
where the integral operator C [.] is defined as follows: 

where 'JIo E [1, 00] for C E [0, 1] and -i'JIo E (0, 00] for t[h](±)](x, B; 0 
c E [1, (0). hl(±)(x, B; 0 and h2(±)(B; 0 satisfy the -i,,(B) Je(B, ,; s) h ( B') ds 
Fredholm integral equations - l(±) X, ,s ----0"1' ° S + ~ (1 - B2s2). 

(4.15) 

hl(±,(x, B; ') == -(±)t[hl(±)](x, B; 0 + S(±)(x, D 
(4. 14a) 

17 N. I. Muskhelishvili, Singular Integral Equations (P. Noordhoff 
Ltd., Groningen, The Netherlands, 1953). 
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in which 

Je(B Y. s) = l cae-T/''rX(_Y B) X(-s, Bm~ - S2] 
, ,::>, 2 '::> ,::>, '~M(;(s, B» , 

(4.16) 

M(;) = [,1(;)]2 + [tC17;]2, (4.17) 
XC"~ B) 

= exp - -- - - O(;(t, B) dt , (l(B) [1 i~W) (1 1) ] 
~(B) - , 17 0 t - , t 

(4.18) 

And it is often more convenient to write 

h2(±)(B; ') = e-T/',X( -" B)H(±)(B; n. (4.22) 

Then, H(±)(B; ') satisfies the Fredholm equation 

H(±)(B; ') = -(±)L[H(±)](B; n + 1, (4.23a) 

where 

L[H(±)HB; n 

i
~(B)Je(B,S;S) ds 

= 0 s +, H(±)(B; s) (1 _ B 2s2)!' (4.23b) 

In general, the Neumann series solutions to (4.14) 
and (4.23) converge rapidly. For 

BE Cp = (- 00, + 00) U {i{3: {3 E (-a, a)}, 

it can be shown that the norms 

IIClI = max r~(B) I Je(B, ,; s) 1 IdS 
'E(O.~(B)) Jo s +, (1 - B2s2)! 

:::;; e-T/~(B) (4.24a) 

and 

IILII = max r~(B)IJe(B;S;S) 1 IdS 
'E(O.~(B)) Jo S +, (1 - B2s2)! 

e-T/~(B) 

<, (4.24b) 
- X( -(l(B), B) 

so that for many applications the solutions to (4.12) 
and (4.23) are given with sufficient accuracy by the 
first few terms in the Neumann series. Furthermore, 
the truncated series need only be evaluated for 
'E Co(B), deformed to Cn(B) = {p' oc(B):p E (0, I)} 
for B i C+ U C_, and these results may be used in 
(4.14) and (4.23) to obtain hl(±)(x, B; n, h2(±)(B; '), 
and H(±)(B; ') for all other ,. And as shown above, it 

(4.19) 
and 

,1(;) = 1 - tc; log [(1 + ;)/(1 - ;)]. (4.20) 

xa, B) is constructed to be analytic in the, plane cut 
by Co(B), for all B in the B plane cut by C+ U C_, and 
to have no zeros or poles. 0(;) E (0, 17) for; E (0, 1), 
and ;a, B) E (0, 1) for, E Co (B) [deformed to C n(B) 
for B i C+ U C_]. 

It is useful to note that hl(±)(x, B; ') can be ex
pressed in terms' of h2(±)(B; ') (see Ref. 14): 

Tlt'~ - t
2 

) X e -2--2 S(±)(x, t) dt. (4.21) 
, - t 

is only necessary to evaluate the Neumann series 
solution for h2(±)(B; ') or for H(±)(B, 0; this result 
may be used in (4.21) to yield hl(±)(x, B; ,). 

In particular, for T» (l(B), BE Cp , the Neumann 
series solution to (4.23) or to (4.14b) may be truncated 
to the first term, yielding 

(4.25a) 
or 

h2(±)(B; ') = e-T/',X( -" B)[1 + O(e-T/~(]j))], 
(4.25b) 

respectively. This result, substituted into (4.21), yields 

hl(±)(x, B; ') = S(±)(x, ') - (±)L[S(±)](x, B; n 
+ O(e-T/~(B), (4.25c) 

which is just the Neumann series solution to (4.14a) 
truncated to the second term. Substituting (4.25) into 
(4.10), (4.11), and (4.3) results in a relatively simple 
expression for F(x, B; y), which is easy to evaluate 
numerically and which is "exact" for most practical 
cases. 

It is interesting to note that setting B = ° gives the 
results and the corresponding functions for I-dimen
sional integral transport theory in a slab.13 •14 

5. THE TRANSFORM INVERSIONS USING 
CONTOUR INTEGRATION: A CONVENIENT 

SOLUTION FOR Ir - i'l » Ija 

To evaluate G(r; r'), the results of Sec. 4 are sub
stituted into the inversion formula (3.16) and the 
integrations over Band yare performed. These inte
grals can both be evaluated using contour integration 
and the calculus of residues, yielding a relatively 
simple result for large radial arguments Ii - r'1 » lla. 
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Suppose we define the inverse Fourier (Hankel) 
transform of F(x, B; y) as 

1 100 

_ pix, y, z; y) = - F(x, B; y)JoCBr)B dB, (5.1) 
27T 0 

where r = (y2 + z2)l and y is treated as a complex 
parameter. Before evaluating (5.1) using contour 
integration, we need to examine further the analyticity 
of F(x, B; y) in the B plane. 

A spectral analysis18 of the operator ~B['] in the B 
plane, i.e., an investigation of the singularities of 
(/ - ~B)-I[.], reveals a continuous spectrum 

c+ U C_ = {±i,8:,8 E (a, oo)} 

and a point spectrum restricted to 

c~ = (- 00, + 00) U {i,8: ,8 E [-a, an. 

For 'T > 0 sufficiently small, the point spectrum is 
empty. In other words, F(x, B; y) is analytic in the B 
plane cut by C+ U C_ with poles in C~, and there 
exists a 'T min> 0 such that, for 0 < 'T < 'T min' there 
are no poles. In particular, 'Tmin satisfies (5.2) (below) 
implicitly with n = 1 and Bn = ia, and Williams12 
obtains approximate values of 'T min for 0 ::; C < 1, by 
neglecting the last ( nonlinear) term, 9.L(ia, 'T min)' 

Consider first the point spectrum. A detailed in
vestigation of the denominator of F(x, B, y) reveals 
that F(x, B, y) has a finite number of poles for 0 < 
'T < 00, namely, those ±Bn E C;, n = 1,2,'" ,N, 
for which the denominator of (4.11) is zero. Equiv
alently, these poles satisfy 

'T = T(Bn' n) - 9.L(Bn' 'T), n = 1,2, ... ,N, (5.2) 

where 

T(B, n) = n7Ti'o(B) _ 2 (1 1 - 8(t)/7T dt 
Jo 1 - (t/VO)2 (a2 + B2t2)l 

(5.3) 
and 

in which (±) = sign [( _1)n+l], n = 1,2, ... , N. 
Specifically, for 0 ::; c::; 1, F(x, B; y) has poles at 

±Bn, n = 1,2,' .. ,N: Bn = i,8n and a/vo < ,81 < 
,82 < ... < ,8N ~ a. For c ~ 1, F(x, B; y) has poles 

"°12345678, 

15.0 

10.0 '; 

5.0 

o 0.2 0.4 0.6 0.8 1.0 

f3/(1" 

FIG. 4. A sketch of T(iP, n) vs P E (a/vo, a] for v. = 5, graphically 
determining the wide slab poles. 

2,'" ,N: Bn = i,8n' 0 <,81 < ,82 < ... <,8N::; a. 
Since 9.L (B, 'T) = O(e-r/ a(B»),9.L is important in (5.2) 
only for those poles near ±ia. The remaining poles 
can quickly be determined by plotting T(B, n) versus 
BE Cp for n = 1,2, .. " and then by picking off 
those Bn ~ Bn for which 'T = T(Bn' n). For an illus
tration, the general shape of T(B, n) is sketched in 
Fig. 4 for Vo = 5. Note that the first term of T(B, n) 
dominates for ,8 near a/vo, so that to a fair approxima
tion, the first few poles of F(x, B; y) are given by 

,8n ~ [(a/vo)2 +" (n7T/'T)2]t, 1::; n < N. (5.5) 

One further consideration is necessary before we can 
use contour integration to evaluate (5.1). Since 

at ±Bn, n = 1,2, ... , N: ailvol > Bl > B2 > .•. > 

Bno- 1 ;;::O, and Bn =i,8n,n=no,no+I,"',N, and 
with 0::; ,8no < ,8no+1 < ... < ,8 N ::; a. And for a 

e-XY + O(1/B2), x = 0 or T, (5.6a) 

(5.6b) 
sub critical slab, F(x, B; y) has poles ±Bn , n = 1, 

18 J. Lehner and G. M. Wing, Commun Pure App\. Math. 8, 217 
(1955). 

part of F(x, B; y)Jo(Br)B is not integrable on BE 
(0, 00). This part of (5.1) exists in the sense of a 
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generalized function and must be evaluated as such. 
For example, 

1 fCXl - Jo(Bi)B dB = b(y)b(z). 
21T 0 

(5.7) 

Thus, it is convenient to define 

Fo(x, B; 1') = F(x, B; 1') 

- [1 + (caIB) tan-1 (Bla)]e-I»Y. (5.8) 

Then, 

which is integrable on BE (0, (0), and we can write 

Ps(x, y, z; 1') = e-I»Yb(y)b(z) + ca~Ki1(ai)e-I»Y 
21Tr 

1 Loo + - Fo(x, B; y)Jo(Bi)B dB, (5.10) 
21T 0 

where Kil is the Bickley function19 : 

~Ki1(ai) = iooKo(fJr)dfJ = Lootan-1 (~)Jo(Br)dB, 
(5.11) 

in which Ko is the modified Bessel function. I6 Since 
(caIB) tan-I (Bla) is analytic in the B plane cut by 
c+ u C_, Fo(x, B; 1') is analytic in the B plane cut by 
C+ u C_, with the same poles as F(x, B; 1'). 

To evaluate the integral in (5.10), consider an odd 
representation of the ordinary Bessel function,16 

1 i 00 eiB;t 1 I-I eiB';t 
Jo(Bi') = - dt - - dt, 

1Ti 1 (t 2 
- l)t 1Ti -00 (t 2 

- 1)t 

(5.12) 

for Br E (0, (0), and treat the integrals as contour 
integrations in the complex t plane. Deforming the 
contours t E (1, + (0) and t E (- 00, -1) to lift them 
slightly above the real axis, we can substitute (5.12) 
into the last term of (5.10) and use Fubini's theorem 
to invert the order of integration: 

- Fo(x, B; y)Jo(Br)B dB 1 100 

21T 0 

Then, using Cauchy's theorem and the contours 

11 W. G. Bickley and J. Naylor, Phil. Mag.lO, 343 (1935). 

c 
+ 

jeT 

jeT 

1m B 

B-PLANE 

2. 

I 

----~----------------------~~ ReB 

jeT 

R 

- io-

FIG. 5. The Hankel transform inversion contours for F(x, B; y). 

C+(R, E) and C_(R, E) illustrated in Fig. 5, we obtain 

1 100 

~ - Fo(x, B; y)Jo(Br)B dB 
21T 0 

+ ~ f.oo:F(X, fJ, y)Ko(fJf)fJ dfJ - ca~ Kn(ar)e-"Y, 
21T I a 21Tr 

(5.14) 
where 

:lex, fJ; 1') = lim [F(x, ifJ - E; 1') - F(x, ifJ + E; 1')] 
,"'0 

for fJ E (a, (0) and where 



                                                                                                                                    

GREEN'S FUNCTIONS FOR NEUTRON TRANSPORT IN A SLAB 733 

is the residue of F(x, B; 1') at the pole B,. = ifJ,., n = and 
1,2, ... ,N. Substituting (5.14) into (5.10) and using 
the results of Sec. 4 to evaluate 3t,.(x; 1'), we obtain 

Pa(X, y, z; 1') = e-"'l'a(y)a(z) 

1 f.'" + -2' :F(x. fJ; r)Ko{fJF)fJ dfJ 
217 l t1 

+ J:N'~~) Ko(fJ,.Y)<P,.(x), (5.15) 

where 

.N' .. Cr) = (-1)" 

h2(±lCB,.; 1'-1) + (±)h2(±)(B,.; _r-1)e-rr 

x A(~(r-l, B .. » , 
(5.16) 

5) .. = (l7/A .. ) IH(±l(B .. ; {o(B .. )W· CD:' + D~J, (5.17) 

in which 

To finally obtain G(r; r'), we need only perform the 
Laplace inversion 

G(r; r') = -. Pa(x, Y - y', z - z'; r)e"'Y dr, 
1 f+iOO 

2m -.oo 
(5.28) 

for O:S;;X,X':S;;T and -00 <y,y',z,z'< +00, 
using contour integration and the calculus of residues . 
Recall from Sec. 4 that, if { = 1/1'. then X(l/r. B) is 
analytic in the I' plane cut by Co (B) = {(B2 + 1}2)!: 
1} E (a, oo)} and has no zeros or poles. On the other 
hand, 

A .. = i/{o(B .. ) = [fJ; - (a/vo)?]!, 

C±) = sign [(_1)"+1], 

(5.18) = 1 - tca r (_1_ + _1_) ds ! (5.29) 
JOo(Bl S - I' S + I' (S2 - B2) 

(5.19) 

1 1 a 
D~ = fJ .. {o(B,.) aB ['l1(B. T)]B=B .. 

= T - TCB,., n) + exp {i[T - T(B .. , n)].A.n} 

A.. fJn 

(5.21) 

<P,.(x) = a,. cos [A.,OT - x)] + b .. sin [A.,OT - x)] 

l
"(Bn) - ° A .. (v)[rr/v - C -1 )ne-(r-,,)/v] dv, 

(5.22) 
in which 

a,. = Qn( _l)!(n-O, n odd, 

n = 1,2,"', N, 

an = 0, n even, (5.23) 

bn = 0, n odd, 

n = 1,2,"', N, 

bn = Qn(-I)tl,.-Z), n even, (5.24) 

Qn = [(2u)t/Anl IHlx)(B,,; 'o(B,,))!, (5.25) 

u = (a2/v~)(v~ - 1)/[1 - (1 - c)v~], (5.26) 

is analytic in the I' plane cut by Co(B) V Co(B), 
where 

Co(B) = {_(B2 + 1}2)t: 1} E (a, oo)}, 

with zeros at ±ro(B), where 

roCB) = l/{o(B) = rB2 + (a/vo)2]!. 

Since H±(B; 1/1') is analytic in the I' plane cut by 
C;(B) , substituting (4.22) into (5.16) reveals that 
.N' ,,(I') is analytic in the y plane cut by Co(B) V Co(B), 
with poles at ±Yo(B). 

Then, using Cauchy's theorem and the contours 
r + and r _ illustrated in Fig. 6, 

~ fiOO .N' ,.(y)etll • Y dr 
217Z -ioo 

= _ (-1)" r X( -1'-1, Bn)H(x)(B,,; r-1)e-(r-,,')Y dr 

217i Jr+ rA(~(r-\ Bn» 

_ ~ r X( -1'-1, Bn)H(±)(Bn; -r-1)e"'r dy 

217i Jr - yA(~(y-1, Bn» 

= <Pn(x'). (5.30) 

The use of (5.30) and (3.14) in (5.28) and (5.15) 
results in the following expression for G(r; r'): 

G(r; r') = !53(r - r') 

+ ~ f.'" S(x, x'; fJ)Ko(fJ Ii - i'I)P dP 
217' (1 

+ ilKo{Pn:
n 
- i'l) <l>n(x)<Pn(x'), (5.31) 
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1m y 
Y-PLANE 

~~----------------------------k~--------------------------~ReY 

FIG. 6. The Laplace transform inversion contours for terms comprising F(x, B; y). 

where 

&(X, x'; fJ) = lim [~(x, ifJ - €; x') - ~(x. ifJ + €; x')], 
.->0 
£>0 

where ~n is given by (5.17) and where <l>n(x) is given 
by (5.22). 

It is interesting to note that <l>n(x) is an eigen
function of the I-dimensional integral operator 
LlB,J]: 

<l>n(x) = LlB,.[<I>n](x) = !eO' fK(IX - xl; B~)<I>n(x) dx. 

(5.32) 

Thus, (5.31) represents a general eigenfunction ex
pansion over the point spectrum and over the con
tinuous spectrum of LlB [·]. 

Since 

Ko(fJr) ~ O(e-p';,-l), (5.33) 
r-> 00 

the third term of (5.31) dominates for Ii - i'l » liG, 
and we obtain the following relatively simple ex
pression: 

G(r; r') = il Ko(fJn: - i'l) <l>n(x)ll>n(x') + O(e-al ';-'';,), 
- n 

(5.34) 

for Ii - i'l »l/G. Furthermore, in the case of a 
"wide slab," the elements of (5.34) reduce to partic
ularly simple closed forms. For T» rx(ifJn), the 
approximation (4.25a) substituted into expressions 
(5.2) and (5.17)-(5.27) yields the following: 

fJn = Pn + O(e-T/llliPn l), 

where (see Fig. 4) 

T = T(iPn' n); 

An = ~n + O(e-T/Il/iPn l ), 

(5.35a) 

(5.35b) 

(5.36a) 
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where 

where 

1n = [P! - (0'/110)2]1; 

~n = (7T/1n)Dr;: + O(e-r/a.CiP,,), 

(5.36b) 

(5.37a) 

(21;1)! A (a.liP,,) XC-v; iP,,) 
$,,(x) = r V'n(x) - icO' Jo M(;(lI, iPn» 

x [e-:IO/v _ (_1)"e-(r-:IO)/v] dll , 
(1 + P~1I2)! 

(5.38b) 
in which 

~,.(x) = ( _1)!(,,-1) cos [~"(iT - x)], n odd, 

n = 1,2,···, N, 

= (_1)!(,,-2) sin [~,,(iT - x)], n even. (5.38c) 

To note the lImitations of simple diffusion theory, 
compare the transport-theory solution (5.31) to the 
solution Gdllr(r; r/), obtained by using the diffusion 
approximation in the transport equation: 

I ~ Ko(dm If - i'/)m (-)\T~ (') (539) Gdift(r;r) = k Tm X Tm x, . 
m=l 37TO'a(T + 21) 

where dm = {30'aO' + [m7T/(T + 2/)]2}!, O'a is the ab
sorption cross section, ll=:::! 0.7/0' is the extrapolation 
distance, and '¥ m(x) = sin [m7T(x + I)/(T + 21)] is an 
eigenfunction of the I-dimensional diffusion operator, 

d
2
'¥m(x) = _(~)2'¥m(X). (5.40) 
dx2 

T + 21 

Although both (5.31) and (5.39) are eigenfunction 
expansions, diffusion theory predicts an infinite point 
spectrum for all slab widths, while transport theory 
yields a continuous spectrum plus a finite point 
spectrum which is empty for thin slabs. For 0 < T < 
T min' only the continuum expansion [second term of 
(5.31)] remains. And, as is typical in I-dimensional 
problems, the transport-theory solution includes an 
"end correction" [third term of (5.22) that is impor
tant near the boundaries x = 0 or T] which is not 
found in diffusion theory. 

Finally, let us compare the dominant buckling 
modes of transport theory with those of diffusion 
theory in the normal direction [A.1 vs 1T/(T + 2/)] and 
in the radial direction ({3l vs dI). Using {3I ~ [( O'/Vo) 2 + 
(n1T/T)2]t, Eq. (5.5), and v~ ~ 1/3(1 - c) = 0'/30'a (for 

c near 1), we see that the fundamental diffusion and 
transport modes are approximately equal only in a 
highly scattering, very wide slab. 

6. THE TRANSFORM INVERSIONS BY DIRECT 
METHODS: A CONVENIENT SOLUTION FOR 

Ii - i'l ~ l/a 

For B E C+ U C_, the Neumann series solution to 
(4.14) apparently converges rather slowly, so that 
Sex, x'; (3) is difficult to determine accurately. Hence, 
there is little advantage in using (5.31) instead of (3.1) 
to evaluate G(r; r/) for If - i'l ~ I/O'. However, we 
can develop an expression, which is more suitable 
than either (3.1) or (5.31), for evaluating G(r; r/) for 
small and intermediate radial arguments. To accom
plish this, we first perform the Laplace inversion in y 
using contour integration. Then, we analytically invert 
that part of the Fourier inversion integral which decays 
slowly as B ---+ 00, leaving the rapidly converging 
part for numerical integration. 

To evaluate (3.14), we first note that, although 
F(x, B; y) is analytic in the y plane for all Iyl < 00 

and approaches a definite limit for y ---+ 00 in the 
right half-plane, the individual terms in the expressions 
(4.7) or (4.10) are not analytic for all y. Therefore, one 
can integrate F(x, B; y) term by term, using (4.7), or 
(4.3) and (4.10), and the techniques of contour inte
gration and calculus of residues. 

In particular, consider (4.7), the singular integral 
equation satisfied by F(x, B; y), and divide through by 
A(Hy-l, B»: 

F(x, B; y) 
e-:IOY 

= ---'---
A(;(y-l, B» 

.1 i F(x, B; s) ds + 2CO' 1 
(JoW) A(;(y-I, B»(y - s) (S2 - B2)2" 

-TYl i F(T - X, B; s) ds - e 2CC1 • 
CoW) A(;(y-I, B»(y + s) (S2 - B2)t 

(6.1) 

Referring to (5.29), each term of (6.1) is analytic in the 
y plane cut by CoCB) U C;;(B) and has poles at 
±Yo(B). 

Now substitute (6.1) into (3.14) and refer to Fig. 6. 
In the first term, we use the contour r +(R, €) for 
T 2 x > x' 2 0 and use r _(R, €) for T 2 x' > x 2 o. 
In the second term, we use r _(R, €) and, in the third 
term, we use r +(R, E). Letting R ---+ 00 and € --+ 0, we 
obtain the following result: 

~(x, B; x') = ~<tJ(x, B; x') - ~o(x, B; x') 

- ~O(T - x, B; T - x') (6.2) 
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where [see Eqs. (S.26) and (4.12)-(4.20)] 

gco(x, B; x') = t5(x - x') + P(lx - x'I, B; 0) (6.3) 

and 

go(x, B; x') 

= lcO' ["(B)F(X, B; !)P(XI, B; s) ds i' (6.4) 
Jo s (1 - B2s2) 

(6.5) 

One can arrive at an equivalent expression by sub
stituting (4.3), (4.10), and (4.11) into (3.14) and by 
using the contours illustrated in Fig. 6. 

Finally, the use of (6.2) in (3.6) and (3.8) yields the 
following expression for G(r; r/): 

G(x, y, z; x',y', Zl) 

= Gco(x,y,z;xl,yl,Z') 

- Go(x,y, z; x',y', Zl) 

- GO(T - x,y, z; T - x', y', Zl), (6.6) 

where20 we have evaluated 

Gco(r; r/) 

= 1- [CO gco(x, B; x')Jo(B Ii - i'I)B dB 
2'17 Jo 
jt3 ') u exp (-0' Ir - r/l VOl) = u (r - r + - ----"---'----'--.!........:.~ 

2'17 Ir - r/l 

CO'2 1 il exp (-0' Ir - r'l rl) dt +--- -
4'17 Ir - r'l 0 M(t) t2 ' 

and where 

Go(r; r') 

= 1- [COgo(x, B; x')Jo(B Ii - f'I)B dB 
2'17 Jo 

= ~ [CO Jo(B If _ f'I)B{ [COF(x, B; (S2 + B2)!) 
4'ITJo Ja 

(6.7) 

[ 
u exp {-x'[B2 + (0'/VO)2]!} 

X [B2 + (0'/VO)2]! (B2 + S2)! + [B2 + (0'/VO)2]! 

+ lcO' l co exp [-x'{B2 + t2)!] dt ] 

a (B2 + i)! + (B2 + t2)! M{0'/t)(B2 + t2)! 

(6.8) 

10 K. M. Case and P. F. Zweifel, Linear Transport Theory (Addi
son-Wesley PubJ. Co., Reading, Mass., 1967). 

Gco(r; r/) is the point-uncollided-source Green's 
function for an infinite medium [Gco(r; r/) satisfies 
(2.3) with the "0 to T" limits of integration in x 
extended to "- 00 to + 00"], while the Go are the 
boundary correction terms. For small 21 I; - ;'1 
Go(x,y, z; x', y', Zl) and GO(T - x,y, z; T - x' ,y', Z') 
are significant in (6.6) for x and/or x' near 0 and T, 
respectively, because by (4.1), 

F(x, B; (S2 + B2)!) ex O(exp [-X(B2 + S2)!]), (6.9) 

for BE (0, (0) and S E (0', 00), and because of the 
exponential terms exp {-x' [B2 + (0'/VO)2]!} and 

exp [-x'(B2 + (2)!] 
in (6.8). 

For x' and x not both zero, the integrals in (6.8) can 
be shown to converge absolutely, and that expression 
can be used to evaluate Go(r; r') numerically. Natu
rally, the convergence is more rapid the farther x 
and/or x' are from O. For x = x' = 0, it is not evident 
that the integrals in (6.8) are absolutely convergent, 
so it may 'be necessary to substitute (S.8) into (6.8). 
The resulting integrals that do not converge abso- . 
lutely can be evaluated analytically, while the integrals 
involving Fo(x, B; (S2 + B2)!) converge absolutely and 
can be evaluated numerically. With respect to the 
boundary x, x' = T, the same observations are true in 
evaluating GO(T - x,y, z; T - x',y', Zl). 

For the purpose of numerical integration, it is useful 
to note that the approximations (4.2S) can be used to 
put the expression for F(x, B; (S2 + B2)!) into simple 
closed form. Furthermore, even for thin slabs, these 
approximations are accurate for B sufficiently large so 
that B E $ = {B' E (0, (0): T» a,{B')}. 

Therefore, for Ir - r/l ~ I/O', or when 0 < T < 
T min' expressions (6.6)-(6.8) are generally much more 
suitable than either (S.31) or (3.1) for numerically 
evaluating G(r; r/). In the special case that c or T is 
very small, (3.1) might be more efficient. 

7. SOME ADDITIONAL RESULTS: THE 
PHYSICAL SIGNIFICANCE OF P3' F, AND g 

To obtain the solution to (2.1) for any specific un
collided density S(r), we need only use the results of 
(S.34) and (6.6) in (2.S). However, in the process of 
solving for G(r; r'), we have also obtained the solutions 
to (2.1) for some physically significant uncollided 
sources. 

A. Normally Incident Beams 

In particular, referring to (S.11) and (3.15), we see 
that Pa(x, Y - y', z - Z'; y) satisfies (2.1) with S(r) = 
t5(y - y')Cl(z - zl)e-"Y, where y is a free parameter. 

Ii As Ir - r'l increases, so does (Goo - G)/G for aU x, x' e [0, 1']. 
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For example, Ps(x, Y - y', z - z'; 0') is the neutron 
density at (x, y, z) from a pencil beam normally in
cident to the slab at (0, y', z'), and is therefore the 
Green's function for all problems involving beams 
normally incident to a slab. Likewise, referring to 
(2.6), [Pa(x, y - y', z - z'; 0) - bey - y')b(z - z')]/ 
CO' is the neutron density at (x, y, z) from an isotropic 
line source normally incident to the slab at y = y' and 
z = z' and in the slab x E [0, T]. 

By appropriately adjusting the free parameter y, 
one can think of a variety of other problems for which 
Pa(x, y, z; y) is the solution. In particular, the solution 
to an interesting "pseudo-two-group" transport 
problem in a slab can be written in terms of Ps. That 
is, suppose one considers a particle, such as a neutron, 
that has no charge and that interacts weakly with other 
free particles of its kind. Consider the transport of this 
particle in a homogeneous slab (Fig. 1), and suppose 
the particle physics is described by the following 
model: 

(1) The velocity of all uncollided particles is a 
constant vo, while the velocity of all particles which 
have had at least one collision is a constant v. 

(2) The mean free path for a first collision, is l/yo, 
while the mean free path for all succeeding collisions 
is I/O'. 

(3) For every first collision there are Co secondaries 
emitted isotropically, while for every subsequent 
collision there are c secondaries emitted isotropically. 

Then, the steady-state particle density N(x, y - y', 
z - z'), from a pencil beam of these particles normally 
incident to the slab at (0, y', z'), is simply 

N(x, y - y', z - z') 

vocoYo [ ( , ') = -- Pa x, Y - Y , z - z ; Yo 
vCO' 

and (5.35)-(5.38) can be used to reduce (7.2) to a 
simple, closed form. 

To evaluate Pa(x, y - y', z - z'; y) for If - f'l ~ 
1/0' or when 0< T < Tmin' one can use (5.10) and 
evaluate the last term numerically, using approxima
tions (4.25) for BE $. However, if ° ~ c < 1 and 
Re y > - 0'/'1'0' it is more convenient to define 

F1(x, B; y) 

_ F(x B') exp (-xy) 
- "y - A(~(y-\ B» 

u'o(B) exp (-x"o(B» 
y - ['O(B}]-l 

CO' fll(B) exp (-x/s) ds 

- 2y Jo s - I/y M(~(s, B»(I - B2s2)t . 

(7.3) 

Then, 

Pa(x,y - y',z - z';y) 

= Paoo(X, Y - y', z - z'; y) 

+ 1- foo F1(x, B; y)Jo(B If - r'I)B dB, (7.4) 
277 Jo 

where 

Pa",,(x, Y - y', z - z'; y) 

= w(x)b(y - y')b(z - z')e-"'Y 

+...!!.. qy(x, Ir - r'l; '1'0) 
277 

+ CO'2 f1 qy(x, Ie - e'/; t) dt, (7.5) 
477 Jo t2M(t) 

for - (X) < x, y, y', z, z' < + (X) , in which 

qix, r; t) 

100 exp [_O't-1(S2 + r2i - ys] ds 
= exp (-xy) ( 2 + ~2)! (7.6) 

-'" s r 
+ bey - y')b(x- x')e-"'Yo. (7.1) and 

This solution might have some application in high
energy neutron, or gamma, shielding problems. 

To evaluate Ps(x,y, z; y) for any y, refer to the 
equations of Sec. 5. For If - f'l » I/O', we can use 
(5.15) to obtain 

Pa{x, Y - y', z - z'; y) 

= f oN' .. (y) Ko{P .. lf - f'\)cI>nCx) + O{e-t7 \r3'1), 
.. =1 ~ .. 

(7.2) 

where oN' .. {y) , ~n' and cI>n{x) are given by (5.16)
(5.27). When T» r.I.{iPn), the approximations (4.25) 

Since 

w(x) = 0, x < 0, 

= 1, x> 0. (7.7) 

F ( B.) {o(exp (-iTB)B-2
), ° < x < T, 

IX, ,y~ 
O(B-2

), x = 0 or T, 

(7.8) 

the last term of (7.4) is much easier to integrate 
numerically than is the last term of (5.10). However, 
we cannot use (7.4) for all y and c. Ps",,(x, Y - y', 
z - z'; y) is the neutron density at (x, y, z) in an 
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infinite medium from an uncollided source 

w(x)b(y - y')b(z - z')e-xy , 

P3oo(X,y - y', z - z'; y) 

+00 

= ca Iff exp (-air - il) 
47T Ir - W 

-00 

x P3oo(.X, y - y'; z - Z'; y) d3r 

+ w(x)b(y - y')b(z - z')e-XY, (7.9) 

and makes sense, physically, only for Os c < I and 
Re y > -a/vo. 

In radiation transport theory, P3(X,y, z; a) is the 
solution to the "flashlight problem." Hunt solved 
a particular problem of this class where a beam of 
radiation normally incident on a slab atmosphere is 
modulated by the Bessel function Jo(Br). Then the 
radiation "source function" J(r) satisfies (2.1) with 
S(r) = 27TJo(Br)e-X

, where B is a free parameter. In 
terms of the theory of Sec. 4, his result is simply 
J(r) = 2TTJo(Br)F(x, B; 1), where c is interpreted as 
the albedo for a single scattering. 5 

To physically interpret F(x, B; y), refer to (3.15), 
(3.12), and (4.2). F(x, 0; a) represents the neutron 
density in a slab from a uniform unit beam normally 
incident to the left face [satisfying (2.1) with S(r) = 
e-rrxj, whilej+(x, 0; a) represents the neutron density 
in a slab from uniform unit beams normally incident 
to both faces. 

B. Asymptotic Theory in the Transverse Directions 

For BE (0, (0), F(x, B; a) can be interpreted as 
the "asymptotic-theory" solution for neutron trans
port in a finite prism. (Asymptotic theory: Assume the 
form of the solution in the two transverse dimensions 
to be eiB.r and solve the resulting modified transport 
equation exactly in the third dimension.) That is, 
consider the integral equation for the neutron density 
p(x, y, z) in a finite prism (see Fig. 7) with a cosine
modulated beam normally incident to the left face: 

p(x, y, z) 

ca fTd"f!a d"fhd" (" " ")exp(-alr - il) = - x y ZP x, y, z 2 
47T 0 -la -lb Ir - il 

+ e-rrx cos (~Y) cos (~z), (7.10) 

for x E [0, 'T], y E [-ta, ta], and z E [-tb, ib]. 
Assuming a solution of the form 

p(x,y, z) = cos (TTtlly) cos (TTb-1z)n(x; a, b) (7.11) 

y 

---=! 
--+ 

---+ 

- - -- -x 

Z 

FIG. 7. A rectangular parallelopiped with a cosine-modulated beam 
incident to the left face. 

and extending the limits of integration in (7.10) 
to (-00, +00) in y and z, it is easy to show that 
n(x; a, b) satisfies (3.15) with y = a and with 

B = [(TT/a)2 + (TT/b)2}! = Bg , 

the "geometric buckling." Thus, 

p(x, y, z) ~ PasymptotiC(X, y, Z) 

= cos (TTa-1y) cos (TTb-1z)F(x, Bg; a), 

(7.12) 

and many ofthe results obtained by Kaper, 7 Williams, 6 

and Smith4 can easily be reproduced using the theory 
cited in Sec. 4. 

For example, with c > I and fixing a and b, the 
critical length 'To of the prism in asymptotic theory is 
given by the smallest 'T > 0 for which the denominator 
of F(x, B; a) is zero. Using (5.2) and (5.3), 

TT 2 (1 1 - ()(t)/7T dt 

'To = [(a/lvoI)2 _ B:j! - Jo 1 + (tllvo\)2(a2 + B;t2)! 

- 'tL(Bg, 'To), (7.13) 

where 'tL(Bg, 'To) = O(exp [-'To/oc(Bg)]). For a first 
estimate or for 'To » oc(Bg) (i.e., if a and b are small), 
the first two terms of (7.13) suffice and can be 
easily evaluated.12 Furthermore, referring to (5.22)
(5.27), the critical neutron density is proportional to 
cos (TTtlly) cos (TTb-1z)cI>1(X) with Bl replaced by By. 

C. Plane-Source Densities 

To physically interpret ~(x, B; x'), refer to Eq. (3.9). 
~(x, 0; x') is the neutron density at x in a slab from an 
uncolIided plane source at x' E [0, 'T] and is, therefore, 
the Green's function for I-dimensional neutron trans
port in a slab. Using (2.6), [~(x, 0; x') - b(x - x')]! 
ca is the neutron density at x from a plane-isotropic 
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source at x'. Also, referring to Fig. 7, 

Pasymptotic(x, y, z; x') = cos (7Ta-1y) cos (7Tb-1z) 

X ~(x, By; x') 

is the asymptotic-theory solution for neutron transport 
in a finite prism (1" a . b) with a cosine-modulated, 
plane-uncollided source at x' E [0,1']. 

Pasymptotic(x, y, z; x') 

satisfies (2.1) with 

S(r) = cos (7Ta-1y) cos (7Tb-1z)t5(x - x'). 

To evaluate ~(x, By; x'), it is convenient to use 
(6.2)-(6.5) with approximations (4.25) for Bg E $. 

In (6.2), ~oo(x, 0; x') represents the infinite medium 
plane-source Green's function, while ~o(x, 0; x') and 
~o( l' - x, 0; l' - x') are the boundary correction 
terms important near x = 0 and x = 1', respectively. 
Note that (6.4) can be rewritten as in (6.8) and eval
uated numerically, the integrand converging expo
nentially for x and/or x' not on the boundary. 

8. 2-DIMENSIONAL NEUTRON TRANSPORT 
IN A SLAB 

The results of 2-dimensional transport theory in a 
slab are immediately obtained by setting B = wand by 
considering only I-dimensional Fourier transforms. 
Section 4 is unchanged. The results of 2-dimensional 
asymptotic theory can be obtained from Sec. 7 by 
letting a or b go to infinity. 

If P2(X,y; y) satisfies (2.1) with S(r) = t5(y)e-XY
, 

then P2(X, y - y'; y) is the neutron density at (x, y) in 
a slab from a "sheet" of neutrons normally incident to 
the slab at y = y'. P2(X, y - y'; 0) is the neutron 
density at (x,y) in a slab from a plane-uncollided 
source normal to the slab at y = y'. 

To evaluate P2(X, y - y'; y) for Iy - y'l » I/a and 
l' ~ T min' we use an equation analogous to (5.15) and 
(7.2): 

P2(X, y - y'; y) 

I 100 

, = t5(y)e-XY + -2' :rex, (J; y)e-P1II- 1I I d{J 
7T1 a 

N 
+ i I e-Pnlll-y'l:Rn(x; y) (8.la) 

n=l 

for Iy - y'l » l/a. To evaluate P2(X, y - y'; y) for 
Iy - y'l ~ I/a or when 0 < T < Tmin' we use equa
tions analogous to (7.3)-(7.6) when Re y > -a/vo 

and when 0 ~ c < 1: 

1 100 

= P2oo(X,y;y)+- F1(x, w; y) cos (wy) dw, (8.2) 
7T 0 

where 

ca211
]' (x y' t) + - Y" dt, 

27T 0 t2M(t) 
(8.3) 

in which 

j/x, y; t) = e-xy L: Ko(7 (S2 + l)!) e-Y" ds. (8.4) 

In case Re y ~ -a/vo or c ~ I, the equation analo
gous to (5.10) is [see (3.4)] 

1 100 

+ - Fo(x, w; y) cos (wy) dw. (8.5) 
7T 0 

It is interesting to note that [P2(X,y; 0) - t5(y)]/ca 
is the neutron density at (x, y) from an isotropic plane 
source normal to the slab at y = 0 and in the slab 
x E [0,1']. This is the solution to a problem considered 
recently by Williams,12 and he obtains a result similar 
to (8.1) in the "wide slab" approximation [(4.25) and 
(5.35)-(5.38) in (8.1)]. 

If G2(x, y; x', y') satisfies (2.1) with 

S(r) = c5(x - x')t5(y - y'), 

then it is the neutron density at (x, y) from an uncol
lided line source at x = x',y = y', andz E (- 00, + (0) 
in the slab. That is, G2(x, y; x', y') is the Green's 
function for 2-dimensional neutron transport in a slab. 

To evaluate G2(x,y; x',y') for Iy - y'1» l/a and 
l' ~ T min' the equation equivalent to (5.34) is 

G2(x, y; X', y') 

+ O(exp (-a Iy - y'1» (8.6) 

for Iy - y'l »1/a. To evaluate G2(x,y; x',y') for 
Iy - y' I ~ 1/ a or when 0 < T < T min' the equations 
equivalent to (6.6)-(6.8) are 

G2(x, y; x', y') = G2oo (x, y; x', y') - G20(x, y; x', y') 

- G20(T - x, y; T - x', y'), (8.7) 
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TABLE I. A summary of Green's functions obtained for multidimensional neutron transport in a slab. 

Convenient expressions 
Ii - i'l» l/a and I;: - 1'1 ~ l/a or 

T ~ Tmin T < Tmin 

Iy - y'l » l/a and Iy - y'l ~ l/a or Functional 
notation Description Equation satisfied T ~ Twin T < Tmin 

G(r; r') 
3D Green's function 
(uncollided) point-source density 

(2.3) 

(2.1) 
with 

(5.34) 
[with (5.35)-{5.3S) 
for T » IX(BfI)] 

(S.6) 

(6.6)-(6.S) 
[with (4.25) for 
Be $]& 

Gs(x, y; x',i) 
2D Green's function 
(uncollided) line-source density S(r) = 6(x - x')6(y - y') 

[with (5.35)-{5.3S) 
for T » IX(BfI)] 

(S.7)-(S.9) 
[with (4.25) for 
Be$] 

g(x, B; x') 
ID Green's function 
uncollided-plane-source density 
(B = 0) B is a free parameter 

Normal beam Green's function 
y is a free parameter: i.e., 
y = 0: normal line source 

(3.9) (6.2)-{6.5) [with (4.25) for T» IX(B)] 

(7.2) 
(2.1) [with (4.25) and 

(i) (7.3)-{7.7) for 
Re y > -a/'lJo and 
O~c<l 

P3(X,y - y', 
z - z'; y) y = a: normal pencil beam 

y = Yo: "pseudo-two-group" 

with 
S(r) = 6(y - y')~(z _ z')r'Y (5.35)-{5.3S) for T» IX(Bn)] 

(ii) (5.10) for 
Re y ~ -a/'lJo or 
c ~ 1 [with (4.25) 
for B e $] normal beam 

2D normal beam Green's function 
y is a free parameter; i.e., (2.1) 

with 

(S.l) 

(i) (S.2)-{S.4) for 
Re y > -a/'lJo and 
O~c<l 
(ii) (S.5) for pz(x, y - y'; y) 

y = 0: normal plane source 
y = a: normal sheet 
y = Yo: "pseudo-two-group" 

normal sheet ' 

S(r) = 6(y - y')r~Y 

[with (4.25) and 
(5.35)-(5.3S) for 
T» IX(BfI)] 

Re y ~ -a/'lJo or 
c ~ 1 [with (4.25) 
for Be $] 

a $ = {B' e (0, 00): T »IX(B')}. 

where 

G2a:,(x, y; x', y') 

= <5(x - x')<5(y - y') 

+ ~ Ko(~ [(x - X,)2 + (y _ y')2]!) 
7T Vo 

Ko (!!. [(x - X')2 + (y _ y')2]l) 
ca
2 il t + - -~-------...!.. dt (8.8) 

27T 0 t2M(t) 

and 

G20(x, y; x', y') 

= - §o(x, w; x') cos [w(y - y')] dw. (8.9) 1 foo 
7T 0 

G200 is the infinite medium 2-dimensional Green's 
function, while the G20 are boundary correction terms. 

In using the equations of this section, the same 
remarks made in Sees. 5-7 [concerning the rate of 
convergence of integrals and the use of approxima
tions (4.25)] apply here. 

9. CONCLUSIONS 

In Sees. 2-8, we have obtained Green's functions 
for several classes of multidimensional neutron trans-

port problems in a slab, under the assumptions of 
steady-state, one-speed, and isotropic scattering. 

In the general case, the point-source Green's func
tion G(r; r') can be used to obtain the solution to the 
transport equation (2.1) for any uncollided neutron 
density S(r). Forexainple, the neutron density p(r;no), 
from a monodirectional pencil beam incident to the 
slab at any angle, can be obtained by integrating 
G(r; r') along the beam path [see Eqs. (2.2), (2.5), and 
Fig. 2]: 

p(r; no) = So G(x, y, z; x', x' tan 00 cos CPo, 

x' tan 00 sin CPo) exp (-ax') dx'. (9.1) 
cos 00 

And the neutron density from any beam can be ob
tained by integrating p(r; no) over the angular and 
spatial distribution of the beam. Note that the "pseudo
two-group" problem can be done for nonnormal 
beams by using (9.1) in (7.1). 

For problems with a higher degree of symmetry, 
e.g., normally incident neutron beam, it is simpler to 
use another more appropriate Green's function having 
the same symmetry. Table I gives a summary of the 
most convenient equations for evaluating these func
tions under various circumstances. 
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